
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:14671  | https://doi.org/10.1038/s41598-020-71639-x

www.nature.com/scientificreports

A realistic fish‑habitat dataset 
to evaluate algorithms 
for underwater visual analysis
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David Vazquez3 & Marcus Sheaves1

Visual analysis of complex fish habitats is an important step towards sustainable fisheries for human 
consumption and environmental protection. Deep Learning methods have shown great promise 
for scene analysis when trained on large‑scale datasets. However, current datasets for fish analysis 
tend to focus on the classification task within constrained, plain environments which do not capture 
the complexity of underwater fish habitats. To address this limitation, we present DeepFish as a 
benchmark suite with a large‑scale dataset to train and test methods for several computer vision 
tasks. The dataset consists of approximately 40 thousand images collected underwater from 
20 habitats in the marine‑environments of tropical Australia. The dataset originally contained 
only classification labels. Thus, we collected point‑level and segmentation labels to have a more 
comprehensive fish analysis benchmark. These labels enable models to learn to automatically monitor 
fish count, identify their locations, and estimate their sizes. Our experiments provide an in‑depth 
analysis of the dataset characteristics, and the performance evaluation of several state‑of‑the‑art 
approaches based on our benchmark. Although models pre‑trained on ImageNet have successfully 
performed on this benchmark, there is still room for improvement. Therefore, this benchmark serves 
as a testbed to motivate further development in this challenging domain of underwater computer 
vision.

Monitoring �sh in their natural habitat is an important step towards sustainable �sheries. In the New South Wales 
state of Australia, for example, �sheries is valued at more than 100 million Australian dollars in 2012–201314. 
E�ective monitoring can provide information about which areas require protection and restoration to maintain 
healthy �sh populations for both human consumption and environmental protection. Having a system that can 
automatically perform comprehensive monitoring can signi�cantly reduce labour costs and increase e�ciency. 
�e system can lead to a large positive sustainability impact and improve our ability to maintain a healthy 
ecosystem.

Deep learning methods have consistently achieved state-of-the-art results in image analysis. Many methods 
based on deep neural networks achieved top performance for a variety of applications, including, ecological 
monitoring with camera trap data. One reason behind this success is that these methods can leverage large-
scale, publicly available datasets such as  ImageNet6 and  COCO24 for training before being �ne-tuned for a new 
application.

A particularly challenging application involves automatic analysis of underwater �sh habitats which demands 
a comprehensive, accurate computer vision system. �us, considerable research e�orts have been put towards 
developing systems for the task of understanding complex marine environments and distinguishing between a 
diverse set of �sh species, which are based on publicly available �sh  datasets1,3,8,15,35. However, these �sh data-
sets are small and do not fully capture the variability and complexity of real-world underwater habitats which 
o�en have adversarial water conditions, high similarity of the appearance between �sh and some elements in 
the background such as rocks, and occlusions between �sh. For example, the QUT �sh  dataset1 contains only 
3,960 labelled images of 468 species. Many of these �sh images are taken in controlled environments where the 
background is plain white and the illumination is carefully adjusted (Fig. 1a). Similarly, underwater images 
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collected for the  Fish4Knowledge8 and  Rock�sh35 datasets are cropped to have a single �sh shown at the center 
(Fig. 1b,c), which requires costly human labor to produce and does not help models learn to recognise �sh in the 
wild. �us, the limitations of these datasets can inhibit further progress in building systems for comprehensive 
visual understanding of underwater environments.

To this end, we propose DeepFish as a benchmark that includes a dataset based on in-situ �eld recordings of 
�sh  habitats4 and we tailor it towards analyzing �sh in underwater marine environments. �e dataset consists 
of approximately 40 thousand high-resolution ( 1,920 × 1,080 ) images collected underwater from 20 di�erent 
marine habitats in tropical Australia (see Fig. 1d for an example image). �ese represent the breadth of di�erent 
coastal and nearshore benthic habitats commonly available to �sh species in tropical  Australia32 (Fig. 2).

Further, we go beyond the original classi�cation labels by also acquiring point-level and semantic segmenta-
tion labels for additional computer vision tasks. �ese labels allow models to learn to analyze �sh habitats from 
several perspectives, including, understanding �sh dynamics, monitoring their count, and estimating their sizes 
and shapes. We evaluate state-of-the-art methods on these labels to analyze the dataset characteristics and estab-
lish initial results for this benchmark.

Overall, we can summarize our contributions as follows; (1) we present a benchmark that includes a dataset 
that captures the complexity and diversity of underwater �sh habitats compared to previous �sh datasets, (2) we 
incorporate additional labels to allow for a more comprehensive analysis of �sh in underwater environments, 
(3) we show the importance of having pretrained models for achieving good performance on the benchmark, 

Figure 1.  A comparison of �sh datasets. (a)  QUT1, (b)  Fish4Knowledge8, (c)  Rock�sh35, and (d) our proposed 
dataset DeepFish. (a–c) Datasets are acquired from constrained environments, whereas DeepFish has more 
realistic and challenging environments.  (Figures a–c were obtained from the open-source  datasets1,8,35).

Figure 2.  Locations where the DeepFish images were acquired. Most of DeepFish has been acquired from the 
Hinchinbrook/Palm Islands region in North Eastern Australia, the rest from Western Australia (not shown in the 
map). (�e map was created using QGIS version 3.8, which is available at https ://qgis.org).

https://qgis.org
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and (4) we provide results that can serve as reference for evaluating new methods. �e dataset and the code have 
been made public to help spark progress in developing systems for analysing �sh habitats.

Dataset
Our goal is to design a benchmark that can enable signi�cant progress in �sh habitat understanding. �us we 
carefully look into the quality of data acquisition, preparation, and annotation protocol.

Accordingly, we start with the dataset based on the work of Bradley and  colleagues4 as it consists of a large 
number of images (around 40 thousand) that capture high variability of underwater �sh habitats. �e dataset’s 
diversity and size makes it suitable for training and evaluating deep learning methods. However, the dataset’s 
original purpose was not to evaluate machine learning methods. It was to examine the interactive structuring 
e�ects of local habitat characteristics and environmental context on assemblage composition of juvenile �sh.

Yet the characteristics of the dataset makes it suitable as a machine learning benchmark. We tailor it to make 
the dataset a more comprehensive testbed to spark new, specialized algorithms in this problem setup and name 
the dataset as DeepFish. In the following sections we discuss how the data was collected, the additional annota-
tions acquired for the dataset, how it was split between training, validation and testing, and how the dataset 
compares with current �sh datasets.

Data collection. Videos for DeepFish were collected for 20 habitats from remote coastal marine envi-
ronments of tropical Australia (Fig. 2). �ese videos were acquired using cameras mounted on metal frames, 
deployed over the side of a vessel to acquire video footage underwater. �e cameras were lowered to the seabed 
and le� to record the natural �sh community, while the vessel maintained a distance of 100 m. �e depth and the 
map coordinates of the cameras were collected using an acoustic depth sounder and a GPS, respectively. Video 
recording were carried out during daylight hours, and in relatively low turbidity periods. �e video clips were 
captured in full HD resolution ( 1,920 × 1,080 pixels) from a digital camera. In total, the number of video frames 
taken is 39,766 and their distribution across the habitats are shown in Table 2. Examples of these video frames 
are shown in Fig. 3 which illustrate the diversity between the habitats.

�is method of acquiring images is a low-disturbance technique that allows us to accurately assess �sh-
habitats associations in challenging, even inaccessible  environments4. In contrast, many existing monitoring 
techniques used to understand �sh habitats su�er from the problem of �sh �ight response, especially for habitats 
with limited  visibility34. For example, a common surveying technique requires divers to conduct visual  census2, 
which can cause disturbance to the �sh, leading to inaccurate assessment of the �sh community. Furthermore, 
divers cannot access areas with predators such as crocodiles with this technique. Other surveying techniques 
involve  netting33 and  trawling30 for catching and counting �sh. However, these methods are invasive and interfere 
with the behaviour of the �sh which can lead to inaccurate estimates. Further, they are limited to estimating �sh 
count only. On the other hand, the data collection procedure for DeepFish is one of the most e�cient methods 
for capturing a realistic, unaltered view of �sh habitats  associations4.

Figure 3.  DeepFish image samples across 20 di�erent habitats.
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Additional annotations. �e original labels of the dataset are only suitable for the task of classi�cation. 
�ese labels were acquired for each video frame, and they indicate whether an image has �sh or not (regardless 
of the count of �sh). �ese labels can be useful to train models for analyzing a �sh utilization estimate between 
di�erent  habitats19. For example, classifying images between those that contain and do not contain �sh allows 
biologists and ecologists to focus their e�orts by analyzing only those images with the �sh. However, they do not 
allow for a more detailed analysis of the habitats.

To address this limitation, we acquired point-level and semantic segmentation labels to enable models to 
learn to perform the computer vision tasks such as object counting, localization and segmentation. Point-level 
annotations are provided as a single click on each �sh as shown in Fig. 5b, and segmentation labels as boundaries 
over the �sh instances Fig. 5d. We describe them in detail in the following sections.

Point-level annotations. �e goal of these annotations is to enable models to learn to perform �sh counting. A 
useful application of this task is to automatically monitor �sh population in order to avoid the risk of over�shing. 
�ese annotations also enable the task of localizing �sh within each image which can be used for �sh tracking 
and �sh dynamics analysis.

We annotated 3,200 images with point-level annotations which we acquired across di�erent habitats as shown 
in Table 1. �ese annotations represent the (x, y) coordinates of each �sh within the images and they are placed 
around the centroid of the corresponding �sh (Fig. 5b). �ese annotations were acquired using  Labelme31, which 
is an open-source image annotation tool. It took approximately 1 second per �sh with a labeler who is familiar 
with �sh habitats. Since there is an average of 7 �sh in each image, the annotation time is estimated at 7 s per 
image. �us, this labeling scheme makes it easy to acquire additional annotations for new images and �sh classes.

Per-pixel annotations. �e goal of these annotations is to train and evaluate models to segment �sh across 
images. As a result, the segmentation output can be used to estimate �sh sizes, shapes, and their weight as shown 
 in18,20. �ese are important statistics that can be useful in applications like commercial  trawling10.

We collected per-pixel labels for 620 images. We labeled the �sh using layered polygons in order to distin-
guish between pixels that belong to �sh and those to the background (Fig. 5c). �e pixel labels represent the 
size and shape of the �shes in the image. We used  Lear17 to extract these segmentation masks, an open-source 
image annotation tool commonly used for obtaining segmentation labels. Acquiring per-pixel labels is vastly 
more time-consuming than point-level annotations. It took around 2 min to label a single �sh, to ensure quality 
masks we multiplied the manually generated masks with the original images to visually check the quality of the 
segmentation. In total, it took around 25 h to acquire segmentation labels for 310 valid images out of 620 images 
which is around 5 min per image. We acquired labels for a variety of habitats as shown in Table 1. We see that 
no point-level nor per-pixel labels were collected for “Sparse algal bed”. �e reason is that the videos taken for 

Table 1.  DeepFish dataset statistics. Number of images annotated for each sub-dataset: FishClf for 
classi�cation, FishLoc for counting/localization, and FishSeg for semantic segmentation.

Habitats FishClf FishLoc FishSeg

Low complexity reef 4,977 357 77

Sandy mangrove prop roots 4,162 322 42

Complex reef 4,018 190 16

Seagrass bed 3,255 328 16

Low algal bed 2,795 282 17

Reef trench 2,653 187 48

Boulders 2,314 227 16

Mixed substratum mangrove 2,139 177 28

Rocky Mangrove—prop roots 2,119 211 27

Upper Mangrove 2,101 129 21

Rock shelf 1,848 186 19

Mangrove 1,542 157 33

Sparse algal bed 1,467 0 0

Muddy mangrove 1,117 113 79

Large boulder and pneumatophores 900 91 37

Rocky mangrove—large boulder 560 57 28

Bare substratum 526 55 32

Upper mangrove 475 49 28

Large boulder 434 45 27

Muddy mangrove 364 37 29

Total 39,766 3,200 620
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the habitat shows hundreds of tiny �sh in each frame where many of them are occluded and are indistinguish-
able from debris and tiny rocks. As a consequence, it is di�cult to annotate a single image for localization and 
segmentation.

Dataset splits. We de�ne a sub-dataset for each computer vision task: FishClf for classi�cation, FishLoc for 
counting and localization, and FishSeg for the segmentation task. For each sub-dataset, we split the annotated 
images into training, validation, and test sets. Instead of splitting the data completely at random, we consider 
each split to represent the variability of di�erent �sh habitats and to have similar �sh population size. Concretely, 
we �rst divide each habitat into images with no �sh (background) and images with at least one �sh (foreground). 
We randomly select 50% training, 20% for validation and 30% for testing for each habitat while ensuring that 
the number of background and foreground images are equal between them. Finally, we aggregate the selected 
training images from each habitat into one training split for the dataset. We do the same for the validation and 
testing splits.

As a result, we get a unique split consisting of 19,883, 7,953, 11,930 (training, validation and test) for FishClf, 
1,600, 640, 960 for FishLoc, and 310, 124, 186 for FishSeg. While all the annotations, including for the test images, 
are made available, the expected evaluation setup is to select the best model on the validation set and perform 
a single evaluation on the test set. �e reported results on the test set are then presented in a leaderboard to 
compare between the algorithms.

Comparison to other datasets. We compare DeepFish to other datasets in terms of (i) dataset size (ii) 
visual complexity and (iii) vision tasks. Many datasets exist for �sh  analysis3,8,9,15. But we chose those that are 
most similar to ours, namely,  QUT1,  Rock�sh35, and  Fish4Knowledge8.

Table 2 shows that DeepFish is the largest dataset with images of highest resolution. Unlike other datasets, 
DeepFish images capture a wide view of the underwater �sh habitats. �e images also represent a diverse set 
of numerous habitats, and di�erent underwater conditions. Further, DeepFish images are in-situ as they are 
extracted directly unaltered from the underwater camera. �ese images can also contain several �sh that are 
potentially occluded and overlapping. In contrast, QUT images are post-processed. Most of the images in the 
QUT dataset are captured in “controlled” conditions, that is, the image collector spread the �sh �ns and cap-
tured the �sh image against a constant background with controlled illumination then annotated all the images 
by drawing a tight red bounding box around the �sh body. Fish4Knowledge and Rock�sh images are taken in 
the �sh natural habitat but they are also post-processed as they are cropped to ensure �sh are at the center of the 
image (see Fig. 1 for a comparison between the images from each dataset). �us, DeepFish is more suitable for 
training models for the purpose of analyzing �sh in the wild, and it requires less e�ort for collecting additional 
images and annotations.

�e task that the other datasets address is limited to classi�cation where the goal is to distinguish between �sh 
species. Fish4Knowledge and Rock�sh also address the task of detection where the goal is to draw a bounding 
box around the �sh. On the other hand, DeepFish addresses 4 tasks, which are classi�cation, counting, localiza-
tion, and segmentation, which means algorithms that score well on this benchmark should be able to provide a 
comprehensive analysis for the �sh community. Overall, the DeepFish dataset exceeds previous �sh datasets in 
terms of size, annotation richness, and scene complexity and variability.

Methods and experiments
Based on the labels of DeepFish, we consider these four computer vision tasks: classi�cation, counting, localiza-
tion, and segmentation. Deep learning have consistently achieved state-of-the-art results on these tasks as they 
can leverage the enormous size of the datasets they are trained on. �ese datasets include  ImageNet6,  Pascal7, 
 CityScapes5 and  COCO24. DeepFish aims to be part of these large scale datasets with the unique goal of under-
standing complex �sh habitats for the purpose of inspiring further research in this area.

We present standard deep learning methods for each of these tasks. Shown as the blue module in Figure 4, 
these methods have the ResNet-5013 backbone which is one of the most popular feature extractors for image 

Table 2.  Comparison between dataset characteristics. Clf, Cnt, Loc, Seg refer to the tasks of classi�cation, 
counting, localization and segmentation. “in-situ” datasets consist of unaltered images that capture the 
�sh underwater in their natural habitat, whereas “controlled” consist of post-processed �sh images where 
background and illumination have been altered. “in-situ (cropped at center)” datasets have images cropped at 
the center where the �sh is.

Dataset # images Tasks # �sh/image Resolution # habitats Environment type
Has background 
images

DeepFish (ours) 39,766 Clf, Cnt, Loc, Seg ∼ 7 1,920 × 1,080 20 In-situ Yes

QUT1 3,960 Clf 1 480 × 360 N/A
30% in-situ, 70% 
controlled

No

Fish4Knowledge8 27,370 Detection ∼ 1 352 × 240 N/A
In-situ (cropped at 
center)

No

Rock�sh35 4,307 Detection ∼ 1 1,280 × 720 N/A
In-situ (cropped at 
center)

Yes



6

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:14671  | https://doi.org/10.1038/s41598-020-71639-x

www.nature.com/scientificreports/

understanding and visual recognition. �ey enable models to learn from large datasets and transfer the acquired 
knowledge to train e�ciently on another dataset. �is process is known as transfer learning and has been consist-
ently used in most current deep learning  methods22. Such pretrained models can even recognize object classes 
that they have never been trained  on29. �is property illustrates how powerful the extracted features are from a 
pretrained ResNet-50.

�erefore, we initialize the weights of our ResNet-50 backbones by pre-training it on ImageNet following 
the procedure discussed  in6. ImageNet consists of over 14 million images categorized over 1,000 classes. As a 
result, the backbone learns to extract strong, general features for unseen images by training on such dataset. 

Table 3.  Comparison between randomly initialized and ImageNet pretrained models. Classi�cation results 
were evaluated on the FishClf dataset, counting and localization on the FishLoc dataset, and segmentation on 
the FishSeg dataset.

Classi�cation Counting Localization Segmentation

Accuracy MAE MAE GAME mIoU

Random weights 0.65 1.30 1.22 1.30 0.49

Pretrained weights 0.99 0.38 0.21 1.22 0.93

Figure 4.  Deep learning methods. �e architecture used for the four computer vision tasks of classi�cation, 
counting, localization, and segmentation consists of two components. �e �rst component is the ResNet-50 
backbone which is used to extract features from the input image. �e second component is either a feed-forward 
network that outputs a scalar value for the input image or an upsampling path that outputs a value for each pixel 
in the image.

Figure 5.  Qualitative results on counting, localization, and segmentation. (a) Prediction results of the model 
trained with the LCFCN  loss21. (b) Annotations that represent the (x, y) coordinates of each �sh within the 
images. (c) Prediction results of the model trained with the focal  loss25. (d) Annotations that represent the full 
segmentation masks of the corresponding �sh.
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�ese features are then used by a designated module to perform their respective computer vision task such as 
classi�cation and segmentation. We describe these modules in the sections below.

To put the results into perspective, we also include baseline results by training the same methods without 
ImageNet pretraining (Table 3). In this case, we randomly initialize the weights of the ResNet-50 backbone with 
Xavier’s  method11. �ese results also illustrate the e�cacy of having pretrained models over randomly initial-
ized models.

Classification results. �e goal of the classi�cation task is to identify whether images are foreground (con-
tains �sh) or background (contains no �sh). We use accuracy to evaluate the models on this task which is a 
standard metric for binary classi�cation  problems3,8,9,15,27. �e metric is computed as

where TP and TN are the true positives and true negatives, respectively, and N is the total number of images. A 
true positive represents an image with at least one �sh that is predicted as foreground, whereas a true negative 
represents an image with no �sh that is predicted as background. For this task we used the FishClf dataset for 
this task where the number of images labeled is 39,766.

�e classi�cation architecture consists of a ResNet-50 backbone and a feed-forward network (FFN) (clas-
si�cation branch of Fig. 4). FFN takes as input features extracted by ResNet-50 and outputs a probability for 
the image corresponding to how likely it contains a �sh. If the probability is higher than 0.5 the predicted 
classi�cation label is foreground. For the FFN, we use the network presented in ImageNet which consists of 3 
layers. However, instead of the original 1,000-class output layer, we use a 2-class output layer to represent the 
foreground or background class.

During training, the classi�er learns to minimize the binary cross-entropy objective  function28 using the 
 Adam16 optimizer. �e learning rate was set as 10−3 and the batch size was set to be 16. Since FFN require a �xed 
resolution of the extracted features, the input images are resized to 224 × 224 . At test time, the model outputs 
a score for each of the two classes for a given unseen image. �e predicted class for that image is the class with 
the higher score.

In Table 3 we compare between a classi�er with the backbone pretrained on ImageNet and with the randomly 
initialized backbone. Note that both classi�ers have their FFN network initialized at random. We see that the 
pretrained model achieved near-perfect classi�cation results outperforming the baseline signi�cantly. �is result 
suggests that transfer learning is important and that deep learning has strong potential for analyzing �sh habitats.

Counting results. �e goal of the counting task is to predict the number of �sh present in an image. We 
evaluate the models on the FishLoc dataset, which consists of 3,200 images labeled with point-level annotations. 
We measure the model’s e�cacy in predicting the �sh count by using the mean absolute error. It is de�ned as,

where Ci is the true �sh count for image i and Ĉi is the model’s predicted �sh count for image i. �is metric is 
standard for object  counting12,23 and it measures the number of miscounts the model is making on average 
across the test images.

�e counting branch in Fig. 4 shows the architecture used for the counting task, which, similar to the classi-
�er, consists of a ResNet-50 backbone and a feed-forward network (FFN). Given the extracted features from the 
backbone for an input image, the FFN outputs a number that correspond to the count of the �sh in the image. 
�us, instead of a 2-class output layer like with the classi�er, the counting model has a single node output layer.

We train the models by minimizing the squared error  loss28, which is a common objective function for the 
counting task. At test time, the predicted value for an image is the predicted object count.

�e counting model with the backbone pretrained on ImageNet achieved an MAE of 0.38 (Table 3. �is result 
corresponds to making an average of 0.38 �sh miscounts per image which is satisfactory as the average number 
of �sh per image is 7. In comparison, the counting model initialized randomly achieved an MAE of 1.30. �is 
result further con�rms that transfer learning and deep learning can successfully address the counting task despite 
the fact that the dataset for counting (FishLoc) is much smaller than classi�cation (FishClf).

Localization results. Localization considers the task of identifying the locations of the �sh in the image. It 
is a more di�cult task than classi�cation and counting as the �sh can extensively overlap. Like with the counting 
task, we evaluate the models on the FishLoc dataset. However, MAE scores do not provide how well the model 
performs at localization as the model can count the wrong objects and still achieve perfect score. To address 
this limitation, we use a more accurate evaluation for localization by  following12, which considers both the 
object count and the location estimated for the objects. �is metric is called Grid Average Mean absolute Error 
(GAME). It is computed as

where Dl
i
 is the number of point-level annotations in region l, and D̂l

i
 is the model’s predicted count for region 

l. GAME(L) �rst divides the image into a grid of 4L non-overlapping regions, and then computes the sum of 
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the MAE scores across these regions. �e higher L, the more restrictive the GAME metric will be. Note that 
GAME(0) is equivalent to MAE.

�e localization branch in Fig. 4 shows the architecture used for the localization task, which consists of a 
ResNet-50 backbone and an upsampling path. �e upsampling path is based on the network described in  FCN826 
which is a standard fully convolutional neural network meant for localization and segmentation, which consists 
of three upsampling layers.

FCN8 processes images as follows. �e features extracted with the backbone are of a smaller resolution than 
the input image. �ese features are then upsampled with the upsampling path to match the resolution of the 
input image. �e �nal output is a per-pixel probability map where each pixel represents the likelihood that it 
belongs to the �sh class.

�e models is trained using a state-of-the-art localization-based loss function called  LCFCN21. LCFCN is 
trained using four objective functions: image-level loss, point-level loss, split-level loss, and false positive loss. 
�e image-level loss encourages the model to predict all pixels as background for background images. �e point-
level loss encourages the model to predict the centroids of the �sh. Unfortunately, these two loss terms alone do 
not prevent the model from predicting every pixel as �sh for foreground images. �us, LCFCN also minimizes 
the split loss and false-positive loss. �e split loss splits the predicted regions so that no region has more than 
one point annotation. �is results in one blob per point annotation. �e false-positive loss prevents the model 
from predicting blobs for regions where there are no point annotations. Note that training LCFCN only requires 
point-level annotations which are spatial locations of where the objects are in the image.

At test time, the predicted probability map are thresholded to become 1 if they are larger than 0.5 and 0 
otherwise. �is results in a binary mask, where each blob is a single connected component and they can be col-
lectively obtained using the standard connected components algorithm. �e number of connected components 
is the object count and each blob represents the location of an object instance (see Fig. 5 for example predictions 
with FCN8 trained with LCFCN).

Models trained on this dataset are optimized using  Adam16 with a learning rate of 10−3 and weight decay of 
0.0005, and have been ran for 1,000 epochs on the training set. In all cases the batch size is 1, which makes it 
applicable for machines with limited memory.

Table 3 shows the MAE and GAME results of training an FCN8 with and without a pretrained ResNet-50 
backbone using the LCFCN loss function. We see that pretraining leads to signi�cant improvement on MAE 
and a slight improvement for GAME. �e e�cacy of the pretrained model is further con�rmed by the qualitative 
results shown in Fig. 5a where the predicted blobs are well-placed on top of the �sh in the images.

Segmentation results. �e task of segmentation is to label every pixel in the image as either �sh or not �sh 
(Fig. 5c,d). When combined with depth information, a segmented image allows us to measure the size and the 
weight of the �sh in a location, which can vastly improve our understanding of �sh communities. We evaluate 
the model on the FishSeg dataset for which we acquired per-pixel labels for 620 images. We evaluate the models 
on this dataset using the standard Jaccard  index5,7 which is de�ned as the number of correctly labelled pixels of 
a class, divided by the number of pixels labelled with that class in either the ground truth mask or the predicted 
mask. It is commonly known as the intersection-over-union metric IoU, computed as TP

TP+FP+FN
 , where TP, FP, 

and FN are the numbers of true positive, false positive, and false negative pixels, respectively, which is deter-
mined over the whole test set. In segmentation tasks, the IoU is preferred over accuracy as it is not as a�ected 
by the class imbalances that are inherent in foreground and background segmentation masks like in DeepFish.

During training, instead of minimizing the standard per-pixel cross-entropy  loss26, we use the focal loss 
 function25 which is more suitable when the number of background pixels is much higher than the foreground pix-
els like in our dataset. �e rest of the training procedure is the same as with the methods trained for localization.

At test time, the model outputs a probability for each pixel in the image. If the probability is higher than 0.5 
for the foreground class, then the pixel is labeled as �sh, resulting in a segmentation mask for the input image.

�e results in Table 3 show a comparison between the pretrained and randomly initialized segmentation 
model. Like with the other tasks, the pretrained model achieves superior results both quantitatively and quali-
tatively (Fig. 5).

Ethical approval. �is work was conducted with the approval of the JCU Animal Ethics Committee (pro-
tocol A2258), and conducted in accordance with DAFF general �sheries permit #168652 and GBRMP permit 
#CMES63.

Conclusions and perspectives
We have introduced DeepFish as a benchmark suite consisting of a large-scale dataset for the purpose of develop-
ing new models that can e�ciently analyze remote underwater �sh habitats. Compared to current �sh datasets, 
DeepFish consists of a diverse set of images that capture complex scenes from a large set of �sh habitats that 
span coastal marine-environments of tropical Australia. We acquired point-level and per-pixel annotations 
and designed experimental setups that enable models to be evaluated for the tasks of classi�cation, counting, 
localization and segmentation. We also present results demonstrating the e�cacy of standard deep learning 
methods that were pretrained on ImageNet. �ese results can be used as baseline to help evaluate new models 
for this problem setup.

For future work, we plan to adapt DeepFish by adding new benchmarks and annotations in order to inspire 
�sh analysis models for other useful use cases. �us, we will consider challenges that fall under weak supervi-
sion, active learning, or few-shot learning where the goal is to train on datasets whose labels were collected with 
minimal human e�ort.
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Data availability
�e DeepFish dataset and the code is publicly available at https ://alzay ats.githu b.io/DeepF ish/ and https ://githu 
b.com/alzay ats/DeepF ish, respectively.
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