
A realistic approach to detection test set generation
for combinational logic circuits

R. G. Bennetts
Department of Electronics, University of Southampton, Southampton SO9 5NH

The paper presents a technique for deriving a detection test set for combinational logic circuits,
that is based on the excIusive-OR operator. It is claimed that the procedure is suitable for imple-
mentation on a digital computer and this is supported by results relating to single-/multi-output
circuits using either basic gates or MSI/LSI logic elements.
(Received January 1972)

Before a combinational logic circuit can be functionally tested,
a suitable set of tests must be derived. Other than exhaustive
enumeration, the derivation of each test in this set may be
based on postulating the existence of a single stuck-at fault and
determining an input stimulus, the response to which differs
under the fault/no fault condition. By successively postulating
all such single logical faults on all connections, primary and
internal, a full set of tests may be evaluated.
Obviously, for an n-input circuit, application of all 2" input

combinations, accompanied by a comparison with, say, a truth
table or master copy, will certainly provide complete checkout
and this approach is used by a number of logic testing systems.
The disadvantage becomes apparent as the number of primary
inputs n increases. For instance, assuming a testing system with
a stimulus/response cycle of 1 [is, it would take 18 hours to
exhaustively test a 30 primary input logic circuit, assuming no
fault.
Fortunately, such a test set would contain a large amount of

redundancy, since in practice, a test will provide cover for
more than one fault condition. Consequently, a suitably
selected subset can be specified that affords the same degree of
detection resolution. This in turn requires a selection process
and the fault matrix technique was developed to achieve this.
(See Bennetts and Lewin (1971) and Bennetts (1971) for more
detailed discussion of the fault matrix and subsequent tech-
niques mentioned, but not expanded, in this paper.) The
matrix contains information relating the 2" inputs with the
outputs expected for both the no-fault and faulty conditions.
Row and column dominance techniques are then used to
select a test subset such that all faults are covered at least once.
An advantage of this technique is that the so-called cover

problem has received a lot of attention, principally in connec-
tion with the minimisation of combinational logic functions
(Quine-McCluskey algorithm, etc.) and current algorithms are
both efficient and speedy. One disadvantage, however, is that
the entries in the matrix have to be determined and it is usual
to employ a logic simulator.
Another disadvantage, from a practical point of view, is the

sheer size of the matrix as n becomes large (> 30 say). In terms
of computer core store, a matrix containing 230 rows (~ 109)
and (2S + 1 ) columns, for a total of S primary inputs, internal
connections and primary outputs, is quite massive and any
subsequent manipulation is going to take some time. As a
result therefore, a different strategy must be sought and, for
combinational circuits, the two major techniques available are
those referred to as //-dimensional path sensitisation (Z)-algor-
ithm) and Boolean Difference (Bennetts and Lewin, 1971;
Bennetts, 1971). Both these techniques offer significant advan-
tages over the fault matrix technique and this paper presents
a procedure that has been developed and programmed, based
mainly on the Boolean difference technique, but modified by
path sensitising concepts. One of the major considerations in
forming this procedure was that it should be realistic in the
sense that a computer program version should be able to

handle fairly large circuits, i.e., 55 primary inputs, 7 primary
outputs and 100 logic gates. In practice, a circuit this size has
been analysed and a suitable detection test set derived.

Theoretical considerations of the algorithm
The basis of the algorithm is the use of the exclusive-OR
operator on the Boolean function representing the logic circuit
(Sellers, Hsiao, and Bearnson, 1968a). Briefly, if an w-input
circuit is described by:

z = f(xu x2, . . ., xh . . ., xn) (1)
then a new function representing the logical behaviour under
the Xj faulty condition may be similarly defined:

**, = S(xu x2,. . ., xit . . ., xn) (2)
in which xt(x^ in z is replaced by xt{x^ in zx..
The Boolean difference, written Dz(x?) is then defined:

Dz(x,) = z
t

= J\x
1, X 2,

x 2 ,
h . . ., Xn) I cr( x. X-. X • y ^

; Xn) (3)

Note one important fact here—namely that Dz(xt) is indepen-
dent of Xi—(see Appendix 1 for a formal proof of this).
Note also that if Dz(xt) = 0, then z is independent of xh i.e.,

jc; is logically redundant.
In order to actually derive the test conditions for xt faulty, we

need to identify those tests that relate to xt stuck-at-1, (s-a-1)
and xt stuck-at-0 (s-a-0). Since Dz(xi) is independent of xh
ANDing Dz(x^) with xt will create a set of tests, all of which
will demand a 1 on jcf and therefore determine test conditions
for X( s-a-0. Similarly, ANDing Dz(xt) with x; will create the
s-a-1 tests, i.e.,

Dz(Xf). xt = s-a-0 test set (4)

Dz(x,).X; = s-a-1 test set (5)
In general, provided Dz{x^) # 0, it may be expressed in a
sum-of-products (s-o-p) form. We will now consider the sig-
nificance of each term in such an expression.

E1/AND2

Z l = X1X2 + X1X2 + X1X3

Fig. 1. Example circuit

238 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



XI

XI

X2

X2

X3

X3

s-a-0

s-a-1

s-a-0

s-a-1

s-a-0

s-a-1

Tests

XI X2 + XI X3

Xi 55 + XI X3

XI X2 + X2 X3

XI X2 + X2 X3

XI X2 X3

SCI X2 X3

Fig. 2. Tests for XI, XI and X3

D

0/1

< r-\J> I f^V *. D/D

^ > ^ -
c ) ) D/l TERM X2

0/D

D/D

Fig. 3. Sensitive paths established by DZl(Xl)

Consider the circuit shown in Fig. 1. For simplicity, the
following convention is used throughout this paper.
Element numbers are preceded by E
Primary input lines X
Primary output lines Z
Internal lines C

Element types are up to four alphanumeric characters.
By Karnaugh mapping or otherwise, the following expres-

sions are true:
DZ\{X\) = T1 + X3 (6)

DZ\{X2) = XI + X3

DZ\{X3) = Y\X2

(7)

(8J

From equations (4) and (5) therefore, the following tests may
be denned—see Fig. 2. If we consider the s-o-p expressions
above (equations (6), (7) and (8)), we note that they are in their
minimal normal form. In some cases this has resulted in
'don't care' literals in the tests specified in Fig. 2. We can
further recognise that each term in the Boolean differential
s-o-p represents a specification that establishes a sensitive path
or paths from the primary input in question to the primary
output. For instance, the sensitive paths set up by the two terms
in DZ\{X\) are shown in Fig. 3, Here the D is used in the same
sense as in Roth's Calculus of D-cubes (Roth, 1966), i.e., it
may assume either the value 0 or 1, but whichever it is, it
remains consistent throughout the circuit.
Consideration of Fig. 3 raises another factor—namely that the

assignment of the don't cares can have an effect on which
sensitive paths are actually selected. In connection with this, we
are primarily interested in the assignment that results in the
maximum internal fault coverage*, and we note that a test will

cover not only the fault on the primary input line to which it
relates, but also any fault on the sensitive path, including the
primary output. This does not necessarily mean however that
assignments that establish multiple paths, i.e., paths that
originate from a single source and eventually reconverge again,
will have an increased fault coverage, since those faults along
each multiple section of the path may not in fact be covered.
This is due to the fact that the reconverging action may rely on
the effect of the fault propagating through all paths simul-
taneously. This is demonstrated in Fig. 3 for the input case DOO
on X\X2X3 respectively. Here X3 has been assigned 0 since it
appears to sensitise two parallel paths (through E2 and E3,
reconverging at £4). The fault coverage of these two tests
(£> = 0, D = 1) is:

XlT2~X3 covers XI s-a-1, C4 s-a-0, Z\ s-a-0
X\ X2 Xi covers XI s-a-0, X2 s-a-1, C\ s-a-0

C2 s-a-0, C3 s-a-1, C4 s-a-1
and Z\ s-a-1

The increased coverage of the second test XI X2 lC3 is due to
two facts:

1. It is also a test for X2 s-a-1 and sets up a sensitive path
through El and £5 thus covering C3 s-a-1 and Z l s-a-1.

2. Despite the parallel paths through E2 and E3, the recon-
verging effect on £4 is such as to cause all its inputs to be at
a control statusj. Consequently, any single change in any
of £4's inputs resulting from a fault on one of the parallel
paths, has an observable effect on the reconverging gate,
and is thus covered.
In the AT 1(2 T3 case, all inputs to EA were static and not

until they all change, is an effect observable on E4 output.
This means that any single input change can have no effect
and limits fault coverage to those, sections of the sensitive
paths that are not divergent—in this case, XI, CA and Zl
only.

Returning to our consideration of the terms therefore, we can
now make the following observations:

1. If a single term in Dz{x^) is completely specified, except for
X;, then that term will establish a unique sensitive path from
Xi to z. Such a term will be referred to as 'completely
specified -x,' or shortly CS-Xf.

2. If the minimal normal form of Dz(xt) is such that each term
is CS-xh then each term will specify an alternative
sensitive path such that all possible sensitive paths eman-
ating from xt and terminating at z must be so specified.

Intuitively this is true since if there exists a sensitive path
from Xi to z that is not specified by one of the CS-xt terms in
Dz(Xj), then Dz{x^) is incomplete.
3. As a result of 2, inclusion of all such tests in the detection

test set will guarantee cover on all internal faults occurring
on lines that are functionally dependent on x;. Consequently
if this is carried out for all xh 1 ^ i ^ n, then the final set
of tests can be guaranteed to cover all internal faults on
lines that are functionally dependent on the primary input
set, i.e., all irredundant logic lines.

4. If the minimal normal form of Dz(xt) contains terms that
are not CS-xh then such terms can obviously be expanded to
render them CS-xt. If this is carried out, observations 2 and
3 are still true with the modification that, in 2, each sensi-
tive path may not be unique, i.e., paths may be re-
peated by other terms, and consequently, in 3, the tests
may contain redundancies.

If, however, the minimal normal form is not expanded, i.e.,

*For instance, f6 is not a valid test condition for XI s-a-0, but is for XII s-a-0, provided X\2 and X\3 are both logically correct, i.e. at
logical 1.
•fThis is true for detection test sets, but not for detection and location. In the latter case, the requirement is reversed.

Volume 15 Number 3 239

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



contains terms that are not CS-Xi (NCS-xt), then the assign-
ment of don't cares has an effect on which sensitive path, and
thus internal fault coverage, is established. This in turn implies
that, if each NCS-Xj term is used to generate two tests with, say
random assignment of don't cares, then the resulting 2m tests
(from m terms) does not guarantee to cover all faults on internal
lines functionally dependent on xt.
It is thus conceivable that if the full test set is based on mini-

mal normal forms that contain NCS-xt terms, with random
assignment of don't cares, then it may not provide full internal
fault coverage.
On the other hand, a test set based on normal forms that have

been expanded, if necessary, to full CS-xt status, will poten-
tially contain a number of redundancies and may, in the limit,
specify all 2" input configurations. Consequently, such a scheme
is considered impractical and the algorithm to be described is
based on the generation of terms in the near-minimal normal
form expressions for Dz(xt) with, currently, random assign-
ment of don't cares. There is obviously more work to be done
in the assignment criteria for don't care terms and this is
intimately connected with the actual structure of the circuit.

Before describing the algorithm proper, one more observation
can be made:

5. It has already been shown that the sensitive paths estab-
lished by any test is fundamentally a function of the struc-
ture of the circuit. In particular, the basic fanout of each
primary input is a loose lower limit on the minimum number
of tests per primary input necessary to ensure exercising all
possible sensitive paths starting from xt. In other words,
with reference to XI in Fig. 1, there are three separate gates,
El, E2 and E3, to which XI becomes an input. There are
potentially therefore, at least three input conditions which
will cause each one of the gates, in turn, to become a
member of a sensitive path. In practice, of course, one of
three things can happen:

(a) Two or more sensitive paths may be formed in parallel
resulting in at least one redundant test.

(b) The three tests do in fact exercise each gate alone, in
turn.

(c) Internal fanout on one or more of the separate sensitive
paths requires more than three tests to provide full
coverage.

As a result therefore, the heuristic approach of generating pt
terms in Z)Z(JC() where pt = the fanout of xh is rather weak.
Nevertheless, it offers a compromise between the two extremes
of one term per xt to the full CS-xt set, and is the approach that
is suggested in the algorithm. The primary input fanout can be
handled on a more theoretical basis and this aspect is explored
further in Appendix 2—q.v.

The detection test set algorithm
The description of the algorithm will be illustrated where neces-
sary, with the circuit example in Fig. 1.

Stage 1—Derivation of the s-o-p expression
The starting point is with the topological description of the
logic circuit. This is essentially a list of each logic element
accompanied by its type, output and inputs. For example, the
circuit drawn in Fig. 1, could be described as shown in Table 1.

In order to apply exlusive —OR techniques to such a circuit,
it is necessary to derive the s-o-p form for Zl as a function of
its inputs.

One way of achieving this is by logic simulation to define the
truth table, followed by some combinational minimisation
procedure to yield a reduced s-o-p expression. This has its
obvious disadvantages and an attractive alternative is to des-

Table 1 Topological description of the circuit

£l/AND2/C3/;n,Z2
£2/OR 2/C1/X1.X2
E3/OR 2/C2/Xl,X3
EA/NAN2/CA/Cl,C2
E5/OR 2/Z1/C3, C4

Table 2 Elemental Polish expressions

ELEMENT

E5
EA
E3
E2
El

Table 3 Stages

T3 X~l AND (2)
(2)

RESULT IN STACK
1ST OPERATOR

Xl X~3

4TH OPERATOR
X2 XI

POLISH EXPRESSION

Zl = C4C3OR(2)
C4 = C2 Cl OR (2)
C2 = XI X3 AND (2)
Cl = XI X2AND(2)
C3 = XI X2 AND (2)

in the unpacking procedure

X2 XI AND (2) OR (2) X2 XI AND (2) OR

AFTER:
2ND OPERATOR 3RD OPERATOR

X~l X~2 X1Y2 + X1Y3
XI X3

5TH OPERATOR
y n VI _i_ v i y ^ î  VI VX
•"• £ -"• 1 ~T" A. 1 J\. 2. i" J\. X ./\ J

XI X2 + XI X3

cribe the output of each element in terms of its inputs, in a
Polish format, and then by successive substitution, to build up
a Polish expression relating Zl to its primary inputs alone.*
This process is eased if the order of the elements is arranged to
suit. By this is meant that if Ci is both the output of Ej and the
input to Ek, then Ek precedes Ej. A suitable reordering of the
elements in Table 1 is:

E5, EA, E3, E2, El .
This has the advantage now of actually specifying which form

of the output of each element is required, i.e., TRUE and/or
FALSE, and thus ensures that only those Polish expressions
necessary for each element are formed.
With the reordering suggested the elemental Polish expressions

derived are shown in Table 2.
Here, the operators are restricted to AND and OR only, and

the TRUE outputs of inverting gates (NAND or NOR) or
FALSE output of non-inverting gates (AND or OR), are
reconfigured into their s-o-p form before forming the Polish,
e.g., the output of NAND gate EA is given by:

CA = CTC2
= Cl±_C2
-> Cl C2 OR(2) in Polish

The general form of each operator in the Polish is AND(z) or
OR(i). The (i) specifies the number of literals or terms to be
ANDed or ORed together. This will become more explicit
later.

•Strictly speaking, the Polish expressions are in a reverse Polish form.

240 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



Based on the elemental Polish expressions, successive sub-
stitution for C-types in the Zl expression produces the follow-
ing overall expression:

Zl = TZ XI AND(2) X2 Xl AND(2) OR(2) X2 X\
AND(2) OR(2) (9)

and in conjunction with this, we note that the fanouts of XI,
X2 and X3 are 3, 2, and 1 respectively.
The next stage is to unpack this Polish expression into its s-o-p

form, and here we require a minimal or near-minimal version.
The reason for this will become clearer when we discuss gener-
ation of Dz(x() terms but suffice it to say that the speed of the
process and amount of core store required is directly dependent
on the minimality or otherwise of this expression.
The unpacking procedure is essentially a last-in, first-out

stack technique, in which all literals are pushed down into a
stack and an operator, AND(7) say, will then operate on the
last i terms in the stack. This procedure, although in essence
very simple, is complicated by the need to produce the result
in a s-o-p format, rather than any other format. This means for
instance, that if an AND operator is called with two or more
ORed expressions, the full expansion must be carried out and
this in turn will require some checking procedure to remove
terms absorbed by others.

For example:

XI X2 OR(2) XI X3 OR(2) AND(2)
->(A"1 + X2){X\ + X3)
= XI + XI X2 + XI X3 + X2 X3
= XI + X2 X3 after the absorption check.

The various stages in unpacking the Polish expression of
equation (9) are shown in Table 3.

The final stage produces the required s-o-p expression and the
repeated application of the absorption check will ensure
minimality or near-minimality of the result*.

Stage 2—Generation of terms in
The next stage is to generate the required number of terms in
DZl(Xl), DZl(X2) and DZl(X3).
Theoretically it is possible to derive these Boolean differential

expressions using, for example, the theorem quoted in Appen-
dix l(q.v.). This leads to obvious processing difficulties due to
the inversion requirements of the s-o-p expressions defined by
/i(^i). fzi^i) ar>d fiiXf). Also, the full expression will not be
required if the fanout of xt is less than the number of terms in
Dz(Xi). An alternative therefore is to provide a technique that
will generate single terms only, and that may be recycled if
more than one term is required. Such a scheme is inherently
faster for primary inputs exhibiting little or no fanout, and it is
this approach that is suggested for this algorithm.
The mechanism of the process is based on the fact that a term

occurring in the s-o-p expression z and containing x; or xb will
be included in Dz(xt) provided there is no similar term in zXl

to mask it out, i.e., map to the same location in the zX(

Karnaugh map. Those terms in z that do not contain xt or xt

will obviously be repeated in zXi and cannot thus appear in
Dz(Xi). If a term in z is shown to be a member of Dz(x;), then
that term with the x{ or xt removed, is still a valid member of
£>z(x,)—this being a direct result of the independence theorem.
The process therefore is one of selecting a candidate from the

I Yes

Procedure may/
Lhave f a i l e d - /
\ gee text / .

Fig. 4. Flow chart of Dz(xi) term algorithm

expression for z, and exhaustively comparing with all terms in
zxt looking for a masking term. If don't cares are initially
present in the candidate, they may be used, if necessary, to
maintain the validity of the term.
More formally, let the s-o-p expression for z be expressed as:

z = t, + t2 + . . . + tt + . . . + tm (10)
where th 1 < i < m represents the m conjuncts—either in
their fully expanded (minterm) form or otherwise.
The process of generating terms in Dz{x^ is shown in the flow

chart of Fig. 4 and the following comments are pertinent:
1. The complete function zXt is never formed. Instead single

terms only (tk, 1 ̂  k < m) are generated by selecting from
z and inverting the value of xt if found.

2. To demonstrate the assignment of don't cares, consider the
process applied to the s-o-p expression obtained in Table 3,
namely:

Zl = X\X2 + XI Yl + Xl X3 (11)
In particular, we will select the first term X\ X2 and attempt
to determine its validity in DZ\{XX). The first comparison
with 1T\X2 contains XI incompatible and we conclude
that XIX2 is still valid and_can remain unaltered. Similarly
with the second term X\~X2—X2 being incompatible. The
third comparison however, with X1X3 is a 'maybe' since

•An input to a logic gate is said to be at a control status if any change in its value results in a corresponding change at the output of the gate,
all other inputs remaining unchanged. If this is not true, the input is said to be static, e.g., for an AND gate having inputs XI XI X3

XI X2 X3
-all inputs are control1

0
1
1
0

1
1
0
1
0

*one control (0), two static

—all static

Remainder —all static unless sensitive paths reconverge on the 0's alone.

Volume 15 Number 3 241

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



X\X3 will expand to form X \X2X3, and X\X2 X3 and
the first of these will mask part of the expanded version of
Jn;if2. We note, however, that X3js, so far a don't care
in the candidate but specified as X3 in the comparison
term. Consequently an addition of X3 to the candidate will
maintain its validity. In this case, all three terms in Z\xl
have failed to mask the candidate—now modified to

, and we conclude that XI ^2X3 and hence
is a term in DZl(Xl).

This indicates the disadvantage of the process—namely,
what happens if there is more than one don't care to which
an assignment can be made to maintain validity? One
solution is to only assign one of them in order to leave as
many options on future assignments as possible. The danger
of course is that the wrong one is chosen, resulting in an
invalidation at a later stage. If this happens, it may be
possible to return to the selection point and re-assign on
another don't care. Currently, the programmed version of
this process is capable of two attempts and if validation
still fails, the candidate is abandoned.

3. In view of this last point,it maybe possible to fail complete-
ly in generating a valid term. The author has never
experienced this in the program and suspects that its
eventuality is so slim as to not merit sophisticated recovery
procedures. What is more likely to be the cause of the
failure, if it occurs, is the fact that the particular primary
input concerned is logically redundant. In view of the fact
that absolute minimality of the s-o-p expressions cannot be
guaranteed, it is possible for an expression to be formed
containing redundancies. If this occurs, then it will be
impossible to generate any terms in the Boolean differential
relating to this term.

As an example, consider the following s-o-p expression:
Z = Z1Z2 + XI X3 + 72X3 + X3X4 (12)

The absorption checks would be unable to reduce this any
further, yet:

Z = ;nX2 + 7172X3 + Z3JT4
= X\X2 + X3, i.e., independent of X4 (13)

It is thus impossible, by any technique, to generate any terms
in DZ(X4) from the s-o-p expression in equation (12).

Returning to the main algorithm description, an attempt can
be made to generate p{ Dz{x^ terms and hence 2pi tests for
each xh where pt is the relevant fanout term. The result of
applying this to the example is shown in Table 4.
In general, the tests may still contain don't cares and in view

of the current random assignment approach, they may be used
to advantage to effect a reduction on the number of tests,
through judicious merging. One such reduction on Table 4
leads to the following six tests:
XlX2Y3,'XlX2X3,Y\T2X3, 7172X3, X\X2T3, X1X2X3
In reality, five of these six tests are sufficient to provide com-
plete detection coverage for this circuit (see Appendix 2), and
this indicates the next and penultimate stage in the algorithm—
validation or otherwise of the total fault coverage.

Table 4 Tests generated

X I
3

XI
XI
XI
X I
XI
XI

X2
X2
X2
X2
X2
X2

X3\
X3/

'I
j

X3\
X3/

X2
2

XT
7T
XI
XI

X2 X3\
X2 X3/
X2 \
72 /

X3
1

71 X2 X3\
XI X2 X3J

INPUT

FANOUT

TEST PAIRS

Stage 3—Validation of the fault-cover
The question we are now posed is—does the test set derived so
far cover all single stuck-at faults on both primary and internal
logic lines?
There are at least two methods of answering this and the first

is to employ the path sensitising concept and, for each test,
determine the sensitive paths that are established. This process
is referred to as the fault-cover algorithm and is based on
identifying the 'control' or 'static' status of each logic line
with the defined test input. Sensitive paths may then be con-
structed by linking together local (gate level) sensitive paths.
This process is complicated however by:

1. The need to also identify occurrences of positive and nega-
tive reconvergence (defined in Bennetts, 1971) and

2. The 'look-up' table for control and static levels becomes
complex for circuits based on elements that are in them-
selves, more complex than the simple AND, OR, NAND,
NOR gates i.e. MSI/LSI elements.

Nevertheless this approach has been successfully programmed
for circuits using the simple elements (Baker, 1971) and satis-
factory results obtained. It is not proposed at this stage, how-
ever, to modify and extend the fault-cover algorithm. Instead,
the second alternative would appear to offer a solution to both
objections mentioned—this being to use a logic simulator.
By applying the first test to the simulated circuit, and postulat-

ing each fault in turn, a partition on the total set of faults can
be derived—one subset containing faults detected by the test
and the other the remaining undetected faults. Application of
the second test on the undetected fault set creates a further sub-
partition, again into detected and undetected sets. The effects of
all subsequent tests is then assessed similarly and the final
result is either that the undetected fault set is empty or still
contains undetected faults, thereby indicating the inadequacy
of the test set. The process can be extended to obtain the
locational resolution of the test set (Bennetts, 1971).
The result of either the fault-cover algorithm or logic simul-

ation is to both specify the correct output associated with each
test and to indicate any uncovered faults. The final stage there-
fore is the selective generation of tests for any uncovered faults.

Stage 4—Completion of the test set
The procedure here is very similar to the process already
described. Indeed, if the uncovered fault is one of the primary
inputs along say, a fanout branch, then the fanout factor may
be increased for that input and extra tests generated.
If, however, the uncovered fault occurs internally, then a

slightly more sophisticated process must be carried out. The
theoretical basis for this is as follows:
Let c; be an internal connection for which a test is required

s-a-1, s-a-0 or both.

Let z = f(X, c,) be formed

In effect, c, has assumed primary input status.

Thus zCl = g(X, c,) is valid and

Dz(ci) = h{X) (Note independence of c,)

(14)

(IS)

(16)

is meaningful and any terms in the s-o-p form of Dz(c^) have
the same significance for c; as Dz(x;) has for xr Thus Dz{c^). c;
and Dz(ci).Ci will specify the test conditions for c; s-a-0 and
Cj s-a-1 respectively. The only difference in this case is the need
to derive c, and ct as a function of the primary inputs:

c,=7(X) (17)

The test generation part of the algorithm is therefore modified
to:

1. Determine z = /(X, c;). This is achieved by not substituting
for Cj and c( in the build-up of the overall Polish form.

242 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



Describe circuit's topology and order to suit
Polish construction. Also determine input fanout,

Determine elemental Polish expressions.

Determine overall

Unpack Polish into

Polish

1
s-o-p

for z

form

= f(x)

For XJ , determine 2pi tests using exclusive'-OR

Yes

Merge all test3 obtained using don't cares

Assign any remaining don't cares

Check for uncovered faults using either fault-cover
algorithm or logic simulator

Use exclusive-
OR to provide
extra tests

Fig. 5. Flowchart of the complete algorithm

2. Determine c, = j(X) and ct = j(X). Again this is simply
achieved by starting with the Polish expression for ct
instead of z, and successively substituting to derive the full
Polish for c, in terms of x's alone. It is worth making the
observation here that if this Polish expression for ct is
modified by replacing AND operators with OR operators
and vice versa, and also inverting all literals, then it will
then represent Cj and may be unpacked into its s-o-p form.
This is a more efficient process, and uses existing software,
than the alternative procedure of applying de Morgan's
rule followed by p-o-s to s-o-p expansion, to the cf s-o-p
expression.

It has been found in practice that there is very little demand
for this final stage since the tests derived using the fanout
heuristic nearly always cover all faults.

Summary of the overall procedure
The overall procedure can now be summarised and is shown
diagrammatically in Fig. 5. The remaining parts of the paper
discuss the extension to multi-output circuits; the use of a logic
element equivalent circuit library to allow circuits based on
MSI/LSI elements to be processed; the modifications necessary
for 'clamped' logic lines and some comment and results relating
to the programmed version of the procedure.

Multi-output circuits
The simple answer to multi-output circuits is to treat it in effect
as a number of single-output circuits, i.e., repeat the process in
Fig. 5 up to, but not including the merging, for each s-o-p
expression obtained for each output. The amount of redund-
ancy in such a test set is obviously a function of the amount of
interdependence between inputs and outputs. The remainder
of the process remains unaltered.
Where the primary inputs exhibit high fanout, then different

strategies can be effected, e.g., for an n input, m output circuit
having an input xt possessing a fanout ph then if xt is a member
of q s-o-p expressions where q < m, then generation of 2qpt
tests will almost certainly contain a high degree of redundancy.
One strategy therefore might be to generate 2/?; tests from one
of the s-o-p expressions and then supplement this by two tests
(1 Boolean Differential term) from each remaining q — 1
expressions yielding a total of 2{pt + (q — 1)) tests.

Use of the logic element equivalent circuit library
Rather than determine the elemental Polish expressions at run
time, it is more efficient if these are readily available in a library.
The procedure adopted is to input the equivalent circuit of the
elements and to pre-process these circuits into their equivalent
Polish forms. The equivalent circuits are denned solely in terms
of the four basic gates and the same Polish routines are used to
build up the overall Polish describing the element proper. This
means that tests for circuits based on complex MSI/LSI
elements can be generated provided an equivalent circuit has
been defined and duly processed. The overall test generation
procedure is then identical to simple gate circuits—indeed even
these simple gates are held in the library and the process is
completely general for simple, complex or 'hybrid' circuits.

Clamped logic lines
Again, in reality, and this applies especially to circuits based on
the more complex elements, some of the input connections are
clamped at the enable logic level. This has two effects on test
generation:

1. It means that no test exists for the logic line stuck-at its
clamp level*, and

2. The logical behaviour of the element is simplified.
The first effect can be used to modify the list of uncovered

faults, should this list contain any such undetectable 'faults'.
The second effect can be counteracted by an amendment to the

elemental Polish expression for the affected element.
E.g. If a circuit contains an element having two 2-input AND

gates feeding a 2-input OR gate and described by:
C5 = C1C2 AND(2) C3C4 AND(2) OR(2)

->• C1C2 + C3C4
and both C3 and C4 are clamped at logical 0, then the oper-
ation of this element is logically reduced to (C1C2) alone and
the Polish expression can be modified accordingly to:

C5 = C1C2AND(2)
The modification process is not quite so simple as it sounds

since, if clamped literals are removed, the operator(s) associated
with the literals must also be modified. In the case above, two
operators were completely removed. Had C3 only been clamped
(at logical 1 this time), then the Polish is effectively reduced to:

C5 = C1C2 AND(2) C4 AND(l) OR(2)
The operator count associated with the second AND operator

*In practice, it is relatively easy to identify and reduce occurrences of the following form:
XI + X] X2 — XI
X\X2+ X\X2-+X\X2
XI X2 + XI X2_-* XI

It is not feasible, however, to look for occurrences of the type (XI + X\ X2) although this would reduce to (XI + X2).

Volume 15 Number 3 243

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



has been reduced by 1—in fact, if the count is ever reduced to 1,
the operator itself can be removed. There is no difference
between the expression above with AND(l) in and the same
expression with AND(l) removed. This rule is quite general
provided only AND or OR operators are used.

Comment and results of the program
The procedure described in Fig. 5 has been programmed and
all the features so far mentioned have been included—namely
multi-output circuit facilities, library of equivalent circuits and
clamped logic lines. The program has been written for an ICL
1907 computer and the language is mainly FORTRAN with a
number of PLAN subroutines.

Extensive use has been made of a List Processing language
previously developed at Southampton University (Waters,
1970). This has been for a number of reasons, the main one
being that this program is to be compatible with and eventually
embedded into, the logic synthesis program suite developed by
Professor D. W. Lewin (now at Brunei University), and his
research team (Lewin, Purslow, and Bennetts, 1972). Another
major advantage of a List Processor is that nearly all the
operations necessary to perform the overall procedure are
amenable to a list format and symbol manipulative problems
of this nature are best solved, on a numerical computer, by
adopting such a list data structure.

One of the disadvantages of the List Processor, as it stands, is
that it places an artificial core store restriction of 32K on the
program. This in turn limits the size of circuit that can be
processed. The limit however, is related, not so much to the
number of elements, inputs or outputs, but to the size of the
s-o-p expressions. Once this has been determined, subsequent
core store requirements are fairly trivial. At present, the pro-
gram will exceed available core store if it attempts to generate a
s-o-p expression containing more than 3,000 terms. It can be
seen therefore that apart from any theoretical considerations,
the minimality or near-minimality of the s-o-p expressions is
vital and the absorption checking procedures are extremely
important in this respect.
A number of circuits of different types of complexity have

been successfully handled by the program and brief details of
the results obtained, are presented in Table 5.

These results are not really very significant without the actual
circuit diagrams, but they do indicate to some degree the
capability of the program, working within the 32K core store
bound.

Concluding remarks

It is felt that the procedure that has been described and pro-
grammed for generating detection test sets for combinational
logic circuits, is a realistic approach to solving this problem.
There have been many algorithms described in the literature
(see Bennetts and Lewin (1971) for instance), most of them
theoretically sound, but problems arise when attempts are
made to put such algorithms into practice.
The algorithm that has just been described is really an

amalgamation of some of the better aspects of these various
separate algorithms, together with some theoretical modi-
fication and engineering compromise. It is not offered as yet
another approach to deriving test sequences—rather, it is
offered as a realistic technique that has been proved in practice.

Acknowledgement
The author would like to acknowledge the effort of J. D. Baker
in his programming of the fault-cover algorithm; the assistance
of J. L. Washington in the development of the main program
and the continual support and encouragement of his project
supervisor, Professor D. W. Lewin (now of Brunei University).
He would also like to acknowledge the financial support of

SRC and ICL for an industrial studentship.

Appendix 1
Proof of independence of Dz(xt) on xt

The following theorem is quoted (incorrectly), but not proved,
in (Sellers, Hsiao, and Bearnson, 1968b).

Theorem
Given

then
Dz(Xi) =

',) + xJ2(Xd + MX,)

Table 5 Some results of the program

EXAMPLE NUMBER

Number of inputs/outputs
MSI/LSI based?
Number of basic gates
Primary input fanout?
Number of terms in s-o-p expressions

Time to derive s-o-p expressions (sees.)
Total number of tests required using fanout heuristic
Total number of tests generated
Number of tests after merging
% reduction
Time to generate and merge tests (sees.)
Time to calculate output associated with each test (sees.)
Maximum core store used

Example 1
2
3
4

3/1
No
5
Yes
3

2
12
12
6
50%
1
1
9K

4/1
No
8
Yes
2

3
20
16
10
37%
1
1
9K

15/1
No
21
Yes
64

30
54
54
34
37%
17
2
12K

11/4
No
62
Yes
49, 21,
16,6

37
96
96
22
7 1 %
25
3
14K

55/7
Yes
95
Yes
30, 332,
392,4,4,4,
119
1082
228
228
65
82%
252
58
26K

Example used in paper
Schneider's circuit
Amar and Condulmari's circuit
Four bit parallel adder

5: 'Concocted' larger circuit using MSI elements

244 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



X, — V^l; X^, • • • , - ^ i - 1 , X+li • • •> Xnj

where

Proof
Given

From equation (2) we have:

and therefore from equation (3) we have:

[ W i ) + *i/2(*i) + /a W ]
For ease of notation, we will represent xt by x, MX;) by / l s

Therefore:
l) = OA + x/2 + / 3 ] © [x/i + x/2

/, + xf2 + /3]

= O/i
f2 + /3] Wi. + xf2 + /3]

z + / 3 ] IX* + /1) (x + /2) (A)]
x/2 + /3] [(x + /,) (x + /2) (/3

*fi + /3] [*7, + x/2 + / J J
/i + */2 + /3] [x/x + x/2 + JJ2-\

J i + */J2] + h\xJJ2 + x/J2]
3 (

= hifi@fi)
i.e.

Q.E.D.
We note in passing the following two corollaries.

Corollary 1
Given

Then

Proof
This is the special

j

Corollary 2
Given

Then

case of the theorem in

f3(X;) = 0 i.e. f3(Xd --

Dz(x,) = MX,)

which

= 1

Proof
Suppose /2(X,) = 0. Then, from corollary 1

The significance of the theorem and its corollaries is that if
z = f(X) and xt e {X}, then Dz(xt) is independent of x%.

Appendix 2
Use of the exclusive-OR operator to accommodate primary input
lines possessing fanout
It was stated in the paper that if a primary input xt had a
fanout ph then it was a useful heuristic to generate 2pt tests by
deriving pt terms from the Boolean differential Dz(xt). The
basis for this was that if the pt terms established pt sensitive
paths that exercised all the gates to which x{ was an input, then
it was probable that most, if not all, internal lines logically
dependent on xt would also be covered. In practice however, it
was pointed out that parallel sensitive paths are an unknown
factor. Also, unless the full expression for Z)z(x,) were known,

xii

X21

X12

X22

X13

X3

Zl = X11X21 + X12X22 + X13XJ

Fig. 6. Example with separate input identification

there was no guarantee that the correct three terms had been
selected. If the correct three terms were selected however, the
probability of complete fault coverage increases.
This appendix offers a theoretical solution to ensuring that

such terms are always selected and is based on a separate
identification of any primary input line that possesses fanout.
The bulk of the procedure is then unaffected until the actual
term is generated. Here, certain constraints must be applied to
ensure that the separate lines are not specified with an incom-
patible polarity requirement.
As an example, we will consider the same example of Fig. 1

but with Zl replaced by X\l, X12, X\3 and X2 by Z21, Z22.
The circuit is redrawn in Fig. 6.
Consider now the expression obtained for DZ\(X\\):

DZ\{XU) = [ A ' 1 1 Z 2 1 + Y\2 Y22 3 T T

(18)
[JHl X2\ + X\2 Z22 + X13 Z3]

= X21(jn2 + Z22)(Ar13 + Xi)

As usual, this expression is independent of Z l l and the full
test set for Xl\ is given by:

JTT)=
XTl] (19)

Expansion of equation (19) produces:
DZ1(X11).(X11 + XTT)=

X12 X13 X21 Xll + X12 X13 X21 Xl l
+ X12 X3 X21 Xll + X12 X3 X21 Xll
+ X22 X13 X21 Xll + X22 X13 X21 Xll
+ Z22 X3 X2\ XU + Z22 X3 X2\ X\\ (20)

An inspection of the terms in equation (20) reveals that there
are three that are XX -polarity incompatible. The equation
must therefore be modified, and subsequent replacement of
X\\, X\2, X\3 by XI etc. produces:

DZ\(X\).{X\\ + Hi) = XI X2 + ATI Z2Z3 (21)

Equation (21) therefore represents three tests, two for
s-a-0 and one for Xll s-a-l, that guarantee to exercise at least
the gate to which Xll is an input, i.e. El.
Similar expressions for the remaining five inputs may be

derived and this leads to the shortened (primary input faults
only) fault matrix shown in Table 6. A minimal cover obtained
from this matrix is given by:

Test set = rt t2 t3 t4 t7 (22)

and in practice, this test set will cover all internal faults.
One final comment in connection with this. It would be a

false assumption to say that if, say the s-a-0 tests for Xl l , X12
and XI3 were collected together, they would equal the s-a-0
tests for XI that were derived from Z)Zl(Xl). The validity of
the tests in Table 6 rests on the implicit assumption that only
one of the fanout branches is faulty—all other branches must
be logically correct in order to establish the necessary sensitive

Volume 15 Number 3 245

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022



Table 6 Shortened fault matrix

'o

' l

h

h

u
t5

U

XI

0

0

0

0

1

1

1 .

1

X2

0

0

1

1

0

0

1

1

X3

0

1

0

1

0

1

0

1

X\l

sO

V
V

si

V

XY1

sO

V

si

V

x n
sO

V

si

V

X21

V
V

J l

V
V

Z22

V

J l

V

X3

sO

V

sO = s-a-0, J I = s-a-l

path.* Strictly speaking therefore, the shortened fault matrix
should also include the s-a-0, s-a-l columns for XI and X2
respectively, in which the tests have been derived from

DZl(Xl) and DZl(X2). In this case, the tests specified in
equation (22) will also cover the X1 and X2 faults.

*This is not true for its inverse level. Despite the fact that it cannot be set-up, all other lines presumably can and this may be used to test the
inverse fault. In a sense, if it is shown that it is not stuck-at its inverse level, then it has been tested for its stuck-at-clamp level.

References
BAKER, J. D. (1971). The fault-cover problem in combinational logic circuits, M.Sc. Thesis, Dept. of Electronics, University of Southampton.
BENNETTS, R. G. (1971). The diagnosis of logical faults, Wireless World, Part 1, July 1971, pp. 325-328, Part II, August 1971, pp. 383-385,

letter to Editor Sept. 1971, pp. 428-429.
BENNETTS, R. G., and LEWIN, D. W. (1971). Fault diagnosis of digital systems—a review, The Computer Journal, Vol. 14, No. 2, pp. 199-206.

Also IEEE Computer, July/Aug. 1971, pp. 12-20.
LEWIN, D. W., PURSLOW, E., and BENNETTS, R. G. (1972). Computer assisted logic design—the CALD system, IEE Conference Publi-

cation No. 86, CAD conference, University of Southampton, pp. 343-351.
ROTH, J. P. (1966). Diagnosis of automata failure: a calculus and a method, IBM Journal R & D, Vol. 10, pp. 278-291.
SELLERS, F. F., HSIAO, M. Y., and BEARNSON, L. W. (1968a). Analysing errors with the Boolean difference, IEEE Trans, on Computers,

Vol. C-17, pp. 676-683.
SELLERS, F. F., HSIAO, M. Y., and BEARNSON, L. W. (1968b). Error detecting logic for digital computers, p. 25. McGraw-Hill.
WATERS, M. C. (1970). A list-processing language for use in FORTRAN and ALGOL, Internal report, Dept. of Electronics, University of

Southampton.

Correspondence
To the Editor
The Computer Journal

Sir,
Permit me to draw your attention to some errors in the article 'A
quasi-intrinsic scheme for passing a smooth curve through a discrete
set of points' in your issue of November 1970.

dy
The equations (1) should give — as

dt

% = sin 0K + (sin 9K+I - sin 6K) '- + CKt(T - t)
at T

The equation as given is therefore wrong by reason of symmetry and

the fact that both — and — are stated to be quadratics in / (this is
dt dt

only true of — as given in the article).
dt

Upon integration of the corrected equations (1) to give equations
(2), the equation for y should be

• t2 /7V2 /3\
y = yn + sin 6Kt + (sin 6K+I - sin 8K) — + CK I - y - r- I

I have programmed both the printed version and my corrected
version and have found that only the corrected version gives PK
for t = 0 and PK+J for / = T > 0 (where T has the value TK as
given elsewhere in the article).

Yours faithfully,
W. COOPER (student)

Glasgow University Computing Dept.
Glasgow W.I
23 February 1972

246 The Computer Journal

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/15/3/238/480613 by U
.S. D

epartm
ent of Justice user on 17 August 2022


