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Abstract

Divisible load applications consist of an amount of data and associated compu-
tation that can be divided arbitrarily into any number of independent pieces.
This model is a good approximation of many real-world scientific applications,
lends itself to a natural master-worker implementation, and has thus received a
lot of attention. The critical issue of divisible load scheduling has been studied
extensively in previous work. However, only a few authors have explored the
simultaneous scheduling of multiple such applications on a distributed com-
puting platform. We focus on this increasingly relevant scenario and make the
following contributions. We use a novel and more realistic platform model that
captures some of the fundamental network properties of Grid platforms. We for-
mulate a steady-state multi-application scheduling problem as a linear program
that expresses some notion of fairness between applications. This scheduling
problem is NP-complete and we propose several heuristics that we evaluate and
compare via extensive simulation experiments conducted over 250,000 platform
configurations. Our main finding is that some of our heuristics can achieve per-
formance close to the optimal and we quantify the trade-offs between achieved
performance and heuristic complexity.

Keywords: parallel computing, scheduling, divisible load, bandwidth sharing, resource
sharing, multiple applications.

Résumé

Le modèle des tâches divisibles s’applique aux applications dont les données
(et les calculs associés) ont une granularité arbitraire. Ce modèle a fait l’objet
de nombreuses études, car son champ d’application est vaste, et sa mise en
oeuvre facile, via un paradigme mâıtre-esclave classique. Nous étudions ici le
déploiement simultané de plusieurs applications divisibles. Nous introduisons
un modèle de plate-forme bien plus réaliste que les modèles précédents, et
plus proche des caractéristiques des architectures distribuées à grande échelle.
Nous cherchons à optimiser le régime permanent, avec un objectif qui prend en
compte un accès équitable aux ressources pour les différentes applications. Ce
problème d’ordonnancement est NP-complet, aussi nous proposons plusieurs
heuristiques. Nous évaluons et comparons celles-ci à travers une large gamme
de simulations expérimentales conduites sur plus de 250 000 configurations.
Certaines heuristiques sont très proches de l’optimal, et nous quantifions les
compromis nécessaires entre performance et temps de calcul.

Mots-clés: parallélisme, ordonnancement, modèle des tâches divisibles, partage de bande
passante, partage de ressources, multi-applications.
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1 Introduction

A divisible load application [15] consists of an amount of computation, or load, that can
be divided into any number of independent pieces. This corresponds to a perfectly parallel
job: any sub-task can itself be processed in parallel, and on any number of workers. The
divisible load model is a good approximation for applications that consist of large numbers
of identical, low-granularity computations, and has thus been applied to a large spectrum of
scientific problems. For further information on the model, we refer the reader to the recent
surveys [16, 31], to the special issue of the Cluster Computing journal [25], and to the Web
page collecting related literature [29].

Divisible load applications are amenable to the simple master-worker programming model
and can therefore be easily implemented and deployed on computing platforms ranging from
small commodity clusters to computational grids [22]. However, large-scale platforms are not
likely to be exploited in a mode dedicated to a single application. Furthermore, a significant
portion of the mix of applications running on Grid platforms are divisible load applications.
At the extreme, a Grid such as the CDF Analysis Farms (CAF) [18] supports the concurrent
executions of applications that are almost all divisible load applications. Therefore, it is crit-
ical to investigate scenarios in which multiple divisible loads applications are simultaneously
executed on the platform, and therefore compete for CPU and network resources.

A first analysis of the concurrent execution of multiple divisible load applications is pro-
vided in [14]. The authors target a simple platform composed of a bus network connecting
the master processor (which initially holds the entire load to be distributed and computed) to
a collection of heterogeneous, i.e. different-speed, worker processors. Both single-round and
multiple rounds strategies are introduced and analyzed.

A more complex platform has been investigated in [34]. In this paper, the authors intro-
duce a (virtual) producer-consumer architecture where a number of data servers (the sources
of the multiple divisible loads) are fully connected to a number of heterogeneous processors
(the workers that execute the multiple loads). The authors describe a strategy to balance
the total amount of work among the workers. Unfortunately, the results are mostly of the-
oretical interest as the authors assume that a data server can emit an unlimited number of
messages in parallel and, similarly, that a computing processor can simultaneously receive
an arbitrary number of messages. Obviously, these assumptions are not likely to hold on
real-world platforms.

In the position paper [35], the authors discuss how to apply divisible load theory to grid
computing [23, 10]. They discuss job scheduling policies for a master-worker computation
where the master distributes jobs to remote workers. The latter are assumed to be only
limited by their own network bandwidth, and never by internet bandwidth. As a result,
the architecture behaves like a simple star-shaped network with single-link connections, and
ignores the fact that workers are actually located within geographically dispersed sites.

In this paper we make the following contributions: (i) we propose a new model for deploy-
ing and scheduling multiple divisible load applications on large-scale computing platforms,
which is significantly more realistic than models used in previous work; (ii) we formulate a
relevant multi-application steady-state divisible load scheduling problem and show that it is
NP-complete; (iii) we propose several polynomial heuristics that we evaluate and compare via
extensive simulations.

In our model, the target platform consists of a collection of clusters in geographically
distributed institutions, interconnected via wide-area networks, as seen in Figure 1. The key
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benefit of this model is that it takes into account both the inherent hierarchy of the platform
and the bandwidth-sharing properties of specific network links. We detail and justify our
model further in Section 2.

Primergy

Primergy

backbone link

router

front end

cluster

Figure 1: Sample large-scale platform model.

In addition to the new platform model, we adopt a new scheduling objective. Rather than
minimizing total application execution time (i.e., the “makespan”), our goal is to maximize
the throughput in steady-state mode, i.e. the total load executed per time-period. There are
three main reasons for focusing on the steady-state operation:

(i) Simplicity: Steady-state scheduling can be viewed as a relaxation of the makespan min-
imization problem in which the initialization and clean-up phases are ignored. One only
needs to determine which fraction of time each participating resource spends comput-
ing for which application and spends communicating with which neighbor; the actual
schedule then arises naturally from these quantities.

(ii) Efficiency: Steady-state scheduling provides, by definition, a periodic schedule, which is
described in compact form. For large applications, and from a programmer’s perspective,
this is probably the key advantage.

(iii) Adaptability: Because the schedule is periodic, it is possible to dynamically record
the observed performance during the current period, and to inject this information into
the algorithm that will compute the optimal schedule for the next period. This makes
it possible to react on the fly to resource availability variations, which is the common
case on non-dedicated Grid platforms for example.

Finally, in addition to the platform model and the scheduling objective described above,
our approach enforces the constraint that the divisible load applications are processed fairly
and allows for different application priorities.

The rest of this paper is organized as follows. Section 2 details and justifies our platform
model. In Section 3, we define the steady-state scheduling problem by deriving the equations
that reflect the behavior of the whole architecture/application framework. Section 4 shows
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that optimizing the throughput is a difficult problem (NP-complete). Section 5 is devoted to
the design and analysis of several polynomial heuristics, which are evaluated in simulation in
Section 6. Finally, Section 7 concludes the paper and highlights future directions.

2 Platform and Application Model

Our platform model is depicted in Figure 1 and consists of a collection of clusters (or trees of
clusters in fact) that are geographically distributed over the internet and interconnected via
wide-area links. Each cluster is equipped with a“front-end”processor [15], which is connected
to a local router via a local-area link of limited capacity. These routers are used to connect
each cluster to the internet. We model the interconnection of all the routers in our platform as
a graph of internet backbone links. These links have different bandwidth-sharing properties
than local area links, as explained below, and our model allows for a bound on the number
of connections that that can be opened by the divisible load applications on these links.

sk

sl

gk

gl

b3

b1

Lk,l

b2

Ck

Ck
master

Ck
router

C l
router

C l
master

C l

Figure 2: Notations for the platform model.

• The inter-cluster graph, denoted as Gic = (R,B), is composed of routers (the nodes in
R) and backbone links (the edges in B). There are b = |B| backbone links, l1, . . . , lb. For
each link we have two parameters: bw(li), the bandwidth available for a new connection,
and max-connect(li), the maximum number of connections (in both directions) that can
be opened on this link. The model for the backbones is as follows. Each connection is
granted at most a fixed amount of bandwidth equal to bw(li), up to the point where
a maximum number of connections are simultaneously opened, at which point no more
connection can be added. This model is justified by the bandwidth-sharing properties
observed on wide-area links: when such a link is a bottleneck for an end-to-end TCP
flow, several extra flows can generally be opened on the same path and they each receive
the same amount of bandwidth as the original flow. This behavior can be due to TCP
itself (e.g., congestion windows), or to the fact that the number of flows belonging to a
single application is typically insignificant when compared to the total number of flows
going through these links. This property is often exploited by explicitly opening parallel
TCP connections (e.g. in the GridFTP project [1]) and we have observed it in our own
measurements [19]. Our model makes it possible to account for this characteristic of
wide-area network connections in the context of Grid application scheduling algorithms.
The constraint imposed on the number of allowed connections makes it possible to limit
the network usage of applications, which is a likely requirement for future production
Grid platforms with many applications and users competing for resources.
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• Our platform consists of K clusters Ck, 1 ≤ k ≤ K. In full generality, we should rep-
resent each Ck as a node-weighted edge-weighted graph Gk = (Vk, Ek), but we simplify
the model. For each cluster Ck, we only retain Ck

master, the front-end processor, which
is connected to Ck

router, one of the routers in R. The idea is that Ck
master represents the

cumulated power of the computing resources in the cluster Ck (as shown in Figure 2).
This amounts to assuming that the architecture of the cluster is a star-shaped network,
whose center is the front-end processor Ck

master. It is known that Ck
master and the leaf

processors are together “equivalent” to a single processor whose speed sk can be deter-
mined by classical formulas from divisible load theory [30, 6, 4]. In fact, it has also been
shown that a tree topology is equivalent to a single processor [6, 5, 7], and thus our
model encompasses cases in which the local-area network in each institution is struc-
tured as a tree. Consequently, we really need only two parameters to characterize each
cluster: sk, the cumulated speed of Ck including Cmaster and the cluster’s processors,
and gk, the bandwidth of the link connecting Ck

master to Ck
router. This link, is modeled as

follows: Several connections may share the link, but they each receive a portion of the
available bandwidth, and the sum of these portions cannot exceed gk, which is known
to be a reasonable model for local-area links. Note that this link may correspond to
several local area physical links.

• We assume that the routing between clusters is fixed. The routing table contains an
ordered list Lk,l of backbone links for a connection from cluster Ck to cluster C l, i.e.
from router Ck

router to router C l
router. As shown in Figure 2, some intermediate routers

may not be associated to any cluster. Also, no specific assumption is made on the
interconnection graph, which is in particular not assumed to be fully connected. Our
model uses realistic bandwidth assignments for each flow: we determine the bottleneck
link for each end-to-end connection and use the bandwidth-sharing properties of this
link (either local-area or backbone) to determine the amount of bandwidth allocated to
each flow.

To the best of our knowledge, the model described above represents the first attempt
at modeling relatively complex network topologies along with realistic bandwidth-sharing
properties for the purpose of large-scale application scheduling research. We contend that
this model, and future evolutions of it, provides a major first step in the development of
application-level scheduling strategies that are truly relevant to the new class of platforms
brought about by Grid infrastructures.

3 Steady-state scheduling of multiple applications

The steady-state approach has been pioneered by Bertsimas and Gamarnik [12]. Steady-state
scheduling allows to relax the scheduling problem in many ways. Indeed, initialization and
clean-up phases are neglected, and the emphasis is on the design of a periodic schedule. The
precise ordering and allocation of tasks and messages are not required, at least in the first
step. The main idea is to characterize the activity of each resource during each time-unit:
which (rational) fraction of time is spent computing for which application, which fraction of
time is spent receiving or sending to which neighbor. Such activity variables are used into
a linear program that characterizes the global behavior of the system. Once each activity
variable has been computed, the periodic schedule is known: we simply scale the rational
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values to obtain integer numbers, and the length of the period of the schedule is determined
by this scaling. We outline below the construction step-by-step.

3.1 Steady-state equations

We consider K divisible load applications, Ak, 1 ≤ k ≤ K, and cluster Ck initially holds all
the input data necessary for application Ak. For each application we define a “payoff factor”,
πk, that quantifies the relative worth of the applications. For instance, computing one unit
of load per work unit for an application with payoff factor 2 is twice as worthwhile/profitable
than for an application with payoff factor 1. This concept makes it possible to implement
notions of application priorities for resource sharing. Note that one can set πk to zero for
clusters that do not wish to execute a divisible load application. Similarly, our method is easily
extensible to the case in which more than one application originate from the same cluster.
We start developing the steady-state scheduling problem with the two following definitions:

• Each cluster Ck initially holds input data for application Ak. Within a time-unit, Ck

will devote a fraction of the time to process load units for application Ak. But cluster Ck

can also be used to process loads that originates from another cluster C l, i.e. from the
divisible load application Al. Reciprocally, portions of the load Ak may be executed by
other clusters. We let αk,l be the amount of work for application Ak that is sent by Ck

and computed on cluster C l within a time-unit. αk,k denotes the portion of application
Ak which is executed on the local cluster.

• Cluster Ck opens βk,l connections to send the fraction αk,l of the load that is destined
to cluster C l.

The first steady-state equation expresses the fact that a cluster Ck cannot compute more
load per time unit than what is allowed by its speed sk:

∀Ck,
∑

l

αl,k ≤ sk (1)

Indeed, αk,k is the amount of load for application Ak that is processed locally by cluster
Ck, and for l 6= k, αl,k is the amount of load for application Al that is exported by cluster C l

to Ck. An interesting feature of steady-state scheduling is that we do not need to determine
the precise ordering in which the different load types are executed by Ck: instead we take
a macroscopic point of view and simply bound the total amount of load which is processed
every time-unit.

The second steady-state equation bounds the amount of load that requires the use of the
serial link between cluster Ck and the external world, i.e. between Ck

master and Ck
router:

∀Ck
∑

l 6=k

αk,l

︸ ︷︷ ︸
(outgoing load)

+
∑

j 6=k

αj,k

︸ ︷︷ ︸
(incoming load)

≤ gk (2)

This equation states that the available bandwidth gk is not exceeded by the requirements
of all the traffic outgoing from and incoming to cluster Ck. Again, there is no need to specify
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the precise ordering of the communications along the link. Note that we assume that the time
to execute a data chunk, or to communicate it along a serial link, is proportional to its size:
this amounts to fix the granularity and to manipulate elemental pieces of work. Start-up costs
could be included in the formulas, but at the price of technical difficulties: only asymptotic
performance can be assessed in that case [8].

Next we have to bound the utilization of the backbone links. The third equation deals
with the number of opened connections. On each backbone link li, there should be no more
than max-connect(li) different connections used by the divisible load applications:

∑

{k,l}, li∈Lk,l

βk,l ≤ max-connect(li) (3)

The fourth equation expresses the fact that there is enough bandwidth available on each
path from a cluster Ck to a cluster C l:

αk,l ≤ βk,l × min
li∈Lk,l

bw(li) (4)

The last term in Equation 4 represents the bandwidth allotted to the communication from
Ck to C l: the bandwidth available for a single connection is the minimum of the bw(li), taken
over all links li that constitute the routing path from Ck to C l. We multiply this bandwidth
by the number of opened connections to derive the constraint on αk,l.

Finally there remains to define an optimization criterion. Let αk =
∑K

l=1 αk,l be the load
processed for application Ak per time unit. One possibility for our objective function is to
maximize the total payoff of the computation per time unit, i.e.:

Maximize

K∑

k=1

αk × πk. (5)

A problem with this objective function is that there is the risk that one application would be
unduly favored and granted most of the resources. To achieve a fair balance among all the
divisible load applications, one can instead maximize the minimum payoff over all applications,
i.e.:

Maximize min
k
{αk × πk} . (6)

This maximization corresponds to a MAX-MIN fairness strategy [11] between the different
loads, with coefficients πk, 1 ≤ k ≤ K.

The constraints that we have derived earlier and one of the two objective functions defined
in Equation 5 or Equation6 form a linear program. For instance, for objective function in
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Equation 6:

Maximize mink {αk × πk},
under the constraints



(7a) ∀Ck,
∑

l

αk,l = αk

(7b) ∀Ck,
∑

l

αl,k ≤ sk

(7c) ∀Ck,
∑

l 6=k

αk,l +
∑

j 6=k

αj,k ≤ gk

(7d) ∀k, l,
∑

li∈Lk,l

βk,l ≤ max-connect(li)

(7e) ∀k, l, αk,l ≤ βk,l × min
li∈Lk,l

bw(li)

(7f) ∀k, l, αk,l ≥ 0

(7g) ∀k, l, βk,l ∈ N

(7)

This program is mixed in the sense that the αl,k are rational numbers and the βl,k are
integers. Given a platform P and computational payoffs (π1, . . . , πK), we define a valid
allocation for the steady-state mode as a set of values (α, β) such that Equations 7 are
satisfied.

Unfortunately, the linear program 7 involves integer variables, the βk,l, so there is little
hope that an optimal solution can be computed in polynomial time. Indeed, we show in Sec-
tion 4 that determining the optimal throughput of program 7 is a NP-hard problem. However,
the linear program 7 captures all the constraints to be satisfied, and we can reconstruct a
periodic schedule for every valid allocation, i.e. for every set of values of the αk,l and of the
βk,l that fulfills the constraints. We derive several heuristics to compute valid allocations in
Section 5, and we assess their performances in Section 6.

3.2 Reconstructing a periodic schedule

In this section, we briefly explain how to reconstruct a periodic schedule when given a valid
allocation (α, β), i.e. a solution of program 7. Because the divisible load applications are
independent, the task is not difficult. We express all the αk,l as αk,l =

uk,l

vk,l
, where the uk,l and

the vk,l are integers. The period of the schedule is set to Tp = lcmk,l(vk,l). In steady-state,
during each period of length Tp:

• Cluster Ck computes, for each non-zero value of αl,k, an integer load αl,k.Tp for appli-
cation Al. If l = k the data is local, and if k 6= l, the data corresponding to this load
has been received during the previous period. These computations are executed in any

order. Equation 1 ensures that
P

l αl,k ·Tp

Tp
≤ sk, hence Ck has enough time to process all

its load.

• Cluster Ck sends, for each non-zero value of αk,l, a data chunk of integer size αk,l · Tp

for application Ak, to be processed by cluster C l during the next period. Similarly,
it receives, for each non-zero value of αj,k, a data chunk of integer size αj,k.Tp for
application Aj, to be processed locally during the next period. All these communications
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share the serial link, but Equation 2 ensures that
P

l6=k αk,l.Tp+
P

j 6=k αj,k .Tp

Tp
≤ gk, hence

the link bandwidth is not exceeded.

Obviously, the first and last period are different: no computation takes place during the
first period, and no communication during the last one. Altogether, we have a periodic
schedule, which is described in compact form: we have a polynomial number of intervals
during which each processor is assigned a given load for a prescribed application.

4 Complexity

In this section we establish a complexity result: optimizing the throughput is NP-hard. We
start with the formulation of the associated decision problem, and we proceed to the proof.
Note that we cannot use a straightforward reduction from a multicommodity flow problem
such as problem ND47 in [2], because there is no prescribed location on where each work
should be executed.

Definition 1 (STEADY-STATE-DIVISIBLE-LOAD(P, π, ρ)). Given a platform P,
computational payoffs (π1, . . . , πK) and a throughput bound ρ, is there a valid allocation A
such that mink {πk × αk} ≥ ρ ?

Theorem 1. STEADY-STATE-DIVISIBLE-LOAD(P, π, ρ) is NP-complete.

V1

V2

V3

V4

l1

l4

l3

l2

Figure 3: Example of instance I1 of MAXIMUM-INDEPENDENT-SET

Proof. We first prove that this problem belongs to NP. Given an instance I of STEADY-
STATE-DIVISIBLE-LOAD, we verify that A = (α, β) is a valid solution by checking that
Equations 7 are satisfied, and that mink {πk × αk} ≥ ρ, which can be done in polynomial
time.

To prove the completeness of STEADY-STATE-DIVISIBLE-LOAD, we proceed by a re-
duction from MAXIMUM-INDEPENDENT-SET, which is known to be NP-complete [24].
Consider an arbitrary instance I1 of MAXIMUM-INDEPENDENT-SET: given a non-oriented
graph G = (V,E) and an integer bound B, does there exist a subset V ′ of V of cardinal at
least B and such that no two vertices of V ′ are joined by an edge of E? From I1, we construct
the following instance I2 of STEADY-STATE-DIVISIBLE-LOAD:
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2 Qb
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3 Qb

3
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4 Qb
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master
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master

P 2
master

P 3
master

P 4
master

l33

l13

l12

l22

l23

l42

l31

l11

l21

l41
l34

l32
lcommon
1

lcommon
2

lcommon
3

lcommon
4

Figure 4: Instance I2 of STEADY-STATE-DIVISIBLE-LOAD built from the previous in-
stance example I1

• Let V = {V1, . . . , Vn}. The platform of I2 consists of n + 1 clusters C0, C1, . . . , Cn. A
set Route(i) is associated with each cluster Ci and will be used to determine the routing
in the platform as explained below.

• E = {e1, . . . , em}. For each ek = (Vi, Vj) ∈ E, we add in the platform graph:

– two routers Qa
k and Qb

k,

– a backbone link between them: lcommon
k = (Qa

k, Q
b
k), with max-connect(lk) = 1 and

bw(lk) = 1,

– a new element k in Route(i) and Route(j).

Then, for each set Route(i) = {k1, . . . , k|Route(i)|} associated to cluster Ci, we add the
following backbone links, all with max-connect(l) = 1 and bw(l) = 1: li1 = (C0, Qa

k1
),

for j = 1, . . . , |Route(i)|, lij = (Qb
kj

, Qa
kj+1

) and li|Route(i)|+1 = (Qb
k|Route(i)|

, Ci)

• Finally, the routing between cluster C0 and cluster Ci is given by the following routing
path:

L0,i =
{
li1, l

common
k1

, li2, l
common
k2

, . . . , lcommon
k|Route(i)|

, li|Route(i)|+1

}
(8)

• Cluster C0 has specific characteristics: g0 = n and s0 = 0, while all other clusters are
such that gi = si = 1.

We set the computational payoff to π0 = 1 and πi = 0 for j = 1, . . . , n (C0 is the only cluster
which has work to do). The throughput bound ρ of I2 is set to B.

The platform graph that we have constructed has a strong property which is expressed in
the following lemma:

Lemma 1. Two routes (C0, Ci) and (C0, Cj) in the platform graph of instance I2 share a
common backbone link if and only if the edge (Vi, Vj) belongs to the graph G of instance I1.
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Proof. Assume first that edge ek = (Vi, Vj) belongs to G. Then, by construction, as k is
added to the list Route(i) and Route(j), the corresponding link lcommon

k belongs both to L0,i

and L0,j: the routes (C0, Ci) and (C0, Cj) share the common link lcommon
k .

Assume now that routes (C0, Ci) and (C0, Cj) share a backbone link. According to
Equation 8, this link is a lcommon

k for some k. As lcommon
k ∈ L0,i and lcommon

k ∈ L0,j, then
k ∈ Route(i) and k ∈ Route(j). The construction of these sets shows that there is an edge ek

between Vi and Vj in G.

We now prove that there exists a solution to I1 if and only if there exists a solution I2:

• Assume that there exists an independent set V ′ solution of I1 (so |V ′| ≥ B). From V ′,
we construct the following allocation A:

∀i, α0,i = β0,i =

{
1 if Vi ∈ V ′

0 otherwise

∀j 6= 0,∀i, αj,i = βj,i = 0

As V ′ is an independent set, there is no edge in G between any two vertices of V ′, so
there is no common backbone link between the routes defined by non-zero values of the
β’s. Each backbone is used by at most one route, and since max−connect = 1 for all
backbones, Equation 3 is satisfied. There are |V ′| (which is less than n) different routes
outgoing from C0, and none incoming to it, so Equation 2 is fulfilled since g0 = n. For
all other clusters Ci (i > 0), at most one route with bandwidth 1 is incoming and none
is outgoing, so Equation 2 is satisfied since gi = 1. Each cluster Ci such that Vi ∈ V ′

has to compute an amount of work of 1 unit, which is not more than its speed, so
Equation 1 is satisfied.

Hence, (α, β) defines a valid allocation which reaches the throughput of |V ′| ≥ B = ρ.
This is a solution for I2.

• Assume now that (α, β) is a solution of I2, which means that it is valid allocation whose
throughput is at least ρ. As C0 has no computing power, it has to delegate the work to
other clusters. Each other cluster has a computing speed of one task every time-unit, so
there exist at last ρ different routes from cluster C0 to ρ distinct clusters Ck1, . . . , Ckρ .
Since max−connect = 1 for each backbone link, only one route can go through each
backbone link. Hence, for every couple of routes to clusters Cki and Ckj , no link is
shared, which means that there is no edge (Vi, Vj) in the original graph. So the set
of the corresponding vertices V ′ = {Vk1 , . . . , Vkρ

} is an independent set in G. As the
cardinal of this set is ρ = B, V ′ is a solution of the instance I1.

5 Heuristics

In this section we propose several heuristics to solve the multi-application steady state schedul-
ing problem. We first propose a greedy heuristic, and then heuristics that are based on the
rational solution to the mixed linear program derived in Section 3.

5.1 Greedy Heuristic

Our greedy heuristic proceeds in a sequence of steps in which resources are allocated to one
of the K applications. More specifically, at each step the heuristic (i) selects an application
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Ak; (ii) determines on which cluster C l the work will be executed (locally if l = k, on some
remote cluster otherwise); and (iii) decides how much work to execute for this application.
The intuition for how these choices can be made is as follows:

• One should select the application that has received the smallest relative share of the
resource so far, that is the one for which αkπk is minimum, where αk =

∑
l αk,l. Initially,

αk = 0 for all k, so one can break ties by giving priority to the application with the
highest payoff factor πk.

• Compare the payoff of computing on the local cluster with the payoff of opening a route
to the remote clusters. Choose the most profitable cluster, say C l.

• Allocate an amount of work that does not overload C l so that it will not be usable by
other applications.

Let gk,l = min
li∈Lk,l

{bw(li)} be the minimum bandwidth available for one connection on a

route from cluster Ck to cluster C l. The greedy heuristic, which we denote by G, is formalized
as follows:

1. Let L = {C1, . . . , CK}. Initialize all αk,l and βk,l to 0.

2. If L is empty, exit.

3. Select application – Sort L by non-decreasing values according to the lexicographic

order
(

1
αk×πk

, πk

)
. Let k be the index of the first element of L. Select Ak.

4. Select cluster – For each cluster Cm where m 6= k, compute the work that can be
executed using a single connection:

benefitm = min {gk, gk,m, gm, sm}.

Locally, one can achieve benefitk = sk. Select C l, 1 ≤ l ≤ K so that benefitl is maximal.
If benefitl = 0 (i.e., no more work can be executed), then remove Ck from list L and go
to step 2.

5. Determine amount of work – If k 6= l (remote computation), allocate alloc =
benefitl units of load to cluster C l. If k = l (local computation), allocate only

alloc = max
m6=k
{min {gk, gk,m, gm, sk}}

units of load. This last quantity is the largest amount that could have been executed
on Ck for another application and is used to prevent over-utilization of the local cluster
early on in the scheduling process.

6. Update variables –

• Decrement speed of target cluster C l: sl ← sl − alloc

• Allocate work: αk,l ← αk,l + alloc



12 L. Marchal, Y. Yang, H. Casanova, Y. Robert

• In case of a remote computation (if k 6= l) update network characteristics:

∀li ∈ Lk,l, max-connect(li)← max-connect(li)− 1

gk ← gk − alloc

gl ← gl − alloc

βk,l ← βk,l + 1

7. Go to step 2.

5.2 LP-based Heuristics

The linear program given in Section 3 is a mixed integer/rational numbers linear program
since the variables βk,l take integer values and variables αk,l may be rational. This mixed
LP (MLP) formulation gives an exact optimal solution to the STEADY-STATE-DIVISIBLE-
LOAD problem, while an LP formulation allows rational βk,l and gives an upper bound on
the solution. As solving a mixed linear program is known to be hard, we propose several
heuristics based on the relaxation of the problem: we first solve this linear program over
the rational numbers with a standard method (e.g., the Simplex algorithm). We then try to
derive a solution with integer βk,l from the rational solution.

5.2.1 LPR: Round-off

The most straightforward approach is to simply round rational βk,l values to the largest

smaller integer. Formally, if (α̃k,l, β̃k,l) is a rational solution to the linear program, we build
the following solution:

∀k, l, β̂k,l = ⌊β̃k,l⌋,

∀k, l, α̂k,l = min

{
α̃k,l, ⌊β̃k,l⌋ min

li∈Lk,l

bw(li).

}

With these new values, we have:

∀k, l, β̂k,l ≤ β̃k,l,

∀k, l, α̂k,l ≤ α̃k,l,

∀k, l, α̂k,l ≤ min
li∈Lk,l

bw(li),

which shows that we have obtained a solution to the linear program in which all βk,l take
integer values. We label this method LPR.

5.2.2 LPRG: Round-off + Greedy

Obviously, rounding down all the βk,l variables with LPR may lead to a very poor result as
the remaining network capacity is lost. The LPRG heuristic reclaims this residual capacity by
applying the technique described in Section 5.1. Intuitively, LPR gives the basic framework
of solution, while the Greedy heuristic refines it.
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5.2.3 LPRR: Randomized Round-off

Relaxing an integer linear program into rational numbers is a classical approach, and several
solution have been proposed for rounding. Among others is the use of randomized approxi-
mation. In [26, chapter 11] Motwani, Naor and Raghavan propose this approach to solve a
related problem, the multicommodity flow problem. Using Chernoff bounds, they prove that
their algorithm leads with a good probability to a feasible solution that achieves the optimal
throughput. Although this theoretical result seems attractive, it has some drawbacks. First,
as mentioned in Section 4, our problem is not a multicommodity flow problem: instead of
specifying a set of flow capacities for between node pairs, we have global demands for the
sum of all flows leaving each node (representing the total amount of work sent by this node).
Second, to obtain their optimality result, the authors in [26, chapter 11] rely on the assump-
tion that the capacity of each edge is not smaller than a bound (5.2× ln(4m) where m is the
number of edges), and we do not have a similar property here. Third, there are two cases of
failure in the randomized algorithm (even though the probability of such failures is proved
to be small): either the algorithm provides a solution whose objective function is suboptimal
(which is no big deal), or it provides a solution which does not satisfy all the constraints,
which forces us to modify the solution to make it feasible.

Coudert and Rivano proposed in [21] a rounding heuristic based on the method of [26,
chapter 11] in the context of optical networks. Their method seems more practical as it always
provides a feasible solution. We use the same approach as in [21] to build an algorithm based
upon randomized rounding. This heuristic, the LPRR heuristic, works as follows:

1. Solve the original linear program with rational numbers. Let (α̃k,l, β̃k,l) be the solution.

2. Choose a route k, l at random, such that β̃k,l 6= 0.

3. Randomly choose Xk,l ∈ {0, 1} with probability P (Xk,l = 1) = β̃k,l − ⌊β̃k,l⌋.

4. Assign the value v = ⌊β̃k,l⌋+ X to βk,l by adding the following constraint to the linear
program: βk,l = v.

5. If there exists at least a route k, l for which no βk,l value has been assigned yet, go to
step 2.

We point out that LPRR solves K2 linear programs, and is thus much more computation-
ally expensive that the other LP-based heuristics. We present results comparing the effective
complexity of all our heuristics in Section 6.

6 Experimental results

In this section, we use simulation to evaluate the G, LPR, LPRG, and LPRR heuristics
described in Section 5 when applied to the STEADY-STATE-DIVISIBLE-LOAD problem.
Solving the mixed LP problem for the optimal solution takes exponential time; consequently
we cannot use it in practice and cannot compare our heuristics to the optimal. Instead we use
the solution to the rational LP problem as a comparator, as it provides an upper bound on the
optimal solution (it cannot be achieved/used in practice as βk,l values need to be integer). We
denote this method by LP. We solve the scheduling problem for the two objective functions
given in Equations 5 and 6, which we denote by SUM and MAXMIN respectively.
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parameter name values

K 5, 15, . . . , 95
connectivity 0.1, 0.2 . . . , 0.8
heterogeneity 0.2, 0.4, 0.6, 0.8
mean g 50, 250, 350, 450
mean bw 10, 20, . . . , 90
mean maxcon 5, 15, . . . , 95

Table 1: Parameter settings used for simulation experiments.

We instantiate random platform models based on the following parameters: K, the number
of clusters in the network; connectivity, the probability that any two clusters are connected; g,
the local bandwidth on the local link in a given cluster; bw, the bandwidth of one connection
on a given backbone link; maxcon, and the maximum number of connections on a given
backbone link. The last three parameters are chosen according to a heterogeneity parameter
that denote the difference (i.e., the relative ratio) between platform components in the same
platform. More specifically, parameters g, bw, and maxcon were sampled from a uniform
distribution between mean ∗ (1− heterogeneity) and mean ∗ (1 + heterogeneity), where the
mean values are given in Table 1. This table also gives the range of values used for K,
connectivity, and heterogeneity. Since only relative values are meaningful in a periodic
schedule, we fix the computing speed at 100. We generated 10 random platforms for each
setting of these parameters, totaling 269,835 different platform configurations.

We ran LP, G, LPR, LPRG on each of these topologies. As LPRR takes a long time
to execute (it solves K2 linear programs, see Section 6.3), we only evaluate it on 80 of our
topologies.

6.1 Comparison of G, LPR, and LPRG

Our simulation results clearly show that LPR exhibits very poor performance when compared
to both G and LPRG. Typically LPR does not utilize a significant portion of the network
capacity, and in some cases all βk,l values are rounded down to 0, leading to an objective
value of 0.

More interesting is the comparison between G and LPRG. Over all the platforms that
we evaluated, the ratio of the objective values achieved by LPRG to that by G is: 1.98 for
MAXMIN and 1.02 for SUM. For a closer look, Figure 5 plots the average ratio of the objective
values achieved by LPRG and G to that achieved by LP, which is an upper bound on the
optimal, versus the number of clusters K.

We see that LPRG always achieves higher SUM values than G, and as K gets larger, the
advantage grows larger. At large number of clusters (K ≈ 80), LPRG is very close to the
upper bound on the optimal solution, which leads us to believe that LPRG is likely very close
to the optimal. At K = 5, LPRG obtains a MAXMIN value slightly lower than G, but its
MAXMIN value becomes increasingly higher than that of G as K grows. Both LPRG and G
achieve a high SUM value when K is large, but their MAXMIN value is much lower, ≈ 65%
of the LP upper bound at K = 75. We will see in Section 6.2 that the LPRR heuristic does
much better in this area.

We have mined our results to identify potential trends about how platform characteristics
impact the relative performance of our heuristics. No clear trend emerges in the MAXMIN
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Figure 5: Comparison of LPRG and G, with different K

case and the relative performance of G and LPRG is rather irregular, with LPRG leading to
better results in the vast majority of the cases however. The relative performance of G and
LPRG is more regular in the SUM case, but we found that variations in platform parameters
besides K (i.e., connectivity, heterogeneity, g, bw, or maxcon) does not lead to significant
variations in relative performance.

6.2 LPRR vs LPRG

As seen in the previous section, LPRG achieves low MAXMIN value at large K (∼ 35% lower
than the LP upper bound). The LPRR heuristic achieves better results, at the cost of a higher
complexity (K2 times larger than LPRG). For the small subset of 80 topologies we tested,
Figure 6 shows that LPRR achieves objective values very close to the upper bound. While
LPRR rounds off the βk,l values to the closest integer with higher probability, we also tested
another version that rounds off up or down randomly with equal probability. It is interesting
to note that this version performed much worse than LPRR.

6.3 Running Time of Heuristics

It is known theoretically that the Simplex method for solving LP takes
(
n+m

m

)
time in the

worst case, where m is the number of basic variables, and n non-basic variables. In practice,
this method is one of the fastest ones for solving linear programs. We used the lp_solve

package [9], which implements the Simplex algorithm. Since the actual running time of this
LP solver is drastically different than the theoretical worst-case bound, we can only compare
the running time of our LP-based heuristics empirically. We measured the running time of LP,
G, LPR, LPRG, and LPRR on a set of 112 topologies with K = 10, 20, 30, 40, on a Pentium

III 800MHz computer. Figure 7 plots heuristic running times vs. K, on a logarithmic scale.
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We can see that, expectedly, G runs significantly faster than the LP-based heuristics, taking
at most 0.1 seconds. In essence, G works like the Simplex method but uses a more selective
scheme for “tightening” the constraints. LP, LPR and LPRG are slower, and their running
time increases linearly from 0.5 seconds for K = 10 to 2 seconds for K = 40. By contrast,
LPRR’s running time increases by K2, and is approximately 1000 times larger than our other
heuristics at K = 40. Although we focus on steady state performance and thus an infinite
execution, LPRR is most likely impractical as in a real-world scenario the scheduling process
must typically be executed periodically to adapt to changing platform conditions and/or
application loads.

7 Conclusion

In this paper we have addressed the steady-state scheduling problem for multiple concurrent
divisible applications running on Grid platforms that span multiple clusters distributed over
wide-area networks. This is an important problem as divisible load applications are common
and make up a significant portion of the mix of Grid applications (in fact some Grids run
primarily divisible load applications [18]). However, only a few authors had explored the
simultaneous scheduling of multiple such applications on a distributed computing platform [14,
34] and in this paper we have made the following contributions. First, we used a realistic
platform model that captures some of the fundamental network properties of Grid platforms.
Then, we formulated our scheduling problem as a mixed integer-rational linear program and
proposed two objective functions, SUM and MAXMIN. Both implement a notion of weighted
priorities for resource sharing between applications, and MAXMIN ensures some notion of
fairness. We proposed a greedy heuristic, G, and three heuristics based on the solution
to the linear program: LPR, which simply rounds down the rational solution to the linear
program; LPRG, which uses the G heuristics to refine the solution to the linear program;
and LPRR, which uses randomized rounding. We evaluated these heuristics with extensive
simulation experiments for large number of random Grid configurations. We compared our
heuristics to an upper-bound on the optimal schedule which is obtained by solving the purely
rational version of our mixed linear program. We found that although LPR leads to very
poor performance, LPRG achieves performance close to the optimal for the SUM objective
function and in fact performs better than G. For the MAXMIN objective function, LPRG
only achieves 65% of the upper-bound on the optimal performance for a large number of
clusters. In this case, LPRR achieves performance very close to the optimal, but at the cost
of a much higher complexity than LPRG (approximately a factor K2, where K is the number
of clusters in the platform).

We will extend this work in several directions. First, we will simulate platforms and
application parameters that are measured from real-world testbeds and applications suites [13,
32]. We have gathered such information as part of other research projects. While this paper
provides convincing evidence about the relative merit of our different approaches, simulations
instantiated specifically with real-world data will provide a quantitative measure of absolute
performance levels that can be expected with the best heuristics. Second, we will strive to use
an even more realistic network model, which would include link latencies, TCP bandwidth
sharing behaviors according to round-trip times, and more precise backbone characteristics.
Some of our recent work (see [27, 19]) provides the foundation for refining our network model,
both based on empirical measurements and on theoretical modeling of network traffic. Finally,
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one could envision extending our application model to address the situation in which each
divisible load application consists of a set of tasks linked by dependencies. This would be an
attractive extension of the mixed task and data parallelism approach [20, 28, 3, 33, 17] to
heterogeneous clusters and grids.
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