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Chiral systems are a class of structures, which may exhibit the
anomalous property of a negative Poisson’s ratio. Proposed
by Wojciechowski and implemented later by Lakes, these
structures have aroused interest due to their remarkable
mechanical properties and numerous potential applications.
In view of this, this paper investigates the on-axis mechanical
properties of the general forms of the flexing anti-tetrachiral
system through analytical and finite element models. The
results suggest that these are highly dependent on the geometry
(the ratio of ligament lengths, thicknesses, and radius of nodes)
and material properties of the constituent materials. We also
show that the rigidity of an anti-tetrachiral system can be
changed without altering the Poisson’s ratio.

1 Introduction Auxetic materials, i.e. materials, which
expand laterally when a uniaxial load is applied, have received
a significant amount of interest in the past few decades [1-40].
Auxetic character is known to be a scale independent
characteristic [3, 4], being the product of particular geometries
undergoing a specific deformation mechanism. This means
that auxetic behavior can be found operating at the macro-
[4-30] micro- [4, 31-33] or nano-scales [34-42].

One particular mechanism that has attracted a lot of
attention in recent years is that of chiral systems. These
systems were first proposed by Wojciechowski [7], and later
implemented as a structure by Lakes [9, 10]. Lakes’
hexagonal chiral honeycomb is comprised of a central
cylinder (referred to as “node”) with six tangentially attached
ligaments, exhibiting a rotational symmetry of order six.
Prall and Lakes [10] determined that this network was
isotropic with an in-plane Poisson’s ratio of —1. Later,
Sigmund et al. [11] proposed a 3D system which, in one
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The anti-tetrachiral system, with the unit cell shown in red.
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plane, has a unit-cell made up of nodes with four attached
ligaments, with each cell containing an equal amount of right
and left handed units. This system was dubbed as an “anti-
tetrachiral” honeycomb system by Grima [12, 13]. These are
only two examples of a larger set of structures, which include
the tetrachiral, trichiral, and anti-trichiral systems [12, 13].
Furthermore, if the rotational symmetry constrain is relaxed,
another class of structures called the meta-chiral systems
[12] can be produced.

Chiral systems have piqued the interest of several
researchers due to their numerous potential applications,
which include satellite antennas designs [14, 15], sensors
[16], and stent geometries [17]. This has resulted in their
mechanical properties being extensively studied by several
researchers [7, 9-28].

This paper investigates the general forms of the anti-
tetrachiral system (henceforth referred to as general anti-
tetrachirals) where the ligaments are glued to the external
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Figure 1 The general anti-tetrachiral system. The unit cell is
highlighted by a dashed box.

surface of the nodes, as illustrated in Fig. 1. In particular,
analytical models and finite element analysis (FEA) were
used to study systems in which the ligaments aligned in the
Ox directions may have different geometric and mechanical
properties than those aligned in the Ox, direction.

2 Analytical modeling of the general anti-
tetrachiral systems with circular nodes In order to
understand more clearly the properties of the general flexing
anti-tetrachiral, an analytical model, which predicts the
Poisson’s ratio and Young’s moduli in terms of the different
lengths, thicknesses, and stiffness of the ligaments was
derived. For this model, the unit cell shown in Fig. 1 was
considered, where the nodes have a radius r and are made of
a material having Young’s modulus E,. The ligaments in
the Ox; direction have a length /;, a thickness of #; and are
made of a material having a Young’s modulus of Ej;.
Similarly, the ligaments in the Ox, direction have a length /,,
a thickness of 7, and are made of a material having a Young’s
modulus of E,.

In the un-deformed conformation, the projections in the
Ox; directions (where i =1, 2, 3) are given by:

Xl :211, X2=2[2, X3=Z (1)
where z is the thickness in the third direction of the nodes and
ligaments.

In the derivation, it was assumed that all deformations
occur as a result of flexure of the ligaments. In particular:

— the lengths of the ligaments remain constant (i.e. the
ligaments do not stretch)

— the nodes remain perfectly rigid and simply rotate by an
angle ¢ which is equal to the angular deflection at the ends
of the ligaments

— the line joining the center of the nodes with the point of
contact between the ligaments and the nodes remain at 90°
to the ligaments (i.e. the point of contact between the
ligaments and nodes is not acting as a hinge).
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In other words, the analytical model only captures
deformations, which occur as a result of “flexure” of the
ligament.

2.1 The in-plane Poisson’s ratio for loading
on-axis The Poisson’s ratio (v;) in the Ox,—Ox, plane
for loading in the Ox; may be defined as:

vij = —— (2)

where ¢; and ¢; are the engineering strains in the Ox; direction
(i=1, 2). These strains may be expressed as:

AX,
= Xilnil

and & =

(3)

&1 —
nit
X5

where X’ il“it are the projections of the un-deformed unit cell in
the Ox; directions and AX; are small changes in length in
Xlllllt.

If it is assumed that the on-axis uniaxial loads o; in the
Ox; direction result in flexure of the ligaments which will
cause a rotation of the circular nodes by the angle ¢, as
shown in Fig. 2, then the distance between the centers of the
nodes will change from /; to (/; + 2e;) where e; is equal to:

Iy . 1
e = 2<r + 5) sin(¢) ~ 2<r + 5)(}5 4)
Thus, the strains in the Ox; directions are given by:
. AX;  2(2¢) 2(r+%)e¢  (r+1)¢ )
T Xi.nit - 2(1,) N l; - l;
and hence the Poisson’s ratio is given by:
v”__ﬁ__(Zr—l—tj)qﬁ_ l,'
v & n lj (21" + l‘i)¢
_ (27‘ + [j)l,' (6)
(2r + ti)lj ’

2.2 The in-plane Young’s modulus for loading
on-axis The Young’s modulus in the Ox; direction may be

l-2e

Figure 2 The changes that take place when a ligament undergoes
flexing.
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derived through the conservation of energy approach, where
it must be emphasized that:

— since a pure “flexure” model is being assumed, all the
strain energy will be stored as “bending energy” in the
ligament. (This means that the length to thickness ratio if
the ligaments must have a lower limit of 10.)

— the energy stored in the ligaments lying in the Ox;
direction will be different from the energy stored in
ligaments lying in the Ox, direction if these ligaments
have different lengths, thickness, and/or modulus.

An applied strain ¢; in the loading direction may be
related to the strain energy per unit volume U through:

1
U=-Eg

. 7

where E; is the Young’s modulus of the structure. This strain

energy per unit volume may be related to the work done per

unit cell Wy through:
Veen

U (8)

where V. is the volume of the unit cell given by:

Veen = X1X2X3 = 41z 9)
and Wr is the total work done by a single unit cell, which is
equal to the bending energy stored in the deformed ligaments
inside the unit cell. As shown in Fig. 1, each unit cell
contains eight ligaments, four of which are aligned with the
Ox; direction whilst the other four are aligned with the Ox,
direction, i.e.:

Wr = 4(Wiigi + Wiig2) (10)
where W; is the bending energy in the ligaments aligned in
the Ox; direction (i =1, 2), and as highlighted above W, is
in general not equal to W,. Nevertheless, although these
ligaments may have different geometric parameters and
different mechanical properties, the angle by which they
flex, measured at the point of contact with the node, is
geometrically constrained to be equal to the angle ¢ by
which the nodes would have rotated. This angle can be
related to the bending moment M, through standard beam
theory [43]:

M yil;
¢= ¢

= 11
2El; (11)

where E; is the intrinsic Young’s modulus of the material of
the ligament i whilst /; is the second moment of area of the
ligament i in the Ox; direction, which is given as:

(12)
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The energy W; stored in each flexed ligament i may be
obtained from:

¢
W; = 2/ M4 d, (13)
0

i.e. from Egs. (11) and (13), the energy W; is given by:

¢ L
W,-:z/ M¢,-d¢:2/ (Mqﬁ)dqb
0 0 6l;

3
_ ZEsit,' ¢2

ol (14)

Thus, from Eqgs. (10) and (14), the total energy per unit
cell is equal to:

Wr = 4(Wiigi + Wiig)
Esll‘? Esgl‘% 2
=4
Z( o T ob )?
and from Egs. (5), (7)-(9), and (15), the Young’s modulus

for loading in the Ox; direction (i=1, 2) is given by:

B — 1 25 (Es,ﬁJrEszt;
32r+4)" L\ L b

(15)

) (i=1,2). (16)

3 Finite element modeling Finite element (FE)
simulations were carried out to examine the validity of the
assumptions made during analytical modelling, i.e. (1) the
anti-chiral system constructed from ligaments glued to
circular nodes deforms primarily through flexure of the
ligaments and (2) the on-axis in-plane Poisson’s ratios and
Young’s moduli are approximated by the expressions in
Egs. (6) and (16), respectively.

In line with previous work [23], four dimensional
parameters, o, o5, By, and B, were defined, where oy = [,/r,
oy =Db/r, By =t/r, and B, =t,/r. Given the symmetry of the
structure and the loading conditions, the system illustrated in
Fig. 1 was constructed in ANSYS (v12.0) [44] running on
a supercomputing cluster as a quarter unit cell using the
boundary conditions shown in Fig. 3. This produces a valid
representation of an infinite system.

The structure was aligned in such a way that the Ox; axis
in the analytical model was parallel to the X-direction in
ANSYS, to be able to compare the two models directly.
Various sets of simulations were carried out which were
based on systems having different geometric parameters and
intrinsic mechanical properties, with two parameters being
varied simultaneously in a series of sweeps. In the first three
sweeps, the first chosen parameter was varied continuously,
while the second chosen parameter was fixed at one of
three defined values, until all possible combinations were
exhausted. In the second three sweeps, the first chosen
variable was fixed at one of three set values, while the
second chosen parameter was varied continuously, until all
possible combinations were exhausted. The complete set of

www.pss-b.com
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Figure 3 The boundary conditions which were applied to the
model constructed in ANSYS to represent an infinite system. The
end of ligament A was constrained not to move in the Ox, direction,
the end of ligament B was constrained not to move in the Ox,
direction, the end of ligament D was not allowed to rotate whilst a
strain of 2% was applied on the end of ligament C.

parameters and properties varied is listed in the Supporting
Information. A representative sample of the parameters used
from all the simulations performed is given in Table 1. All
systems, including both the nodes and ligaments, were
meshed using plane elements (Plane 82, a 2D 8-Node
Structural Solid) with plain strain capability in accordance
with earlier work [45]. A convergence test was performed to
choose an appropriate element size for the systems modeled.
In this case, the mesh density was calculated using the
ANSYS Smart Size Feature, with the size level set to 1. All
the systems were solved linearly. Note that in all simulations,
the models were subjected to strains in the Ox, direction.
Typical values for PVC plastics were used for the
constituting materials of the ligaments and nodes [46].

4 Results and discussion A qualitative analysis of
the deformed structures as simulated through the FE

Table 1 Three representative sets of FEA simulations that were
carried out. The complete list of simulations performed is given in
the Supporting Information.

set 1 4 10
oy, 0 ay, Eg Bi> B2
o 5,6, ...,15 5,6, ...,15 10
o 5,10, 15 10 10
Bi 0.1 0.1 0.05, 0.06, ..., 0.15
B> 0.1 0.1 0.05, 0.1, 0.15
E;; (GPa) 3 2,3,4 3
E, (GPa) 3 3 3
E,, (GPa) 4 4 4

www.pss-b.com

Oxz

Figure 4 A representative sample of the general anti-tetrachiral
systems simulated in ANSYS where the parameters were changed
as follows: (a) o;=20 and B;=0.20, (b) o =20. The other
parameters are as follows for both examples: «; =10, 8;=0.10
and E,;=3.00 GPa (where i =1,2).

simulations suggests that the general anti-tetrachiral systems
have negative Poisson’s ratios and are observed to deform
through flexing of the slender ligaments as in the case of
their regular counterparts, which is accompanied by rotation
of the circular nodes as illustrated by the images of
representative samples of the deformed and un-deformed
shapes shown in Fig. 4.

This validates the assumption made in the derivation of
the analytical model, namely that the main mode of
deformation is that of flexure of the ligaments accompanied
by arotation of the nodes. Furthermore, the figures show that
when considering anti-tetrachiral systems having different
ligament lengths (i.e. o) #ay), for loading in the Ox,
direction, when o,>o, o tends to assume a smaller
curvature than o1, and vice versa in the case when oy >a,. In
the case when oy = w5, the ligaments are observed to assume
the same curvature.

Plots of the Poisson’s ratios and Young’s moduli as
predicted by the analytical model and the FEA simulations
for the systems in Table 1 are given in Fig. 5. These plots
further confirm that there is excellent agreement between the
predictions made by the simple analytical model derived in
Section 2 and the detailed FEA simulations performed
in Section 3. Moreover, these plots also highlight the
relationship between the Poisson’s ratios and Young’s
moduli with the geometric and intrinsic properties of the
materials. The complete set of results for all the simulations
performed is given in the Supporting information.

The results obtained for v, versus ay/oy (Fig. 5) clearly
suggest that for all values of «; and o, used, the Poisson’s
ratio is always negative, although not equal to —1 when
o # ay, as predicted for the regular flexing model [13]. In
fact, both the analytical model and simulations suggest
that for loading in the Ox, direction, the Poisson’s ratio
is observed to become more negative as the ligament /;,
becomes longer than the ligament /;, thus large negative

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 Plots of the Poisson’s ratios and Young’s moduli as predicted by the analytical model and the FE simulations for the systems in

Table 1. Note that in the legends, the letter a stands for analytical.

Poisson’s ratios are obtained for large values of the ratio
Olz/Ol 1-

When considering systems having ligaments with
different thicknesses (i.e. B;# B,), referring to Figs. 5
and 6, the results obtained suggest that the Poisson’s ratio is
also dependent on the ratio of the thicknesses used, though to
a much lesser extent than the ligament lengths. In fact,
though for all values of $,/8, used, the Poisson’s ratio v,
was always negative, in cases where B;# f,, it was not
equal to —1. This is predicted by the regular flexing
model [13].

The Poisson’s ratio is observed to become more negative
as f; becomes larger than S,. This can be explained through

5 10

B (x107) 15

-1.1 4

-1.2
of, =50f, =10 af, =15—p; =5—F; =10 —f; =15 (x10?)

Figure 6 Plots of the Poisson’s ratio (v,) for set 10 (v, vs. B;) in
Fig. 5, where the scale of the Poisson’s ratio has been changed in
order to show clearly the relation between the plotted variables.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

the fact that when changing the ratio of the thicknesses, the
aspect ratio of the circular node is changed. In other words,
referring to Fig. 7a if t; = ,, the distance between the center
of the node and the center of the ligament aligned in the Ox;
(i.e. r=+(#;/2)) direction will be the same as the distance
between the center of the node and the center of the ligament
aligned in the Ox, (i.e. r+ (#/2)), hence the node can be
described as circular. However, referring to Fig. 7b, if t; # t,,
the distance between the center of the node and the center of
the ligament aligned in the Ox; (i.e. r + (#;/2)) direction will
not be the same as the distance between the center of the

(b)

(a)

Figure 7 (a) A node with four ligaments of equal thickness
showing that a circle is produced by passing a line from the middle
points of these ligaments. (b) A node with four ligaments where the
horizontal ligaments have a different thickness from the vertical
thickness showing that an ellipse is formed by passing a line from
the middle points of these ligaments.

www.pss-b.com
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node and the center of the ligament aligned in the Ox,
(i.e. r+ (t/2)), hence the node is better described as an
“elliptical node” rather than as a ‘“circular node”. This
implies that although the node rotation will be constant, the
strains generated in the Ox; and Ox, directions will be
different.

From the results obtained, it may be observed that the
Poisson’s ratio is independent of the Young’s moduli of
the constituent materials and radii of the nodes, provided
that 8, = B,. In fact, for systems where «; =, and ;= >
the Poisson’s ratio was always constant, with a value of —1,
as predicted for the regular systems. [23] Furthermore,
irrespective of the thicknesses of the ligament, in the limit a
very small 8; or B,, the Poisson’s ratio will always tend
toward —//I; (see Eq. 6) Moreover, it must be ensured that
the radius of the nodes is small enough compared to the
length of the ligaments in order to prevent their overlap,
which would otherwise lead to a physically unrealizable
structure. This implies that for the simulations performed,
the Poisson’s ratio is dependent on the ratio of the lengths
and thicknesses, where a value of —1 is expected for systems
that have equal ligament lengths and thickness, as discussed
above.

The Young’s moduli of these general anti-tetrachiral
systems are dependent on all geometric parameters taken
into consideration, as well as the intrinsic Young’s moduli of
the ligaments. For loading in the Ox, direction, the larger the
ratio o/, the stiffer the structure becomes. This behavior
may be explained by considering two systems, each of which
has the same «, but has different values for «;, such that
o # o, as illustrated in Fig. 8a. If these two systems are each
given a strain of 10% in the Ox, direction, the nodes in the
two structures must each rotate by the same amount to
accommodate a flexed vertical ligament that corresponds to
10% strain. This means that the angular deflections in the
short and long horizontal ligaments must be equal to each
other, with the result that the strain energy in the short
ligament is much larger than that in the longer ligament
(short ligaments are more difficult to bend than longer ones)
with the result that the Young’s modulus E; of the systems
with short ligaments is much larger. The same result would
be obtained if o is kept constant and «, is varied. As
illustrated in Fig. 8b, the longer the ligament in the
direction of loading, the larger the node rotation for the
same strain, which means that the ligament in the transverse
direction must bend to a higher degree, thus requiring more
energy and making the whole structure stiffer in the direction
of loading.

The Young’s moduli of the general anti-tetrachiral
systems are dependent on the ratio between the lengths and
node size. In fact, for any particular a,/o; ratio, the systems
become stiffer as the radius of the nodes decreases. This can
be explained through the fact that for a given strain, the
rotation of a large node will be smaller than that of a
smaller node, as illustrated in Fig. 8c and indicated by
Eq. (5). This will result in less bending of the ligaments for
larger nodes so that the amount of energy needed is

www.pss-b.com

(a)

Figure 8 (a) Two anti-tetrachiral systems with 8, = 15. oy is set at
30 (left) and 10 (right). (b) Two systems with o; = 10. e, is set at 20
(left) and 5 (right). (c) Two systems with identical values for /; and
I, but radii, 1 cm (left) and 3 cm (right). All of these systems were
given a strain of 10% in the Ox, direction.

decreased. Hence, the lower value for the Young’s modulus
of the anti-tetrachiral.

Furthermore, for loading in the Ox, direction, the larger
the value of 8; or f3,, the stiffer the structure becomes. This
increased structure stiffness follows from the fact that the
thicker the ligament, the more energy is needed for it to
curve.

Before concluding, in accordance with the FEA
simulations and the derived mechanical properties of
the generalized flexing anti-tetrachiral system, it may be
noted that the Poisson’s ratio is only dependent on the ratio
of the ligament lengths and the relative magnitude of the
thicknesses and the radius, where the longer and thinner the
ligament in the direction of loading, relative to the ligament
in the transverse direction, the more negative the Poisson’s
ratio. Also, in accordance with the FE simulations, the
Young’s modulus is dependent on all the parameters
considered in this study (i.e. length, thickness, and Young’s
moduli of the ligaments and radius of the circular nodes).
Moreover, it is important to note that in the special case
when the properties and dimensions of the horizontal
ligaments are the same as those of the vertical ligaments, the
Poisson’s ratio reduces to —1 and the Young’s modulus
becomes

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Est 3
= 17

6lr? (17)
in accordance with the model derived by Grima [13] for the
regular flexing anti-tetrachiral system.

5 Conclusions This paper has demonstrated the
derivation of the on-axis mechanical properties of generic
forms of the anti-tetrachiral systems, which deform through
flexure of the ligaments through the use of analytical models
that were validated through FEA.

The results suggest that the mechanical properties of the
flexing anti-tetrachiral system are highly dependent on the
geometry and material properties of the constituent
materials. In fact, it appears that the Poisson’s ratio of the
general flexing anti-tetrachirals is dependent on the ratio of
the ligament lengths and the thicknesses (relative to the
magnitude of the radius). On the other hand, the Young’s
moduli of these systems are dependent on all the parameters
that were considered, i.e. radius of the nodes, length, and
thickness of the ligaments and the Young’s moduli of
their constituent materials. In particular, for loading in the
Ox; direction, the Young’s modulus increases as the ratios
arlay, Bo/By, and Eg/E increase. The rigidity of the anti-
tetrachiral system can be changed without affecting the
Poisson’s ratio, by changing the relative stiffness of the
ligaments.
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