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The paper presents a novel implementation of the genetic algorithm (GA) to improve the coverage of the sensor network for
damage detection using guided waves. The implementation allows depiction of sensor locations with real values which is closer
to the real-life situation. Also, additional features such as proximity checks and node insertions have been implemented in order
to improve the convergence of the GA as well as the thoroughness of the search space. For the traditional integer-based
implementation, the size of the problem is large but finite. For the real-valued implementation, the problem size can indeed be
infinitely large. So added measures have been introduced such as a two-step optimization process for the reduction in size and
improved convergence.

1. Introduction

Guided wave- (GW) based structural health monitoring
(SHM) in one of the most widely used techniques for large
plate or pipe-like structures. The propagating wave may be
used to cover a large area and through the processing of the
time of flight (TOF) allows damage isolation. The GW have
been shown to be sensitive to extremely small levels of dam-
age and have been employed for detection of damage due to
impact, corrosion, and fatigue [1–4].

The research in the area of GW in metallic structures is
quite extensive, but the work in the area of sensor placement
is quite limited. Ostachowicz et al. [5] present an excellent
review of the techniques used in the optimization of sensor
placement with a special section dedicated to the optimiza-
tion of sensor placement for GW-based SHM. The literature
can be divided into primarily 3 areas. The first work in the
area of sensor placement optimization was based on improv-
ing the probability of detection (POD). Staszewski et al. [6]
used it in conjunction with artificial neural networks for
improving the probability of impact localization and detec-
tion. Markmiller and Chang [7] used a metric dependent
on the POD which was computed based on the response

reconstruction of the impact event. Staszewski et al. and
Markmiller et al. both used GA for the optimization. Flynn
and Todd [8] used the probabilistic approach as well in the
form of Bayes’ risk. The aim is to minimize the false-
positive and false-negative errors caused by the sensor net-
work. Haynes [9] built on the Bayes’ risk framework and
included the cost of the SHM system in the decision-
making process. Similar approaches based on the false alarms
were also proposed by Vanli et al. [10] and Coelho et al. [11].

The second philosophy of the optimization is to improve
the sensitivity of the network to damage. The work done in
this area is largely finite element model based, where different
damage scenarios are numerically simulated and used to
determine the sensor locations such as the one by Lee and
Staszewski [12]. Venkat et al. [13] and Ewald et al. [14] also
present a method for locating the sensors at the maxima of
the differential image of the healthy and damaged condition
of the structure. These methods are useful for optimization
of placement for the known hotspots in the structure.

Another philosophy of the optimization is to maximize
the coverage of the sensor network. Soni et al. [15] developed
a sensor placement algorithm based on the minimal sensing
distance. The sensing range was determined based on the
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signal to noise ratio (SNR) and the attenuation of the waves.
The minimum sensor range was a circle of fixed radius deter-
mined experimentally. The backward sequential sensor
placement (BSSP) was used in order to remove the redundant
sensors in the network. Coelho et al. also developed an
approach based on maximizing the coverage area by mini-
mizing the probability of false alarms. Thiene et al. [16] pro-
posed maximizing of coverage area based on a pixelated
approach. The sample of interest was divided into pixels,
and the coverage of the sensor network was calculated for
each pixel. The different wave propagation features such as
attenuation, line of sight, and shape of the sample can be
incorporated based on different multiplication factors for
obtaining the fitness function. The number of candidate loca-
tions are restricted in the study in order to limit the problem
size. But this unnatural constraint may limit the performance
of the optimization algorithm. The number of possible sensor
locations was increased by Soman et al. [17] through the use
of an analytical approach which is computationally more effi-
cient than the pixel-based approach. Soman et al. [17] then
extended the optimization cost function also to improve the
quality of the damage isolation. The damage isolation in the
GW-based SHM is carried out by the triangulation tech-
nique. Soman et al. included the area covered by at least 3
sensors as an additional metric. The multiobjective optimiza-
tion problem was scalarized using weighing functions in
order to simplify the optimization using the GA. Tarhini
et al. [18] too used coverage of the specimen as a optimiza-
tion objective. They developed a mixed integer nonlinear
program which does not constrain the optimization search
to a limited number of possible sensor locations and is a
motivation for the current research.

In the present paper, the authors build on the defined cost
function with 3 optimization objectives, namely, coverage by
at least 1 sensor-actuator pair, coverage by 3 sensor-actuator
pairs and the number of sensors. The implementation of the
GA is changed from an integer GA to a real-valued GA. In
order to restrict the size of the optimization problem, the
number of sensors is limited to a range of values. This range
is determined based on the sensor densities required for the
SNR to allow reliable damage detection. The cost function
computation is the most computationally demanding step,
and hence, the number of unnecessary computations needs
to be reduced. In order to limit this number, some features

such as node insertion and the proximity detection have been
added to the implementation.

The rest of the paper is organized as follows: the next sec-
tion explains the methodology for defining the optimization
problem. Section 3 presents the additional functionalities
such as node insertion and proximity check implemented
for improving the performance of the GA. Section 4 covers
the results of the optimization and the comparison of the
improved GA with the earlier work. The last section draws
some conclusions and presents areas of future work.

2. Methodology

The increase in number of sensors deployed on a structure
leads to an increase in the deployment costs as well as sec-
ondary costs related to the extra weight of the sensors and
the wiring as well as the processing and storage of the data.
Hence, one of the objectives of the optimization of sensor
placement should be the minimization of sensors used. This
minimization can be implemented in the cost function or
as a constraint in the allowed placements. If it is incorporated
in the cost function as by Soman et al. [17], the number of
possible sensor placements increases. The optimization prob-
lem becomes very large, and as a result, the time needed for
convergence is very large. Also, the time consumed for the
computation of the cost function increases with the increase
in number of sensors as shown in Figure 1. The computations
are based on the implementation of the GA reported in [17].

Also, the sensor placements with the large number of
sensors are not feasible due to the availability of the
resources. Thus, in order to reduce the size of the optimiza-
tion problem, constraints on the number of sensors may be
imposed right at the implementation stage. This constraint
must be imposed in an objective way in order to ensure that
the sensor performance is within the acceptable range. Thus,
this section discusses a formal method for determining the
maximum number of sensors.

2.1. Sensor Number Determination. The number of sensors is
determined based on sensor densities using the concept
developed by Croxford et al. [19]. They provide an excellent
discussion and step by step process for calculating the differ-
ent parameters for determining the sensor densities. For
completeness, the equations for calculating the sensor pitch
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Figure 1: Problem size and computation time for increasing number of sensors.
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and all the factors are provided here without the derivation
which can be found in [19]. The minimum pitch of the sen-
sors is given by

p =
33/4Rdamage
ffiffiffi

2
p

SβδT

 ! 2/3ð Þ

, ð1Þ

where Rdamage is the reflection coefficient of the damage

(defined in terms of the scattered wave amplitude at unit dis-
tance from the damage), S is the minimum SNR required for
reliable damage assessment, β is the coefficient correspond-
ing to the post subtraction noise between the baseline signal
and the signal at the present time, and δT is the change in
temperature. The factor β is dependent on the type of sub-
traction carried out as well as the wave mode. In the paper
by Croxford et al., the value for RF subtraction is given by

βRF = 2πf
1

vph
α −

kph
vph

 !

, ð2Þ

where vph is the phase velocity, kph is the coefficient relating

the sensitivity of the phase velocity to temperature, and α is
the coefficient of expansion.

The factor Rdamage is dependent on the type of damage

considered. For a hole in the plate considered as a cylindrical
scatterer, the coefficient can be analytically given by

Rdamage = 0:55
ffiffiffi

d
p

, ð3Þ

where d is the diameter of the hole in m.
Knowing the values for all the parameters in equation (1),

the pitch of sensors can be calculated which in turn may be
used for determining the minimum number of sensors. The
maximum number of sensors then can be determined by
introducing some redundancy in the system. As shown in
Figure 1, the problem size and the computation time increase
with the increase in the maximum number of sensors. So care
should be taken in defining the maximum number. For the
purpose of the study and to ensure some redundancy, the
maximum number of sensors was identified as 50% more
than the minimum number of sensors required.

The sample of interest was an aluminium plate with
dimensions 1m × 1m × 1mm shown in Figure 2. Added
mass was used to simulate damage. The backscatter profile
of the added mass was obtained based on the full-field mea-
surements from the laser Doppler vibrometer as shown in
Figure 3. The result is for the centrally located mass shown
in Figure 2.

As can be seen, the minimum value for the backscatter
was 0.073 which is taken as the back-scatter Rdamage. Key

points to note is that the backscatter is more or less symmet-
rical (within reasonable errors). The small error can be attrib-
uted to the fact that the sampled points were in a rectangular
grid as opposed to a radial grid. Hence, the distances at the
point of measurement were approximately equal. The maxi-
mum backscatter occurs at 45° to the incident angle. The

minimum value is in the area just beyond the mass as is
expected. So the worst case will be when the sensor is at the
other side of the actuator which is considered in computing
the minimum number of sensors. The backscattering index
obtained is equivalent to 17mm hole in the sample according
to equation (3) which is a reasonable assumption for a scat-
tering object. The β value for the aluminium plate S0 wave
based on equation (2) is given as 0.0962. In the author’s team,
methods have been developed for temperature compensation
which allow -14 dB change in the SNR for 10°C change in
temperature [20]. The 14 dB change results in β = 0:0192.
The SNR = 2 (similar to [19]) has been assumed to be neces-
sary for ensuring reliable damage detection. Based on these
inputs, the p calculated based on equation (1) is 0.454 which
relates to the minimum number of sensors as 6. Taking into

Figure 2: Aluminium plate under investigation [17].
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Figure 3: Backscatter of the waves due to discontinuity (added
mass)—excitation from 90°.
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consideration the proposed redundancy in the system, the
maximum number of sensors is calculated as 9. This allows
comparison of the method with the older method as the sen-
sor optimization carried out previously and reported in [17]
was on a network of 9 sensors.

2.2. Sensor Location Optimization. Once the number of sen-
sors is known, an optimization scheme can be implemented
by restricting the number of sensors between the lower and
the upper limits. The criterion for the optimization is given
by the cost function. As has been mentioned in [17], the three
demands from the application are as follows:

(1) coverage with at least 1 sensor-actuator pair
(coverage1)

(2) coverage with at least 3 sensor-actuator pairs
(coverage3)

(3) number of sensors (s)

Based on these demands, a scalarized cost function can be
developed by using weighing factors as shown in

cost = −1 × ω
coverage3

sγ
+ 1 − ωð Þ coverage1

sδ

� �

, ð4Þ

where coverage3 is the % of points of the grid which lie
within the sensing range of 3 or more sensor-actuator pairs;
coverage1 is the % of points which lie in the sensing range
of a single sensor-actuator pair. ω, γ, and δ are weighting
values to determine the relative merit for each of the param-
eters, and s is the number of sensors. The parameters γ and δ
can be treated as independent of each other or dependent
based on the choice. The two parameters were introduced
to show the different correlations of the coverage3 and cover-
age1 values to the number of sensors.

For the two-stage optimization implementation illus-
trated in this paper, the choice of the weighing parameters
is even more sensitive. As the change in the number of sen-
sors is limited, the range of values for the parameter too are
limited and do not showmuch change. Hence if the weighing
values for γ and δ are too low (e.g., 0), the algorithm will
choose solutions with maximum number of sensors while if
they are too high (e.g., 1), the number of sensors will have a
very high bearing on the sensor placement, and as such, the
placements with lower number of sensors will be preferred.
This value depends on the contribution of each sensor to
the coverage of the network. For metallic structure without
any structural features such as stiffeners, each sensor contrib-
utes significantly; hence, the low values for γ and δ need to be
chosen. Sensitivity studies were carried out with evenly
spaced sensor placements (Figure 4) for different number of
sensors as shown in Table 1. It is acknowledged that the
evenly spaced sensor placements may or may not be optimal.
The aim of Table 1 and Figure 4 is to show the contribution
of each sensor towards the coverage1 and coverage3 values
and their bearing on the choice of γ and δ values.

As can be seen in Table 1, the contribution per sensor
reduces but the overall coverage increases with the increase

in the sensor number. In order to obtain similar cost for sen-
sor placement with 6 sensors and 9 sensors, the δ value needs
to be 0.17. Similarly, the γ value needs to be 0.26. As men-
tioned, the evenly placed sensor placement is suboptimal; as
a result, the sensor contribution too is suboptimal. For opti-
mized sensor placements, the values for γ and δ should be
significantly lower. Hence, for the purpose of the study,
values of γ and δ were taken as 0.15.

The optimization of the locations was carried out using a
real-valued implementation of the GA with special tools and
routines incorporated for improved convergence which have
been described in the next section.

3. Implementation of the GA

The main innovation of the paper is the implementation of
real-valued GA as opposed to the commonly used integer
GA for sensor placement optimization. The underlying moti-
vation for this is the observation that the more realistic the
encoding of the optimization, the better the performance of

Table 1: Change in metrics with different number of evenly
distributed sensors.

s
coverage1 coverage3

Contribution
per sensor to
coverage1

% contribution
per sensor to
coverage3

% % % %

6 84.1 74.5 14.0 12.4

7 85.2 77.4 12.2 11.1

8 86.6 78.5 10.8 9.8

9 90.2 82.8 10.0 9.2
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Figure 4: Even distribution of sensors to show sensor contribution.

4 Journal of Sensors



the algorithm. Also, by changing the implementation from
the integer to real GA, the difference in the phenotype for a
unit change in the sensor values is significantly reduced thus
allowing better search in the sample space. On the downside,
the size of the problem is no longer finite but infinite. Thus,
there is no way for checking the validity of the optimization
tool with brute-force methods. The flow chart for the GA is
provided in Figure 5.

The population is generated with each individual sensor
placement depicted by 2 ×N . The first row corresponds to
the x-coordinate while the second row corresponds to the y
-coordinate. The x and y coordinates are treated as indepen-

dent in the population generation, fitness evaluation, node
insertion, and mutation phases while in the crossover and
selection phase, y-coordinate is treated as dependent vari-
able. The number N corresponds to number of sensors and
can take any value in the chosen range determined by the
method outlined in Section 2.1. The different features incor-
porated in the GA are shown through an example in Figure 6.

3.1. Proximity Check. This feature is introduced to avoid con-
centration of the nodes at a point or ensure the feasibility of
the sensor placement. In the first step, nodes which are too
close to the boundaries are omitted as it will be difficult to
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Figure 5: GA flowchart.
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distinguish between direct signals and the reflection from the
boundary. In the next stage, redundancy in the system
because of 2 closely spaced sensors is reduced by deleting
the sensor. The limit for the proximity check was taken as
the diameter of the sensors used which was 0.01m. This con-
straint ensures that the optimized network is possible to be
realized physically.

3.2. Node Insertion. In case the proximity check removes a
gene from the chromosome, there is a possibility to increase
the number of sensor in the chromosome by adding a node
at the location with the poorest coverage. The node is
inserted if it provides an advantage over the existing sensor
placement in terms of the coverage3, coverage1, and the sca-
larized cost function. The node insertion is repeated until the
insertion is possible and desirable. The chromosome with the
added gene replaces the lowest ranked chromosome in the
selection process. The node insertion allows a better local
search but at the cost of possible entrapment in the local min-
ima. This entrapment is caused as there are two copies of very
similar chromosomes which are very desirable in the popula-
tion. So in order to avoid their domination in the subsequent
generations, the number of chromosomes in each generation
is increased as compared to the previous implementation of
the GA reported in [17].

3.3. Fitness Evaluation. In the previous work by the authors,
the analytical approach based on the largest ellipse fitting
inside the plate was employed for determining the coverage
of each sensor-actuator pair. This approach is simple to
implement for simple structures and is computationally effi-
cient. For problems where the propagation is direction
dependent (anisotropic structures, or structures with damage
backscatter with an angle-dependent profile), the ellipse
approach is not valid. Hence, the ray-tracing approach [21]
explained in Figure 7 was employed. In the ray-tracing
approach, a ray is extended from the actuator to the location
under investigation and another ray is extended between the

investigated point and the sensor. The attenuation, velocity,
or backscatter can be incorporated based on the angle of
the rays with the coordinate axes and the distance between
the points. The maximum allowed TOF is determined from
the edge points. This TOF is then used to construct a limiting
ellipse with the major axis equal to the product of maximum
velocity and the TOF. The points within the ellipse are then
checked individually with the ray-tracing approach to deter-
mine the coverage of the sensor-actuator pair. The fitness
value evaluated for the sensor network is the superposition
of the coverage for each sensor-actuator pair.

3.4. Crossover. The standard crossover techniques used in the
GA are the single-point crossover, the multipoint crossover,
the arithmetic crossover, etc. [22]. They are simplistic to
implement but often are not exactly aligned with the imple-
mentation and the physical nature of the problem. As men-
tioned earlier, the closer the encoding of the problem to
reality, the better is the performance of the optimization.
Hence, the mirror crossover [23] was implemented for the
optimization problem. The method for the mirror crossover
is shown in Figure 8 and is as follows: two parents are selected
randomly similarly to the other crossover techniques.

Then, a random value xcross of the x-coordinate is gener-
ated. All genes with x > xcross in the father are transferred to
offspring 1 and x ≤ xcross in the father to offspring 2. The
genes with x > xcross from the mother are transferred to
offspring 1 and x ≤ xcross from the mother are transferred
to offspring 2.

As can be seen, the number of sensors in both parents
is 8. By the use of mirror crossover, it is possible to obtain
a sensor placement with fewer number of sensors (7 in
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offspring 2). Thus, increasing the search capability of the
optimization algorithm.

3.5. Algorithm Inputs. For obtaining the optimized sensor
placement, several variables need to be determined based
on the sensitivity analysis. For the problem size at hand, the
number of chromosomes was taken as 256. This is to mini-
mize the domination of the gene pool by a few genes due to
the node insertion phase. The elitism was 50%. The mutation
rate was 25%, and number of generations was 5000. The next
section compares the results of the optimization from the
real-valued GA with the integer GA.

4. Results and Discussion

4.1. Sensor Number. As shown in Section 2, the pitch of the
sensors and in turn the sensor density is dependent on the
values of Rdamage, S, β, and ΔT . The parameter Rdamage

depends on the backscatter characteristics of the damage
while the parameter β depends on the material and the cen-
tral frequency used for the excitation. Figure 9 shows the
change in the number of sensors with unilateral change in
any of the 4 variables.
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The factor Rdamage can be changed with the size and type

of defect which is to be detected. The factor ΔT depends on
the uncertainty in ambient conditions expected during the
application. The value of β depends on the frequency of exci-
tation as well as the material properties. The material proper-
ties affect the phase and group velocity as well as the
dependence of the material on the change in temperature.
The factor S depends on the quality of the signal processing
and noise cancellation algorithm. It can also be used to intro-

duce the effects of attenuation which is significant in com-
posites. The value of S can be increased in case the
attenuation is high in order to determine the sensor density.

4.2. Sensor Location. The real-valued implementation of the
optimization eliminates the unnecessary constraint on the
locations of sensors imposed due to the integer-based imple-
mentation. As a result, better coverage3 and coverage1 and in
turn better fitness value may be achieved. Figure 10 shows the
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Figure 12: Surface plot showing coverage: (a) diagonal placement; (b) difference in coverage for real-coded GA and diagonal placement
(yellow shows area with improvement).
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optimal sensor placement achieved for the integer placement
and for the real-valued optimization. Figures 11(a), 11(b),
and 12(a) show the coverage plot for the three sensor place-
ments. Figure 12(b) also shows the improved coverage
achieved through the real-valued implementation. The objec-
tive values for the optimization are quantitatively compared
in Table 2.

5. Conclusions

The paper outlines a two-step methodology for optimization
of sensor placement for GW-based damage detection. In the
first step, the minimum number of sensors needed is calcu-
lated based on the quality of the signal processing algorithm.
Once the number of sensors is determined, the location of the
sensors is optimized through improved implementation of
the GA. The optimization problem is posed using real values
rather than constraining the search with the use of integer-
based implementation. In order to account for the increase
in the search space for optimal solution and improve the
computational performance of the algorithm, some key fea-
tures have been introduced in the GA such as proximity
checking, node insertion, and use of mirror crossover
scheme. The use of these features allows the improvement
in the search capability as well as the computational effi-
ciency of the search algorithm.

The paper presents sensitivity studies for the different
parameters in determining the number of sensors. The paper
also shows that through the use of real-valued implementa-
tion improved coverage using the same number of sensors
can be achieved. Also, the computational efficiency for the
real-valued GA is better than the integer GA. Based on the
presented results, the use of real-valued GA is recommended.
Incorporation of backscatter profiles from different damage
scenarios, use of the technique for composite structures with
structural features such as stiffener, rivets, and the experi-
mental validation of the proposed methodology are identified
as the areas of further research.
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