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Abstract

We present a novel application of business
process modelling and simulation of manufacturing
workflows. Using formal methods, we produce
correct-by-construction executable models that can
be simulated in an interleaved way. The simulation
draws advanced analytics from live IoT monitoring as
well as an ERP system to provide predictive business
intelligence. We describe our process and resource
modelling efforts in the context of a collaborative
project with two manufacturing partners. We evaluate
our results based on the improvement of the scheduling
accuracy for real production flows.

1. Introduction

Modern trends in agile manufacturing [1] put the
focus on the production of small to medium size batches
of high-quality machined and fabricated components.
Manufacturing flows consist of sequences of discrete
operations that are customised and tailored for each
job. The large variability in the job specification and
the involved custom operations poses an operational
challenge in terms of monitoring and optimising the
workload and throughput of each department as well as
the entire factory. Processes both at the worker level
(machine operations, movement, queuing, etc.) and at
the management level (communication, scheduling, task
allocation etc.) rely heavily on human decision making
and regular team and cross-department communication
and collaboration. Teething problems from new designs,
incomplete specifications, unknown variables, changing
customer requirements, and arising issues such as
unexpected delays, faulty materials, required re-works,
etc. exacerbate the unpredictability of the manufacturing
flows. Managers are forced to make decisions under
incomplete and uncertain information as they do not
have a clear view of the state of the factory.

Such circumstances call for new live monitoring and
predictive tools that can help manage manufacturing

flows in real-time, inform decision makers, and
coordinate workers within and across departments.
We present a novel approach that combines rigorous,
AI-based workflow modelling and management,
with data-driven monitoring, and simulation-based
scheduling. It is backed by a logical theory that allows
for formally verified, correct-by-construction workflow
models. The resulting workflow management and
simulation system WorkflowFM [2] is highly practical,
with applications in the healthcare domain [3], and has
been deployed and tested at two manufacturing sites,
thus spanning the full spectrum from theory to practice.

We present our experience applying a logic-based
framework in practice, in close collaboration with
two industrial partners. We specifically focus on a
key feature of our approach, using Business Process
Simulation (BPS) as a tool for predictive Business
Intelligence, and particularly scheduling. Our tool
excels at the simulation of multiple dynamic interleaved
workflows while focusing on resource management.
We adopt a broad advanced analytics view, where low
level data from IoT sensors and an Enterprise Resource
Planning (ERP) system are fed into the simulation
automatically.

Although BPS has clear benefits on its own in
the context of Business Intelligence [4], we believe
our approach is a step towards incorporating new
perspectives of industrial processes within BPS. For
instance, recent work in this conference track and
elsewhere shows how connecting IoT objects in team
processes improves team effectiveness [5], and how a
Social Factory where machines and people interact as
users in a network can improve problem solving [6].
Our system leverages live IoT data, human-in-the-loop
simulation [7], and decision support [8].

2. Background

Our project involved a collaboration between two
academic institutions, namely FBK CREATE-NET1

1https://create-net.fbk.eu/
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and The University of Edinburgh, two technology
companies, namely Reply2 and ThinkInside3, and
two manufacturing partners as described next, for
two years. The goal was to develop a real-time
monitoring and scheduling system, using state-of-the-art
knowledge representation and reasoning techniques,
to provide key insights, guide decision support and
facilitate coordination. Our solution consists of three
components:

1. WorkflowFM: an AI-based workflow modelling
and management framework.

2. Real-time data provision through a combination
of mining from the ERP system and IoT sensors.

3. A combined Cloud and Fog computing
infrastructure for scalable deployment.

Due to space constraints, this paper focuses on the
workflow management tool WorkflowFM, including
its simulation capabilities. We describe this next,
followed by an overview of the settings we encountered
at our two manufacturing partners.

2.1. Rigorous Workflow Management

Workflow-based solutions for the analysis and
optimisation of manufacturing business processes
already exist in the context of Business Process
Management (BPM) and Business Process Simulation
(BPS) [9, 10, 11]. BPM models typically rely on either
BPMN [12] or Petri Nets [13]. BPMN is a descriptive
language without formal semantics. The correctness
of BPMN models needs to be established through
mappings to formal languages and post-hoc verification
and validation. Petri Nets have rich semantics that allow
verification [14], but their features and properties as
executable artefacts are relatively limited (for instance
in terms of data-driven parameterisation [11]).

We adopt a novel approach in process modelling
that relies on logic-based knowledge representation and
reasoning techniques [2, 15]. Specifically, we use
a resource-aware logic, known as linear logic [16],
to model processes based on their input and output
resources including variations or exceptions. Automated
reasoning is then used to put together the defined
processes and form complex workflows based on logical
inference [15]. This results in rigorous workflow
models with mathematical guarantees of correctness
with respect to (a) the consistency of the structure and
resource flow across the model and (b) a systematic

2https://www.reply.com
3https://thinkin.io/

accounting of resources (thanks to the linearity of the
logic), i.e. it is automatically ensured that no resources
appear out of nowhere or disappear when unused. We
suggest this is a fruitful marriage of formal verification
and BPM, leading to models that have a degree of
correctness by design.

In addition to that, we exploit a long established and
recently evolved theory for formally verified concurrent
programs [17, 18]. The theory allows the conversion of
linear logic proofs to process algebras or session types.
In essence, our practical implementation of this theory
allows us to obtain correct-by-construction artefacts
from our workflow models, which can be executed
concurrently and asynchronously, with guaranteed
freedom from deadlocks and race conditions. This
results in an event-driven system that keeps track of the
state of the workflow for each job and can react to events
that happen in the factory in real time based on the
intended processes captured in the model. In addition,
the same artefacts can be executed concurrently in
simulation, in a way that allows them to interleave
naturally and without errors. This enables the simulation
of patterns that only emerge through the interaction of
jobs that are being processed on the manufacturing floor
at the same time (see Section 3.2 for an example).

The rest of this paper focuses on the practical
advantages obtained by using such a framework,
starting with process analysis and modelling, all the
way to quantifiable benefits. It is worth noting,
however, that our logic-based models can be developed
through a visual, diagrammatic tool, as demonstrated
in the figures in the next section. The associated
correct-by-construction executable code is extracted
automatically. The technical and logical details are
effectively hidden from the user, and thus the benefits
mentioned above can be realised without the need for
expertise in formal verification.

2.2. Academic & Technology Partners

Our academic and technology partners in this project
contributed complementary assets and expertise.

ThinkInside contributed its innovative IoT location
tracking technology to provide real-time data on the
active production flows. We particularly exploited
geofencing data showing when each flow would enter
or exit a particular area or machine.

FBK CREATE-NET contributed a state-of-the-art
Cloud and Fog platform where our workflow solution
was deployed. This provided scalability, robustness, and
fault tolerance, and enabled the integration with the IoT
sensors and data streams.

Reply helped establish the relationship between the
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industry and academic partners as well as address
the business challenges of converting our academic
prototypes (TRL 4) to an operational system (TRL 6-9).

The composition of the consortium for this
project reveals our strong drive to exploit our latest
research achievements in formally verified workflow
management and simulation to provide value for
manufacturers in real-world settings. We believe
the effort required to achieve this, particularly in
software based solutions, is often underestimated, due to
unforeseen gaps between the research assumptions and
the actual challenges and the need for intuitive interfaces
that are usable by non-technology experts.

2.3. Manufacturing Partners

In order to explore the benefits of a formal workflow
approach in practice, we established a collaboration with
two discrete manufacturing [19] SMEs:

Partner A is a small manufacturer of luxury and
bespoke pens with a long tradition. They typically
produce small batches of up to 100 pieces and cater to
highly customised orders. We deployed our system in
the metal department of their small factory, involving
15 areas of different human operated machines. Each
machine is capable of a particular operation, such
as milling, pressing, rifling, washing, polishing, etc.,
allowing different possible configurations depending on
the requirements. Orders fall under one of 14 possible
Standard Operating Workflows (see Section 3.3).

Flows are organised in production lots, which are
essentially crates of materials (typically pen tubing) to
be processed. A sheet of order and operation details
is attached on each production lot. Operations are
scheduled manually by the department head after close
of each day. Scheduling decisions are primarily made
based on the priority, urgency, and value of the order.

The key value they sought in our solution was the
ability to a) monitor the state of their active production
flows, b) detect the source of delays and minimise
the overhead of communication when issues arise, and
c) have better insights for informed decision making,
including exploration of “what-if” scenarios.

Partner B is a medium-sized manufacturer of
metal components and structures. They frequently
serve as the initial step in their customers production
line and prioritise reducing lead-times and offering a
reliable service. They are organised into a handful of
departments, each with similar machines that frequently
operate in concert with one another, such as the “2D
Operations” department which contains laser cutters,
bending machines, and stamps. Our solution is deployed
on both of their two sites, tracking their average 600

production jobs per month across all departments.
The nature of their work induces logistical

challenges for management which our simulation
tool is well placed to address. Jobs, whether
“make-to-order” or “make-to-stock”, are initially
planned out by general management in the ERP system
with respect to the involved assemblies and operations
(see Section 3.4), including an estimate of the time
required for each operation. The “Due Date” is set
for each job based on the actual shipping deadline and
an artificial buffer of up to several weeks to cater for
potential delays and conflicts. The start time is finally
calculated in a manually curated Excel formula that
takes into consideration the “Due Date”, the estimated
operation times, manual prioritisation and tweaking,
and standard working hours. A “Job Card” is printed
for each job, including all the details of the work plan,
specifications and a drawing of the part, and attached to
the corresponding part or production lot.

Jobs within a department are organised in a
“Departure Board” screen, which lists all the jobs
currently assigned to that department in ascending order
of the “Due Date”. Ideally departure boards would be
sufficient and machinists could assign themselves the
jobs which appear there. However, interviewing the
Team Leaders revealed that, whilst the departure boards
were useful as a starting point, it was usually necessary
to manually assign jobs to machinists for each shift, as a
majority of jobs required that constraints of subsequent
departments be taken into account for them to ship on
time. For this reason, Team Leads hold meetings every
few days to go through the list of jobs to be done
to update each other on progress, re-assign completed
work, and forecast any potential bottlenecks. The floor
manager may also directly organise the highest-priority
work with the relevant department as needed.

Based on these details, there is obvious need
for better, real-time monitoring of production flows
and tools to support decision making, such that take
into consideration cross-departmental constraints, work
loads, and unexpected events and delays. We believe the
work described in this paper provides a framework to
address this need directly.

Although our work focuses on the operational
details of our two partners, we believe their practices
and operating patterns and conditions are common
across many SMEs of discrete and agile manufacturing.
Exploring, analysing, and understanding the details and
particular challenges of such organisations are key steps
in our process and should not be detached from the
technological solution. We devoted a sizeable amount of
time and effort to this purpose, conducting interviews
across different hierarchical levels in each partner,
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shadowing daily operations to experience the challenges
first-hand, reviewing standard operating procedures and
guidelines, and exploring the management tools already
in place. This gave us a detailed understanding of the
challenges faced from different perspectives and ensured
that we address key gaps. This is particularly important,
as often general management, middle management, and
machinists have very different views and needs, which
can be hard to communicate or elaborate.

2.4. Methodology

Our methodology is aimed at exploiting our rigorous
workflow management technology to collect analytics
about manufacturing flows and inform a predictive
simulation environment.

First, we Model the production flows in the factory
as workflows. The results of this first step are
discussed in Section 3. Second, we Deploy the modelled
workflows as executable artefacts based on the rigorous
theory at the core of our technology. Third, we Track
the operations using the IoT sensors and the information
logged in the ERP system. The data is processed and
mapped into the workflow models. This leads into the
Monitor step, where workflow analytics are extracted
and displayed to the user in real time. This includes
a timeline of events for each job up to their current
status, currently running operations, machine utilisation
statistics, delay and queuing analytics, notifications of
deviations, etc. In the final step, we use the extracted
workflow analytics to Predict information including
scheduling, duration, delays, and costs of unfinished and
new production flows by simulating the corresponding
workflows. The simulation is performed in a virtual
environment that models the factory assets and resources
as described in Section 4. The simulation tool is
described in Section 5, whereas the results are evaluated
based on the accuracy of the predicted duration for each
job as described in Section 6.

3. Production Flow Modelling

The main aim of our process models is to describe
the operations that occur in a production flow. The
granularity of the model can vary depending on the
needs and size of the manufacturer. For instance, for
Partner A we focused on a particular department of
the factory that was viewed as a bottleneck due to
key operations happening there, whilst for Partner B
end-to-end models were deemed more valuable in terms
of optimising cross-departmental collaboration.

In any case, we view a production flow as an
instance of a particular set of operations that need
to be applied to fulfil a particular job, whether it is

a make-to-order or a make-to-stock type of job. We
design our models drawing from various sources, such
as standard operating procedures (SOPs), operation
planning retrieved through an ERP system, policies and
guidelines established by management, and observation
of informal but standard practices on the floor.

Based on these sources, we developed two types of
workflow models:

1. Standard Operating Workflows (SOWs): These
are concrete process models describing the
processes that must be followed, as normally
determined in a SOP document.

2. Assembly Workflows: These are dynamic models
mined from an ERP system and based on the
assembly planning performed in advance on a
per-job basis by management.

In the next sections we describe some of the patterns
of operations that we encountered and incorporated in
our models.

3.1. The Reserve-Move-Perform Pattern

Throughout the production flows examined in this
work, we observed a common pattern representing how
operations that use a machine on a physical object are
performed:

1. Reserve: First, a worker makes the decision to
work on a particular job on a machine. This
effectively reserves the machine for that particular
operation.

2. Move: The production lot is moved from its
previous location to the position of the machine.
This includes any buffering that needs to happen
until the machine is reserved for the particular job.

3. Perform: Once the machine is available for use
and the object is in the right position, the worker
can perform the operation.

The workflow diagram for this pattern is shown
in Figure 1. It is worth re-iterating here that
all our workflow diagrams correspond to formal,
fully-validated logical models. This is showcased in
the same figure, where we include the corresponding
linear logic proof that verifies the correct flow of
resources across the workflow. The automatically
generated, verified process calculus term below the
proof constitutes a specification for asynchronous
execution based on message passing between named
channels. As previously mentioned, both the logical and
process calculus models are hidden from the user.
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` op⊥, res
Reserve

` res⊥, op⊥, loc⊥, lot⊥, loc⊗ lot
Perform

` op⊥, op⊥, loc⊥, lot⊥, loc⊗ lot
Cut

` op⊥, op⊥, loc⊥ ` lot⊥, loc⊗ lot
`

(1)

` op⊥, loc⊥, lot⊥, loc⊗ lot
Move

(1)

` op⊥, op⊥, op⊥, loc⊥, lot⊥, loc⊗ lot
Cut

` op⊥, op⊥ ` op⊥, loc⊥, lot⊥, loc⊗ lot
`

` op⊥ ` op⊥ ` op⊥, loc⊥, lot⊥, loc⊗ lot
`

(2)

` op⊥, op⊗ op⊗ op
CopyOp

(2)

` op⊥, loc⊥, lot⊥, loc⊗ lot
Cut

(3)

ReserveMovePerform(cLot, cLoc, cOp, cOut) =

(ν z9)((z9(cReserveOp, z7).z7(cMoveOp, cPerformOp).

(ν z5)((z5(cPerformLoc, cPerformLot).

(ν z2)((Perform(z2, cPerformOp, cPerformLoc,

cPerformLot, cOut) ||Reserve(cReserveOp, z2))) ||
Move(cMoveOp, cLot, cLoc, z5))) ||CopyOp(cOp, z9)))

Figure 1. Reserve-Move-Perform Diagram, Linear

Logic Proof, and π-calculus Specification

The edges in this diagram represent the different
resources associated with the particular workflow
instance. More specifically, operation is the
operation to be performed, which includes what
machine is required and its location, location is
the current location of the production lot, lot is a
description of the production lot including a reference
to its corresponding job, and reserved is a successful
machine reservation.

3.2. Buffering

Understanding the subtleties of how people work and
collaborate in practice is, in our view, a crucial step
towards creating accurate and useful workflow models.
Errors and suboptimal processes often occur not at the
level captured in an SOP document or ERP entry, but
rather in the daily, informal, practical human decisions.

One particular example of process that is often
neglected in optimisation but can have major effects in
the processing of a production flow is buffering. This
involves the temporary storage of a production lot when
we need to pause its operations, for example due to a
machine being used on another job (queuing) or needing
to be configured or maintained before the next operation,
or another production lot in the assembly being delayed.

An example can be seen in Figure 2. The first two
panels show individual production flows in a floor with
three machines. The third panel shows both production
flows running at the same time. Both the red and yellow
production lots need to use Machine A, so the red lot is
delayed. This leads to the blue lot being buffered as it
waits for the delayed red lot before it can continue.

Typical business process models tend to focus on
the key operational steps and do not model seemingly
unimportant intermediate steps such as buffering (see
example in [20]). BPS models commonly assume
queuing has no operational effect and queued jobs
can start immediately when the resource is released,
putting focus on the queuing and prioritisation policy
instead [4]. Moreover, BPS systems often neglect
interactions between different, interleaved workflows or
process instances [9, 4], such as buffering.

The reality we observed is very different. Buffering
typically involves moving the production lot to
temporary storage, which could either be a designated
buffering area, or as informal as any empty space in the
factory. A production lot may be buffered anywhere
from a few minutes to several weeks until it is ready
to be moved to the next position in the production
flow. Based on this, we have identified three common
examples of how buffering can affect a production flow.

First, moving production lots takes time and effort. It
may, for instance, require specialised lifting equipment
or trained moving personnel that need to be available for
the move. Delays in moving a lot can cause cascading
ones in other operations that depend on it.

Second, production lots may be misplaced in their
buffering positions, especially if there is no specific
designated temporary storage space in the factory.
Locating the needed production lot may also cause
cascading delays in the process.

Third, decisions relating to buffering can also be
sub-optimal and may need to rely on both intra- and
inter-departmental communication and experience. For
instance, a production lot may be located in a particular
machine where an operation has just concluded. It
may be the case that no other jobs are queued for that
machine until the time the production lot is due to be
moved to the next position. In that case, moving it to a
buffering position may be a waste of time and effort.

These examples demonstrate the importance of
incorporating buffering processes in any workflow
model. In our models, we accomplish this by extending
the Reserve-Move-Perform pattern from Figure 1 as
shown in Figure 3. We have specifically modelled 2
occurrences of buffering: one when the next position is
busy with another job and one when a machine is being
configured before it can handle the current job.
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Figure 2. Buffering observed when interleaving 2 production flows: the blue lot must wait for the delayed red lot.

Figure 3. RMP with Buffering

3.3. Standard Operating Workflows (SOWs)

We define a SOW to be a workflow model of a
predefined sequence of manufacturing operations that
accomplishes a particular production task. These
models are particularly suited for manufacturing flows
that follow specific, rigid patterns of operations, as
opposed to a highly dynamic environment where each
job requires a different operation sequence. In this
setting, jobs can be customised through the various
parameters and configurations for each operation.

Figure 4. Standard Operating Workflow

An example of a SOW model is shown in Figure 4,
detailing Partner A’s clip manufacturing process as a
sequence of operations shown in blue, each a collapsed
version of the RMP pattern.

3.4. Assembly Workflows

In agile manufacturing, each job may require its own
custom production flow. In such a setting, production
flows are typically organised into assemblies, where
production lots and materials are pulled together and

have a sequence of operations performed on them. Each
production lot in an assembly could in turn also be
a product of another assembly. In that sense, each
assembly may contain subassemblies representing how
some of the components are assembled before being
combined. This forms an assembly tree (see Figure 5),
where each node is an assembly with its sequence of
operations and its children are its subassemblies. The
leaves of the tree are assemblies which only use raw
resources and have no subassemblies.

The planning of operations and assemblies involved
in a job is typically done by the management team
and recorded in an ERP system (in our case Epicor -
https://www.epicor.com). We draw from that
information to construct workflow models of assemblies
based on the general model shown in Figure 5. Each
workflow takes an assembly job as an input and extracts
its components: a) the initial location of assembled
resources, b) initial production lot descriptor, c) list of
operations to be performed, and d) list of assembly jobs
corresponding to direct subassemblies.

Once the main assembly job is split into its
components, we spawn a new instance of the assembly
workflow for each subassembly, thus recursively
building the assembly tree. Once all subassemblies of an
assembly are complete, they are assembled at a location
and given a unified lot descriptor from the job. The
sequence of operations is then performed on the unified
lot, resulting in an updated lot descriptor and location,
as well as an (empty) list of remaining operations which
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Figure 5. Example Assembly Tree and Model Diagram

is then consumed by the last process.
Each operation is performed in sequence, using

the Reserve-Move-Perform pattern we described
previously. Operations are chained in a sequence to
form the Operations process in Figure 5.

Using this model, we are able to capture a large
range of flows in a real industrial setting, using data
exported from the ERP system. The data was processed
to convert it from a flat structure to the assembly tree
that matches the structure of our workflow model.

4. Resource Modelling

In order to produce an accurate simulation of the
production flows, we need to create a simulation
environment that models the operational resources of
the factory, including assets such as machines and
equipment, and human resources.

Machines and equipment are modelled based on
their numbers and their features. Each machine is
typically able to handle a specific type of operation, such
as “milling”, “welding”, or “laser cutting”. The exact
operation depends on the specification of the job and
may require a particular configuration of the machine.
It is also worth noting that two machines of the same
type may differ in what operations they can handle based
on their available configurations. For instance, a newer
“laser cutting” machine may be able to perform more
precise cutting or cut smaller parts.

Typically each machine can handle one operation at
a time, which is reflected in the simulation. However,
some cases do not fall under the same “one job per
machine” assumption.

One such case that we encountered is nesting. This
involves the appropriate combination of multiple cutting
tasks on the same sheet of metal [21] to minimize raw
material waste from unused metal. This effectively
means that multiple jobs are handled by the same, single
operation and in the same machine. Moreover, a single
job may be spread across multiple operations (nests).

Although nesting software tools that optimise this
process do exist, the prioritisation and scheduling of

the jobs to be nested remains largely a human task.
Since a nested operation starts at the same time for all
involved jobs, this introduces an important trade-off in
the scheduling decision, as the nesting process can cause
delays to some of the jobs. This makes incorporating
nesting in the simulation model a significant challenge.

Human resources are modelled not only based
on their capabilities, but also on their working hours,
including allocated shifts and excluding weekends,
holidays, and leaves of absence. One can further
increase the sophistication of the simulation model by
incorporating the skill level of each worker in terms of
speed of operations, and job handovers between shifts.

5. Simulation

BPS [22] is a valuable business intelligence tool for
workflow decision support. For instance, it can be used
to explore what-if scenarios and estimate the effect of
different decisions, including operation scheduling, in a
virtual, risk-free environment.

Our simulator relies on discrete event based
simulation [23] over individual, interleaved workflow
instances. In short, each simulated case consists of
a workflow instance that unfolds over (virtual) time,
generating events (such as tasks starting or finishing)
in discrete time. All cases are simulated concurrently
so that they can make use of the same resources and
observe and react to the current state at runtime.

In this particular case, we have set up a simulation
environment for manufacturing workflows. This
includes the following user configurable elements:

• Operation Types: These capture groups of similar
operations, such as “milling” or “laser”.

• Locations: Machine locations are used to
determine if a production lot needs to be moved.

• Machine Groups: The user can define a group of
machines that can handle a particular operation
type and have a set capacity for concurrent jobs,
typically corresponding to the number of available
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machines. More complex configurations such as
nesting cannot be modelled in this setup, and are
instead simplified as an infinite capacity group.

• Operation Costs: The user can configure a fixed
cost for each operation and a cost per unit of time
for each machine.

• Human Resources: The standard working hours,
shifts and holidays of workers can be customised
by the user. Workers can also be modelled
individually, though we have not pursued this
level of detail in our current models yet.

Data available in the ERP system, such as assembly
tree structures, estimated operation times, worker shifts,
and costs are fed automatically into the appropriate
simulation parameters. Live operation and workflow
analytics from the monitoring stage, including the
processed IoT feed, can also help inform simulation
parameters, such as the estimated duration of a particular
movement, unexpected events and delays that have
occurred (often leading to rescheduling), and the state
of machines across the factory.

The production flows to be simulated can be
introduced in two ways:

1. Manually through the web interface, by selecting
a workflow skeleton corresponding to a SOW
and its associated operations (or machine
configurations in this context).

2. Automatically based on scheduled and unfinished
jobs in the ERP system. The duration of each
operation is set to be the estimated duration
specified by the manager when the job is entered
in the ERP system.

The simulation results in three categories of data:

1. Flows: includes start and end times of each job,
total delay and cost, and number of operations
performed.

2. Operations: includes start and end times of each
operation, delay and cost, and resources used.

3. Resources: includes total busy and idle time
of each machine or worker, number of tasks
performed, and total operational cost.

The results are visualised in a timeline, as shown
in Figure 6, which depicts a predicted sequence of
operations for each available resource (machine). An
alternative view shows the timeline of operations per
job. These effectively provide an optimised schedule of
operations. Hovering above an operation reveals further
details, including its delay and cost. The data is also
made available in raw format for any further processing.

Figure 6. Excerpt of an example predicted timeline

for 9 SOWs.

6. Results

A key goal of our workflow simulation is to provide
predictive scheduling capabilities that improve upon the
current practices at our industrial partners.

As mentioned in Section 2.3, managers in both our
collaborating manufacturers take a manual approach to
scheduling. They calculate an estimated duration of all
the operations and subassemblies required for each job.
This data is imported from the ERP system into a custom
spreadsheet. They then schedule the appropriate start
date based on the job due date. the estimated duration,
and some buffer time. One of the main challenges for
this type of scheduling problem is that of coordinating
many different assets (machines, human resources,
restrictions, etc.) across multiple jobs that are happening
at the same time. Our workflow framework addresses
this problem by allowing the concurrent simulation of
thousands of jobs over a set of virtual assets.

More specifically, using data collected directly from
the manufacturers, we built a simulation environment
containing some of their assets (machines) and their
respective capacities and restrictions. We used this
to evaluate the predictive capabilities of our simulator
compared to the manual scheduling using historical data
from the ERP system of one of the manufacturers.

For each job in the data set we extract a) its
starting date ds as the date the job was entered in the
system, which is also the minimum starting time of the
operations, b) its manually estimated completion date
dm, and c) its actual completion and delivery date da.

We also extract the assembly tree of all the involved
assemblies and operations, including the manually
estimated duration of each operation. In this way, we
only allow our simulator access to the same information
a shop floor manager has when they manually schedule
the jobs. In future work, this can be further improved
by incorporating a machine learning model that better
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predicts the duration of each individual operation.
The assembly trees of all the orders in the dataset are

then automatically converted into assembly workflows
and simulated with the given starting date ds. The
simulator predicts a completion date dp for each job. We
then compare the accuracy of that prediction against dm
compared to da.

First, we calculate the manual error εm = dm − da
and the prediction error εp = dp − da in days. Our
evaluation metric ε is the percentage of improvement of
εp over εm, where ε = εm−εp

εm
.

For example, assume an order took da = 5 days to
actually fulfil (starting at ds = 0). Also assume the
manual estimate was dm = 1 day, whereas the simulator
predicted dp = 3 days. We have εm = 4 and εp = 2,
therefore an improvement of ε = 4−2

4 = 50%.
A positive result, i.e. ε > 0, indicates the simulator

was better than manual scheduling at predicting the
completion date. Specifically a value of ε = 100%
indicates the simulator was able to predict the exact time
of actual completion. A zero result ε = 0 indicates that
the simulator did not improve over manual scheduling.
A negative result ε < 0 indicates the simulator did worse
than manual scheduling.

For our evaluation, we extracted and simulated a
dataset of 6885 jobs that were due in 2018 for Partner
B. The mean actual duration of these jobs was 56 days,
with 90% being under 100 days and 75 jobs (1%) lasting
longer than a calendar year. On average across the
board, our simulator improved the scheduling prediction
by 16.1% compared to current practice.

Figure 7 shows a comparison of accuracy between
the manual scheduling (blue) and our simulator’s
predictions (orange) measured in 15-hour working days.
The closer the values are to zero, the smaller the error,
corresponding to a more accurate prediction of the real
finish times. Positive values correspond to the predicted
schedule overestimating the actual finish time of the
involved jobs. Extreme negative values corresponding
to very large delays (up to almost 2 working years) are
also observed. So far, we have been unable to recover
sufficient data to explain the reason for such long delays,
but we speculate that these correspond to make-to-stock
jobs that were put on hold manually as needed.

The results on the error improvement ε can be broken
down as follows:

1. Positive results: an average improvement of
32.8% over 3807 jobs (55.3%) with a maximum
of 99% (near perfect prediction). A histogram of
the positive results is shown in Figure 8.

2. Zero results for 2788 jobs (40.5%). This is due
to the fact that our model does not yet have a

Figure 7. Manual and Simulated Schedule Accuracy

complete map of all the assets in the shop floor,
due to their high complexity. Lacking sufficient
information, the simulator effectively falls back to
the human prediction.

3. Negative results: a worse prediction for 289
jobs (4.2%). These were mainly repair and
maintenance jobs that are flagged as regular jobs
in the ERP system, and thus our system queues
them instead of prioritising them immediately (as
would happen in reality). A histogram of the
negative results is shown in Figure 8.

Figure 8. Positive and Negative Results

These results can be further improved as we
iterate and expand our model and gather more data.
This includes capturing more asset restrictions in the
factory, such as human resource availability, and more
accurately flagging special types of jobs such as
maintenance operations and nested operations.

Page 1009



7. Conclusion

Our system tightly integrates business process
modelling, anchored in a formal methods approach,
and simulation as a key analytics and decision support
tool. We can create scenarios that are faithful to
the shop floor process workflows, yet are risk-free,
and thus come up with real rather than merely
hypothetical improvements to day-to-day operational
decisions. Our novel simulation approach combines
a formally verified interleaved execution of workflows
with live data extracted directly from our IoT and
workflow monitoring platform and the ERP system. Test
results for almost 7000 real manufacturing jobs show
that even with a partial resource model of the factory
and noisy ERP data, our system improved over manual
scheduling for more than half of the cases, with perfect
accuracy for some. There is clear room for further
improvement by iterating our workflow and resource
models, and extending our analysis to measure waiting
times and detect bottlenecks. This will require the same
continuous and committed observation and interaction
with our manufacturing partners.

Acknowledgements

This work was part of the “DigiFlow: Digitizing
Industrial Workflow, Monitoring and Optimization”
innovation activity funded by EIT Digital. We would
like to thank our project partners FBK CREATE-NET,
ThinkInside, and Reply as well as the participating
manufacturers. We would also like to thank the
anonymous reviewers for their constructive feedback.

References

[1] Y. Yusuf, M. Sarhadi, and A. Gunasekaran, “Agile
manufacturing:: The drivers, concepts and attributes,”
International Journal of Production Economics, vol. 62,
no. 1, pp. 33 – 43, 1999.

[2] P. Papapanagiotou and J. Fleuriot, “WorkflowFM: A
logic-based framework for formal process specification
and composition,” in Automated Deduction – CADE 26,
pp. 357–370, Springer, 2017.

[3] P. Papapanagiotou and J. D. Fleuriot, “Formal
verification of collaboration patterns in healthcare,”
Behaviour & Information Technology, pp. 1–16, 2013.

[4] W. M. P. van der Aalst, Business Process Simulation
Survival Guide, pp. 337–370. Springer, 2015.

[5] Z. R. Wang and D. Kennedy, “The internet of things,
teamwork, and service projects,” in Proceedings of
the 51st Hawaii International Conference on System
Sciences, 2018.

[6] L. Kassner, P. Hirmer, M. Wieland, F. Steimle,
J. Königsberger, and B. Mitschang, “The social factory:
connecting people, machines and data in manufacturing
for context-aware exception escalation,” in Proceedings

of the 50th Hawaii International Conference on System
Sciences, 2017.

[7] S. Narayanan and P. Kidambi, “Interactive simulations:
History, features, and trends,” in Human-in-the-Loop
Simulations: Methods and Practice (L. Rothrock and
S. Narayanan, eds.), pp. 1–13, Springer, 2011.

[8] R. Pinto, T. Mettler, and M. Taisch, “Managing supplier
delivery reliability risk under limited information:
Foundations for a human-in-the-loop dss,” Decision
Support Systems, vol. 54, no. 2, pp. 1076 – 1084, 2013.

[9] K. D. Barber, F. W. Dewhurst, R. Burns, and
J. Rogers, “Business-process modelling and simulation
for manufacturing management,” Business Process
Management Journal, vol. 9, no. 4, pp. 527–542, 2003.

[10] M. Dong and F. F. Chen, “Petri net-based workflow
modelling and analysis of the integrated manufacturing
business processes,” The International Journal of
Advanced Manufacturing Technology, vol. 26, no. 9-10,
pp. 1163–1172, 2005.

[11] A. Senderovich, A. Rogge-Solti, A. Gal, J. Mendling,
A. Mandelbaum, S. Kadish, and C. A. Bunnell,
“Data-driven performance analysis of scheduled
processes,” in Business Process Management, pp. 35–52,
Springer, 2015.

[12] Object Management Group, “Business Process Model
and Notation (BPMN), version 2.0,” 2011.

[13] W. Reisig, Petri Nets: An Introduction, vol. 4. Springer,
1 ed., 1985.

[14] W. Aalst, van der, “Challenges in business process
management : verification of business processes using
petri nets,” Bulletin of the EATCS, vol. 80, pp. 174–199,
2003.

[15] P. Papapanagiotou and J. Fleuriot, “A pragmatic, scalable
approach to correct-by-construction process composition
using classical linear logic inference,” in Logic-Based
Program Synthesis and Transformation, pp. 77–93,
Springer, 2019.

[16] J.-Y. Girard, “Linear logic: its syntax and semantics,” in
Advances in Linear Logic, no. 222 in LMS Lecture Notes
Series, Cambridge University Press, 1995.

[17] S. Abramsky, “Proofs as processes,” in J. Theoretical
Computer Science, vol. 135, pp. 5–9, 1994.

[18] H. DeYoung, L. Caires, F. Pfenning, and B. Toninho,
“Cut Reduction in Linear Logic as Asynchronous
Session-Typed Communication,” in EACSL 2012, vol. 16
of LIPIcs, pp. 228–242, 2012.

[19] B. L. Dietrich, “A taxonomy of discrete manufacturing
systems,” Operations Research, vol. 39, no. 6,
pp. 886–902, 1991.

[20] M. Khabbazi, M. Hasan, R. Sulaiman, A. Shapi’i, and
A. Zadeh, “Business process modelling in production
logistics: Complementary use of BPMN and UML,”
Middle-East Journal of Scientific Research, vol. 15,
pp. 516–529, 2013.

[21] J. F. C. Oliveira and J. A. S. Ferreira, “Algorithms
for nesting problems,” in Applied simulated annealing,
pp. 255–273, Springer, 1993.

[22] K. Tumay, “Business process simulation,” in Winter
Simulation Conference Proceedings, 1995., pp. 55–60,
IEEE, 1995.

[23] P. J. Kiviat, “Digital computer simulation: computer
programming languages,” tech. rep., RAND
Corporation, 1969.

Page 1010


