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ABSTRACT

Internet-scale security incidents are becoming increasingly
common, and the researchers need tools to replicate and
study them in a controlled setting. Current network sim-
ulators, mathematical event models and testbed emulation
cannot faithfully replicate events at such a large scale. They
either omit or simplify the relevant features of the Internet
environment to meet the scale challenge, thus compromising
fidelity. We present a distributed worm spread simulator,
called PAWS, that builds a realistic Internet model, includ-
ing the AS-level topology, the limited link bandwidths, and
the legitimate traffic patterns. PAWS can support diversity
of Internet participants at any desired granularity, because it
simulates each vulnerable host individually. Faithful replica-
tion of Internet environment, its diversity and its interaction
with the simulated event, all lead to a high-fidelity simula-
tion that can be used to study event dynamics and evalu-
ate possible defenses. While PAWS is customized for worm
spread simulation, it is a modular large-scale simulator with
a realistic Internet model, that can be easily extended to
simulate other Internet-scale events.

Keywords: Invasive software, worms, simulation and mod-
eling, distributed simulation

1. INTRODUCTION
Internet stability is increasingly threatened by large-scale

events, such as distributed denial-of-service (DDoS) attacks,
flash-crowd attacks, worm spread, routing instabilities, bot-
net recruitment, spam and coordinated intrusions. To study
these events and evaluate possible countermeasures, we must
be able to replicate them, as faithfully as possible, in a con-
trolled setting. This replication must include all the relevant
Internet features that interact with a chosen event, such as
host diversity, limited link bandwidth, routing dynamics and
connectivity, background traffic, etc.

Network events are usually studied using mathematical
models, emulation and simulation. All three approaches
have so far failed to replicate a realistic and detailed model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VALUETOOLS’06, October 11-13, 2006, Pisa, Italy
Copyright 2006 ACM 1-59593-504-5 ...$5.00.

of the Internet environment and its interaction with the
event of interest. Mathematical models of worm propa-
gation [1],[2],[3] produce results of limited fidelity, due to
heavy approximations of host diversity, and a complete lack
of an Internet model. Testbed environments usually contain
no more than several hundred machines, so Internet-wide
events have to be scaled down to the testbed size. This scale-
down results in a simplified topology and introduces a loss
of fidelity [4]. Popular network simulators [5],[6],[9],[8],[7]
simulate network events and protocols at a very fine level
of detail and at a packet level. This leads to high memory
demand and long execution time for large-scale simulation.
Distributed simulators [9],[8],[7] support large scale but re-
quire powerful clusters to simulate at a reasonable speed;
such clusters are not available to all researchers.

Large-scale, realistic Internet simulation is a very chal-
lenging task. It lies on a thin line between two extremes:
(1) simulating too many details at too fine a granularity
results in a prohibitively costly simulation with regard to
memory and CPU resources, while (2) heavy approximation
and oversimplification of the Internet environment and the
event of interest lead to incorrect results. Floyd and Paxson
discuss in [10] the additional Internet simulation challenge,
that stems from the lack of necessary data about relevant In-
ternet features, such as connectivity, link bandwidths, traffic
patterns and mixes, and congestion levels. We must simu-
late just the right amount of detail to attain the goals of
scale and speed, while maintaining fidelity. We must also
build a realistic Internet model, drawing the relevant fea-
tures from the real Internet observations, and superimposing
the simulated event and its interactions with the underlying
environment.

In this paper we describe PAWS, an Internet-scale worm
spread simulator, which simulates a large number of hosts,
with a reasonable speed and in a realistic Internet environ-
ment. PAWS uses distributed simulation to harvest memory
and CPU resources from multiple networked machines. It
replicates a realistic Internet topology at the AS level, lim-
ited inter-AS and host access link bandwidths, and legiti-
mate traffic at the aggregate, inter-AS level. During the sim-
ulation, PAWS captures the interaction between congestion-
responsive TCP traffic and aggressive worm traffic, as they
travel through limited-bandwidth links. Each simulation
node simulates a portion of the entire Internet, and nodes
synchronize using network messages at discrete time inter-
vals. Each vulnerable host is simulated individually; this
facilitates the specification of host and network diversity at
various levels. Each worm scan packet is simulated sep-



arately, but packet transmissions and receptions occur at
specified time intervals (currently 1 s). This reduces the
number of network messages exchanged between simulation
nodes, and synchronization delays, leading to faster simula-
tion. PAWS is an open-source simulator, implemented on
the Emulab testbed [14], and thus is accessible to a large
community of researchers. While it is currently customized
for worm spread simulation, PAWS can be easily extended
to simulate other Internet-scale events.

In Section 2 we survey related work in network simulation.
We then describe the Internet, background traffic and worm
models implemented in PAWS in Sections 3, 4 and 5. Section
6 describes PAWS implementation in the Emulab testbed,
and Section 7 presents validation experiments, simulating
the propagation of Code Red v2 and SQL Slammer worms.
In Section 8 we present PAWS operational cost, such as
simulation time and communication overhead for distributed
node synchronization. We conclude in Section 9.

2. RELATED WORK
Our work on PAWS is related to three areas of network re-

search: Internet simulation, worm modeling and worm sim-
ulation. We survey the closely related approaches below.

2.1 Internet simulation
Much work has been done on large-scale distributed sim-

ulation of network events, and several large-scale simula-
tors are closely related to PAWS: PDNS [7], GTNetS [8]
and SSFNet [9]. These simulators replicate Internet layers
in greater detail than PAWS, and simulate each traffic flow
and each packet separately. While this is beneficial for small-
scale simulation, it results in a prohibitively slow and non-
scalable simulation of Internet-wide events, as we describe
in the Section 2.3. With regard to fluid (aggregate) traffic
simulation, Nicol et al. [15], [16] propose to model flows at
coarse time-scales. In their model, each sender and receiver
are associated with a variable-rate traffic stream, and the
aggregated flow on each link is computed iteratively, hop-by-
hop, along the routing path until it converges. In [17] Nicol
et al. simulate the interaction between some foreground traf-
fic of interest, at the packet level, and the background flows,
at the fluid level, using a discrete-event formulation. The
difference between their work and our aggregate TCP traf-
fic model is that PAWS simulates TCP’s congestion response
at the aggregate level, while such mechanism is lacking in
[17]. PAWS also avoids iterative, hop-by-hop, traffic simu-
lation which would prohibitively increase simulation time,
while bringing a small gain in accuracy.

2.2 Worm modeling
Staniford et al. [1] use a simple epidemiological model for

the spread of Code Red. Zou et al. [2] present a “two-
factor” worm model, which improves the epidemiological
model adding human countermeasures and a simple net-
work congestion model. Chen et al. [3] provide a discrete-
time worm model that considers effects of human patch-
ing and cleaning on worm propagation dynamics, and repli-
cates worms with a subnet scanning strategy. All the sur-
veyed models heavily approximate the interaction of the
worm spread with the underlying topology, and do not repli-
cate host and network diversity, nor the background traffic.
These approximations and simplifications lead to inaccurate
results.

2.3 Worm simulation
Savage et al. [18] model Internet topology at the AS level,

along with the epidemiological worm spread model. Wag-
ner et al. [19] model delay and bandwidth differences be-
tween vulnerable hosts by grouping Internet hosts into four
categories and modeling the interactions both between and
within categories. Liljenstam et al. [20], [21] design a worm
model integrated with the SSFNet [9] simulator. This model
adds simulation of countermeasures at a router level to the
simple epidemiological model, and simulates those actions
assuming a single router per AS. A realistic AS topology
from the Route Views project [12] is used in a scaled-down
form, due to single-machine memory constraints. Riley et
al. [22] develop a packet-level worm simulator on GTNetS
[8] to observe connection-level behaviors of TCP worm prop-
agation. They approximate the Internet topology as a set
of limited access links that connect vulnerable hosts to the
“core” with unlimited bandwidth. Perumalla et al. [23]
propose a large-scale packet-level simulation of worm prop-
agation on PDNS [7]. All the above approaches deploy an
overly simplified model of the Internet topology and do not
simulate the interaction of the worm traffic with the back-
ground traffic, both of which lower simulation fidelity. In ad-
dition to this, all but [23] are single-node simulators, which
limits their scalability to several thousand vulnerable hosts.
[23] simulates worm propagation among 1.28 million vulner-
able nodes at a dedicated 128-CPU cluster, using PDNS and
GTNetS. In another paper on distributed simulation of In-
ternet events [24] the authors note that PDNS and GTNetS
can simulate about 95K packet transmissions per wall-clock
second (PTS) at a single machine and 5.5M packet transmis-
sions on a dedicated 136-CPU cluster. This is an excellent
result, given that both PDNS and GTNetS simulate traffic
at a flow and packet level, and must maintain connection
state for each packet transmission. We note two main prob-
lems with this approach for large-scale simulation: (1) To
achieve reasonable simulation speed (5.5M PTS) one needs
a powerful 100+ node cluster. Not every researcher has
access to such a cluster, yet many researchers need a high-
fidelity Internet simulator that can run in reasonable time
on multiple common PCs, to validate their ideas; (2) Packet-
level simulation in PDNS and GTNetS generates a network
message for each packet sent to a different simulation node
which incurs huge overhead when simulating high-rate worm
scans. Instead, these transmissions can be aggregated and
sent in a single network message at the end of a simulated
time unit, like it is done in PAWS.

3. INTERNET MODEL
In this section we describe a detailed Internet model, repli-

cated in PAWS. Such model is necessary to capture the in-
teractions between the worm spread and the Internet con-
nectivity, bandwidth, legitimate traffic and host diversity.

3.1 Topology
PAWS currently models the Internet at the Autonomous

System (AS) level, using the data from the Route Views
project [12] to reconstruct the Internet topology. The Route
Views project provides periodic snapshots of the BGP rout-
ing tables of a few participating ASes. We use the as path

information from these snapshots to infer connectivity and
relationships between ASes, and the ownership of IP address



ranges. The Route Views data set provides a limited pic-
ture of the Internet topology [25]. It may miss some backup
links because they are not used in best path selection, but
the reconstructed topology preserves many important prop-
erties of the real topology [25] and should contain majority
of links used by data traffic. The Route Views project pro-
vides daily routing table snapshots spanning almost nine
years. This enables us to reconstruct a realistic Internet
topology for the specific day of a given worm breakout, and
increases simulation fidelity.

3.2 Routing and forwarding
In addition to the topology, we must carefully reconstruct

Internet routing and forwarding, to obtain a complete and
correct Internet model. In our AS-level Internet model, each
AS is represented by a single router. PAWS infers the for-
warding table information for each router from the Route
Views data. We first derive a list of BGP atoms — these
are groups of prefixes that share the same AS path from
any source [26]. We then allocate one entry per atom in the
forwarding table of each simulated router, and populate the
entries using the following steps:

1. Populate forwarding tables of the ASes participating in
the RouteViews project with the next-hop information
specified in the as path fields.

2. Partially populate forwarding tables of ASes that do
not participate in the Route Views project, but appear
in as path fields of other participants. For example, if
AS 6 participates in Route Views project and reaches
destination X via ASes 7, 8, and 9, path 6-7-8-9 will
exist in BGP dump logs of AS 6. In step 1, we specify
7 as the next hop for AS 6 and destination X. In step 2
we will insert 8 as the next hop for AS 7 to X, 9 as the
next hop for AS 8 to X and will mark 9 as the origin
AS for X.

3. Populate remaining vacant entries by calculating short-
est path route on the AS map.

The current PAWS simulator uses static routing model. We
plan to implement dynamic routing response to congestion
as part of our future work.

A worm may generate scans to non-routable addresses,
i.e., to addresses that are not assigned to any AS. Since such
addresses will not have an entry in BGP routers’ forwarding
tables, they will be dropped by the first BGP router they
encounter. We simulate the non-routable scan drops at the
exit router of the AS containing the worm.

3.3 Link bandwidth model
Worm spread events produce a huge volume of probe traf-

fic, which frequently leads to serious network congestion. To
simulate this phenomenon, we need to model the limited
bandwidth of each inter-AS link. Although in reality, two
ASes may have multiple physical connections we simplify
this in our simulation by assuming a single limited-capacity
link between any two connected ASes.

We use the Pathneck [13] project’s data to guide our
choice of reasonable inter-AS link bandwidth values. Path-
neck project estimates the upper bound of the available
bandwidth on bottleneck inter-AS links, by sending a train
of packets on a path, and measuring packet inter-arrival
times at routers along the path. The measurement process

Cat. Percentage Bandwidth Link Type
1 95% 51.84 Mbps OC-1

5% 1244.16 Mbps OC-24
2 90% 51.84 Mbps OC-1

10% 9953.28 Mbps OC-192
3 80% 155.52 Mbps OC-3

5% 466.56 Mbps OC-9
15% 13271.04 Mbps OC-256

Table 1: Link bandwidths chosen in PAWS

has some limitations: (1) It provides only an instantaneous
sample of the upper bound of the available bandwidth. (2)
It can only estimate the upper bound for the links preced-
ing a bottleneck link and the lower bound of the available
bandwidth for links after the bottleneck. (3) Some links will
have no records in the Pathneck data as they have not been
traversed by a measurement train, while other links may
have multiple records due to multiple measurement trains
traversing different paths. Finally, we were able to obtain
only a single set of Pathneck samples, collected at the early
2004. This prevents time rollback for the links that we were
able to perform for the connectivity using Route Views data
for a chosen date. We are aware that these multiple limita-
tions compromise fidelity of the bandwidth values inferred
using the Pathneck data. Still, we believe that by providing
an upper bound and the distribution of the related, avail-
able bandwidth values, Pathneck data allows us to make
an informed guess about the distribution and the range of
reasonable link bandwidth values.

3.3.1 Grouping links based on the projected load

The first step in inferring the bandwidth value of each
link is grouping of similar links into categories. The group-
ing approach enables us to infer bandwidth values for links
that do not appear in the Pathneck data, using the data
for other links in the same category. Two links are con-
sidered similar if they have a similar expected traffic load,
which justifies the assignment of the same bandwidth value
to both links. We calculate a link’s expected traffic load
by following paths from each AS to all other ASes in our
topology, and summing the product of the source and the
destination IP size (number of IPs allocated to an AS) in
a score assigned to each traversed link. We call this score
the “IP product”; it represents the projected number of IP
pairs that can communicate over a given link and can be
interpreted as the indicator of the expected traffic load on
this link. For example, if AS A has 256 allocated addresses,
and AS B has 512 addresses, the IP product of all links on
the path from A to B will increase by 256 · 512 = 131, 072.

The main limitation of estimating a traffic load from the
IP product lies in the fact that many addresses assigned to
an AS may not be allocated to a live host, and the well-
known irregularity of host traffic patterns [28]. However,
in the absence of detailed information about Internet traffic
patterns and the address allocation to hosts, the IP product
enables us to make an informed guess about the magnitude
of the expected traffic load on each link.

We next observe the distribution of IP product values,
shown in the Figure 1(a) and derive three link categories:
links with a small demand (IPprod ≤ 1010), medium demand
(1010 < IPprod ≤ 1013), and large demand (IPprod > 1013).
We next separate the Pathneck samples into these three cat-



egories, and quantize the distribution of available bandwidth
(given by Pathneck data) in each category. The outcome
of this process are several quantiles for each category, and
the probability of drawing a sample randomly from a given
quantile. Figure 1(b) shows the distribution of the Pathneck
data in the category 3 and its quantization. Finally, we use
specifications of common connection speeds [27], and choose
the first higher connection speed (bandwidth) value for each
quantile. We then assign chosen bandwidth values to links
in the same category, based on the quantiles’ probabilities.
We list the bandwidth values and their probabilities for each
link category in the Table 1. For example, a link whose IP
product falls into category 3 will be an OC-3 link with the
probability 80%, the OC-9 link with the probability of 5%
or the OC-256 link with the probability of 15%.

3.3.2 Host access links

Another limiting factor affecting worm propagation is the
bandwidth of an infected host’s Internet access link. To
faithfully replicate the diversity of host connection speeds
(dial-up, DSL, cable, etc.) we retrieve host bandwidth dis-
tribution from the Annual Bandwidth Report [29], for a
chosen date. For example, for our Slammer simulation, de-
scribed in Section 7.2, we used the bandwidth distribution
data for work users in early 2003 to infer host access link
bandwidths. Since Slammer was targeting a vulnerability
in Microsoft’s SQL server, which is not commonly used by
home users, work user data was best suited for our purpose.
Half of the hosts in Slammer simulation are assigned a nar-
rowband T1 connection (3.152 Mbps), while the other half
have high-speed connections of 100 Mbps.

3.4 Simulating congestion on inter-AS links
For a link j with bandwidth yj , we represent the total

traffic at a time i (containing both the legitimate and the
worm traffic) on this link with xj(i). If xj(i) ≤ yj , then
all the traffic will be delivered to its destinations without
congestion drops. Otherwise we simulate the congestion on
this link, and each worm probe is forwarded over the link
with a probability of yj/xj(i). We call this probability the
pass ratio of the link.

We acknowledge that this congestion model is much sim-
pler than the real router’s behavior. For example, early
congestion notification mechanisms, such as RED [11], drop
traffic when utilization exceeds some threshold, whereas we
assume that all traffic can pass the link if link’s utilization
is below 100%. Further, excessive congestion on a link may
crash the router, denying service to all link’s traffic, whereas
we assume that the link will be fully utilized in this case,
while excess traffic will be dropped. PAWS could easily ac-
commodate different router models to provide more realistic
congestion simulation, but we lack detailed models of rout-
ing behavior under heavy load, and data about prevalence
of RED-like routers.

4. BACKGROUND TRAFFIC MODEL
In addition to the Internet-scale compromise of vulnera-

ble hosts, another serious threat of a worm spread is the
severe congestion created by fast worms. The legitimate
traffic suffers both because it loses competition for a lim-
ited bandwidth against more aggressive worm traffic, and
because it responds to congestion by lowering its sending
rate. A realistic worm spread simulation must reproduce

both the realistic legitimate traffic patterns and volumes on
each link, and the legitimate traffic’s congestion response.
Detailed congestion simulation further facilitates evaluation
of the legitimate traffic’s impairment due to a worm spread,
and the detection of bottlenecks in the Internet topology.

It would be infeasible to simulate all the Internet traffic
at the packet level. This simulation would require a huge
amount of memory and CPU resources, resulting in a long
execution time. On the other hand, even if the simulation
at such granularity were practical, we lack details needed to
replicate Internet communication patterns at the connection
level, such as link delays, frequency and length distributions
of various connections, and their packet rates, etc. For the
simulation of a worm spread and other unwanted traffic in-
cidents, we believe that it is sufficient to devise a model
that accurately captures the volume of traffic at each link
with and without the malicious event, and the congestion re-
sponse of the TCP traffic when its packets are dropped. In
PAWS we simulate the aggregate TCP traffic between each
pair of ASes, taking into account the fact that this traffic
is a mix of diverse connections, and simulating the connec-
tion diversity. We provide more details about the aggregate
traffic simulation in the following sections.

4.1 Legitimate communication patterns
According to [28], the incoming and outgoing traffic vol-

umes of the Internet ASes follow the Weibull(r, α, β) dis-
tribution, where r is the AS rank, according to traffic vol-
ume and α, β are the distribution’s parameters. We use
this traffic model in PAWS to determine the traffic offer
and demand between AS pairs. We first sort ASes based
on their IP size, and use this ranking as an input to the
Weibull(0.2, 1.5 × 106) distribution for the incoming traffic
generation, and the Weibull(0.25, 1.0×108) distribution for
the outgoing traffic generation. The output of this process
are two traffic arrays specifying the inflow and the outflow
for each AS. We next transform these arrays into traffic ma-
trices, that contain the sending rate between each pair of
ASes.

Because the Weibull distribution is dominated by a few
sources and destinations that account for majority of traf-
fic flows, we can omit the simulation of small senders and
receivers without jeopardizing fidelity. We only simulate
traffic aggregates larger that 1 Mbps, which comprise 90%
of all traffic generated by the Weibull distribution. PAWS
currently simulates static communication patterns, which
means that the desired sending rate between a given pair
of ASes is constant during the simulation, in the absence of
congestion.

4.2 Simulating legitimate TCP traffic
Statistics from the Internet backbone consistently show

that more than 90% of the Internet traffic uses the TCP
protocol [30]. We simulate only the TCP portion of the
background traffic in PAWS, and we reproduce two rele-
vant features of TCP connections that interact with the
worm spread: connection age/duration and the congestion
response at the traffic aggregate level.

4.2.1 Simulating TCP connections with different ages

In case of congestion, the starting time of a TCP con-
nection, its age and round-trip time have an impact on its
congestion response, because they determine the amount of



a. Link product values distribution b. Pathneck data distribution for link category 3

Figure 1: Grouping inter-AS links based on IP product values

Category Traffic percentage (tp) Connection age
c0 15% ≤3 seconds
c1 3% 3-6 seconds
c2 1% 6-9 seconds
c3 3% 9-12 seconds
c4 2% 12-15 seconds
c5 76% ≥15 seconds

Table 2: Distribution of connection ages

congestion memory that this connection will retain. Long-
lived connections have a higher chance to be impaired by
congestion, while short-lived ones may get “lucky” and com-
plete before the congestion builds up. Connections that start
before the congestion event achieve higher congestion win-
dow values, and are more competitive, than connections that
start with the small congestion window, during the conges-
tion event. If we periodically sample connection traffic in
some mix, connections of age y (that have started y sec-
onds ago) will retain congestion memory of y seconds. An-
other factor that influences a TCP connection’s congestion
response is the roundtrip time (RTT) which determines the
speed of the congestion feedback. Instead of replicating a
realistic RTT distribution in PAWS, we assume that each
connection’s retransmission timer starts at RTO = 3 s and
that each connection learns of and responds to the conges-
tion by the next 3s-interval. This is realistic, since the ma-
jority of RTT values observed in the Internet [31] fall well
bellow 1 s.

Our first step in faithfully replicating TCP traffic at the
aggregate level was to determine the distribution of connec-
tion age values in the Internet traffic, using public traffic
traces collected by the MAWI project [30]. These traces
contain 15-minute snapshots of traffic on the Internet back-
bone. We sample these connections each 3 seconds, and
for each connection whose SYN packet appears within the
trace, we measure the age as the time elapsed between this
SYN packet and the sampling event. We then quantize the
age space into six categories, shown in Table 2 and calculate
the percentage of traffic carried by connections in each age
category.

Table 2 shows the sample distribution of TCP connection
age, derived from MAWI traffic trace for January 2003, just
before the Slammer worm spread. We use this distribution
for simulation of the Slammer worm spread in section 7.2.

Based on our observation of MAWI traffic traces of differ-
ent dates, we find that the connection age distribution varies
trivially from day to day, but it changes noticeably from
year to year by more connections shifting into the long-age
(c5) category. We examined the connections in the long-age
category and concluded that the majority are generated by
HTTP and SMTP applications. Some connections are long
because they transfer a lot of data, while others are long
because they have a long RTT value.

4.2.2 Simulating TCP’s congestion response

Using congestion control [32], a TCP sender adaptively
adjusts its sending rate to transmit data reliably over an
unreliable network with time-varying bandwidth. In PAWS,
we simulate this adaptive rate mechanism not for each in-
dividual connection but for the total TCP traffic exchanged
between a pair of source and destination ASes — the TCP
aggregate. The congestion response will regulate the ag-
gregate’s sending rate, rather than the sending rate of each
individual connection.

When congestion occurs, a TCP sender learns about this
by detecting packet loss and reduces its sending window to
slow down the sending rate. This procedure continues un-
til either the congestion is mitigated or the sending window
reaches its minimum size. We replicate this response at the
aggregate level by dividing the traffic on a congested link
into six categories based on the connection age, shown in
the Table 2, and simulating the response of each category
to the congestion event separately because of their different
congestion memories. Observing a macroscopic TCP behav-
ior, if the competing malicious traffic consumes a portion of
the bottleneck link, the TCP traffic volume will be gradually
adjusted, over several RTT intervals, by the congestion con-
trol mechanism to fill the remaining bandwidth. When the
congestion is severe, all long-lived TCP connections will, af-
ter a brief period, reduce their sending rate to the minimum.
Due to the newly arriving connections, which comprise the
significant portion of the Internet’s traffic as shown in the



Table 2, the legitimate TCP traffic will never disappear from
the links, even if the worm scans create heavy congestion.
This is because new connections have no “congestion aware-
ness.” If established, they will send aggressively, using the
slow-start mechanism, until they learn about the first con-
gestion drop 3 s later.

Initially the traffic volume between each AS pair is de-
termined using the approach described in section 4.1. This
traffic volume, TV , is reported to all the links along the
routing path and recorded at each link. During the simula-
tion, if congestion occurs on a link at time i, this link will
report the congestion event and its current pass ratio to all
the source ASes whose traffic it carries. The source takes
the smallest pass ratio reported from all the links along the
routing path to some destination and uses it as its pass ra-
tio pi at time i for the traffic to this destination. pi is used
along with the connection’s congestion memory, to adjust
the source’s sending rate for the next iteration.

During each simulation iteration at time i, the source AS
originates some new connection traffic Ni, equal to TV · tp0,
where tp0 is the percentage of traffic in the new-connection
category c0. This traffic has no congestion memory and
thus is not affected by the current pass ratio pi but the
connection setup depends on the congestion situation in the
several previous simulation intervals, as shown in Equation
(1).

Ni = TV · tp0 ·
Y

j∈i−15s

pj (1)

Traffic belonging to old connections (categories c1—c5) is
affected by the current and some previous pass ratios. For
each specific category j of the old-connection traffic at time
i, the traffic volume Oj,i is computed based on its congestion
memory, which depends on its age.

Oj,i = TV · tpj ·
Y

k∈i−agej

pk, 1 ≤ j ≤ 5 (2)

where tpj is the percentage of traffic in the category cj and
Q

k∈i−agej
pk is the product of pass ratios reported during

the age of the connections in this category.
During the congestion, the traffic that fails to transmit

gets accumulated in the sender’s buffer and will be retrans-
mitted after the congestion ends. We keep track of this
traffic in the variable Ci for each time i and for each source,
and we assume that a sender has an infinite buffer. After
the congestion ends, the TCP sender retransmits the accu-
mulated traffic and sends the newly generated traffic. This
results in a sending rate higher than TV for an extended
period of time. The variable Wi in our simulation expresses
the retransmitted traffic volume at time i. Wi, as is shown in
Equation (3), increases linearly when there is no congestion
and decreases exponentially when congestion happens.

Wi+1 =

8

<

:

10, 000 i = 0
Wi + 10, 000 no congestion in ith interval
Wi/2 congestion in ith interval

(3)
The retransmission rate Ri at time i is calculated as the

minimum of retransmitted traffic Wi and the accumulated
dropped traffic Ci at that time: Ri = min(Wi, Ci).

The total sending rate Ti at time i between an AS pair is

the summation of the traffic sent from the new connections
Ni, the traffic sent from the old connections Oj,i,j = 1..5 and
the retransmitted traffic Ri: Ti = Ni +

P

j=1..5
Oj,i + Ri.

While it may seem that our TCP aggregate congestion
model assumes that TCP connections will receive conges-
tion notifications through timeouts, rather than through
triple-duplicate acknowledgments, we do not make such as-
sumption. Regardless of the congestion notification, highly
multiplexed TCP traffic will respond to congestion by first
reducing its aggregate sending rate to some level, and then
increasing it gradually to fill the remaining bandwidth. In
face of long-lasting congestion, such as occurs during worm
spread events, sending rate of long-lived connections will
reach the minimum after several RTT intervals, regardless
of the congestion notification approach, because congestion
drops occur in each interval. Thus, at the macroscopic level,
aggregate TCP traffic scales down to volume of newly es-
tablished connections in presence of long-lasting congestion,
and PAWS captures this effect. Our simplified aggregate
congestion response model would not be suitable for simu-
lation of short-lived congestion events.

To validate our TCP aggregate model, we simulate several
congestion scenarios in PAWS, and compare the results:

1. With the same scenarios replicated in the ns-2 [5] sim-
ulator, which models individual TCP connections and
performs packet-level simulation, and

2. With live traffic experiments reenacting the same sce-
narios in the Emulab [14] testbed.

For all the three experiments (PAWS, ns-2, Emulab), we
use the same topology shown in the figure 3. The bottle-
neck bandwidth is 1 Mbps and the legitimate TCP traffic
consumes 0.8 Mbps, i.e. the link utilization is 80% in ab-
sence of the attack. The legitimate traffic is a mix of many
TCP connections, whose traffic and duration follow the dis-
tribution from Table 2. During the experiment, we generate
UDP traffic between the UDP sender and the receiver, at a
high enough rate to create congestion on the bottleneck link.
We then compare the TCP congestion response between the
three tested systems. For brevity, we show here the results of
two traffic scenarios: one with a medium level of congestion,
with the UDP traffic rate of 0.5 Mbps, and the other with
a heavy congestion, and the UDP traffic rate of 1.5 Mbps.
The UDP traffic lasts for 300 seconds, and we run the exper-
iment for 2000 seconds to track the TCP recovery. Figure 2
shows the traffic at the bottleneck link for all three test set-
tings. The simulation result generated by PAWS matches
both the ns-2 and the Emulab experiments very well, for
the three distinct simulation periods: before, during and af-
ter the congestion event. While the topology and settings
used in these simulations are very simple, they illustrate
a representative case of the UDP worm propagation, which
competes for bandwidth with highly-multiplexed, legitimate
TCP traffic.

5. SIMULATION OF WORM PROPAGATION
We describe the models of relevant worm features in this

Section.

5.1 Vulnerable host model
A vulnerable host has a set of hardware and software fea-

tures that characterize its vulnerability and usefulness to



a. Forwarded TCP traffic (with 0.5Mbps attack) b. Forwarded UDP traffic (with 0.5Mbps attack)

c. Forwarded TCP traffic (with 1.5Mbps attack) d. Forwarded UDP traffic (with 1.5Mbps attack)

Figure 2: Simulation of the TCP traffic aggregate’s rate in presence of a mild and a strong congestion
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Figure 3: Topology used for the aggregate traffic

model validation

the attacker. This diversity and individual actions of each
host have to be reproduced for a high-fidelity worm sim-
ulation. We use an IP address to identify each vulnerable
host in PAWS, and associate a user-customizable data struc-
ture with each host, to record its features. The relevant
features affect worm propagation, such as the type of OS,
the applications running on this host, the amount of criti-
cal resources (CPU frequency, memory, network connection
speed, etc.), the presence of vulnerabilities that can be ex-
ploited by worms, etc. We also record a state of each host,
which includes its infection status (vulnerable, infected, scan-

ning, patched, etc.) and the infection statistics (e.g. how
many scans it has sent and how many new hosts have been
infected by this host).

5.1.1 Vulnerable host distribution

Many existing worm models and simulations make the
simplifying assumption that vulnerable population is uni-
formly distributed over the IP space. Still, the collected
data of high-profile worm spreads, such as Code Red and
Slammer, has indicated that the vulnerable hosts have a
highly non-uniform distribution [33], [34]. PAWS supports
both the uniform and the non-uniform vulnerable host dis-
tribution models, by defining a vulnerable ratio for each AS
or subnet and initializing it according to a distribution cho-
sen from the following options:

1. Uniform: Each AS has the same vulnerable ratio.

2. Log-normal: Rajab et al. have found that the vul-
nerable host distribution in the Internet fits a log-
normal distribution with different parameters for dif-
ferent vulnerabilities [36]. PAWS simulates this dis-
tribution by drawing the vulnerable ratios of different
ASes/subnets from a log-normal distribution.

3. Other non-uniform distributions: PAWS can apply vul-
nerable ratios at different granularities, i.e., at an AS,



a BGP atom or an IP range level. If a priori knowledge
exists of the distribution of vulnerable hosts for a spe-
cific worm, PAWS supports loading this information
for each entity from a properly formatted file. This fa-
cilitates use of PAWS for simulation of any empirical
distribution of vulnerable hosts, e.g., [37].

5.2 Worm model
A worm model defines worm scanning and infection strat-

egy, including the delay between a vulnerable host scan and
the infection completion.

TCP worms scan vulnerable hosts by initiating a TCP
connection with each scanned address, via a TCP-SYN packet
sent by a worm thread. Since TCP-SYN packets are small
(40 B), a TCP worm seldom consumes much bandwidth and
does not cause serious congestion. If a destination does not
respond to a SYN packet, it will be retransmitted after a
timeout of RTO seconds, where RTO value differs between
TCP connections. After three unsuccessful retransmissions,
each occurring after a multiplicatively increased RTO in-
terval, a sender will usually give up its connection attempt.
PAWS simulates this mechanism by buffering the destina-
tion address of each worm scan that is not delivered to a vul-
nerable destination, and maintaining a timer for this scan,
initialized to a default RTO value of 3 s. The scans are re-
sent after the timer expires, up to 3 times, and the timer is
doubled after each unsuccessful attempt. The scanning rate
of each host depends on the number of threads that can be
simultaneously created by this host, which is defined by a
host’s OS type and version. This effect can be simulated by
defining a host’s OS type and version, in the set of relevant
host features, and drawing the values for these parameters
randomly from some measured or assumed real-world distri-
bution.

UDP worms send their payload and the scan usually bun-
dled in a single probe, and do not retransmit failed scans.
The limiting factor of the worm scanning speed is the host’s
access link bandwidth and the available bandwidth en route
to the destination.

5.3 Worm scan model
Large worm spread events observed in the Internet have

used various scanning strategies. In addition to this, many
researchers have proposed hypothetical scanning strategies
that would result in much faster than observed worm prop-
agation [1],[38],[39],[37].

5.3.1 Scanning strategies

PAWS simulates uniform scanning by having each sim-
ulated host randomly generate a 4-byte address for each
scan. IP address can also be generated based on the host’s
address or according to some specified distribution, which
facilitates simulation of subnet scanning worms, like Code
Red II [33]. PAWS’ modular design allows for an easy ex-
tension to integrate new scanning strategies such as hitlist
scanning, routable address scanning, etc.

5.3.2 Worm scan simulation

The simulation of worm spread on PAWS is a time-discrete
procedure. During every time unit, currently set to 1 s,
each infected host generates a list of target addresses and
sends scans to them. Each worm scan is time-stamped
and buffered as an event. At the end of the time unit, all

the events are carried out simultaneously and all vulnerable
hosts that are scanned become infected. To enhance simu-
lation speed, only scans to vulnerable but not yet infected
hosts are delivered to the destinations. Scans to invulner-
able or infected hosts are not sent, but their effects (e.g.
consumption of host resources and link bandwidth) are ac-
counted for.

6. PAWS IMPLEMENTATION ON EMULAB
PAWS can run on any group of networked PCs. To make

PAWS easily accessible to other researchers, we implement it
on the shared Emulab testbed [14]. While the PAWS simu-
lation code can run on any machine with a Standard C com-
piler, we customized our setup scripts and data structures
for the Emulab environment. To maximize simulation per-
formance, we currently use Emulab machines with the high-
est CPU rate with 3GHz, 64-bit Xeon processors, 800MHz
FSB and 2GB, 400 MHz RAM. One simulation node is des-
ignated as a master, which synchronizes the simulation and
controls the slave nodes that carry out the simulation tasks.
A 100Mbps LAN is used to connect all the simulation ma-
chines, with the latency and the loss rate both set to zero.

6.1 Sharing the simulation load
To balance the workload on the simulation nodes and min-

imize inter-machine communication, we apply a heuristic to
distribute the AS-level Internet topology among multiple
machines with two goals: (1) The number of the vulnerable
hosts simulated by each node is roughly the same. This re-
quirement balances the processing load of each machine. (2)
Each machine is assigned a connected portion of the Inter-
net AS map. This requirement minimizes the inter-machine
communication as many worm packets and legitimate flows
can be simulated with internal function calls. A simulator
node only simulates the propagation of worm traffic within
its own portion of the Internet, and then delivers partially
processed traffic to the simulation node responsible for its
next hop, using network communication at the end of each
simulation interval. We also distribute the forwarding tables
across the simulation machines, so that each machine stores
only the tables for the ASes it simulates and thus minimizes
its memory requirements.

6.2 Inter-node communication
PAWS simulator nodes communicate with each other in

two ways: (1) We use the shared NFS directory in the Em-
ulab, to initialize each simulation node with the worm spec-
ification, and its portion of the Internet topology and for-
warding data. (2) Simulator nodes use stream sockets to
exchange simulated traffic at the end of each time unit, and
to report the worm propagation status. The sockets are set
up between each pair of the simulation nodes, during the
initialization stage.

6.3 Time unit scaling
A significant portion of the simulation time is used for

the inter-machine communication, to synchronize machines
at the end of each time unit. To reduce this overhead, PAWS
deploys a dynamic communication interval, whose value is
adjusted based on the dynamics of the simulated event. We
call this approach “time unit scaling.”

In case of a worm spread, communication interval is set
to a reasonably high value (20 seconds) at the early and the
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Figure 4: Simulation of Code Red v2

final stages of the worm propagation, when the successful
infections are a few and the loss of fidelity is small if we
skip a few synchronization points. The interval is decreased
when the infection rate increases. The Equation (4) shows
how PAWS calculates the current communication interval
Ci at time i, where N is the size of the vulnerable popu-
lation, Mi−1 is the number of newly infected hosts during
the previous time interval i − 1, and s is a scaling factor
(currently set at 1000).

Ci =

‰

N

s · Mi−1

ı

, 1 ≤ Ci ≤ 20 (4)

7. SIMULATION OF WORM EVENTS
To validate PAWS simulation of worm spread events, we

simulate two well-known events: Code Red v2 on July 19,
2001 [33] and SQL Slammer on January 25, 2003 [34].

7.1 Simulation of Code Red v2
During the outbreak of Code Red v2 worm, more than

359,000 infected hosts were observed by CAIDA [33]. In the
simulation, we set the vulnerable population N = 360, 000.
The distribution of vulnerable hosts follows log−normal(6, 4)
distribution among ASes. Each infected host tries to infect
a different list of randomly generated IP addresses at a peak
rate of 11 probes per second. Initially, there are 2 infected
hosts when simulation starts. We reproduce AS-level Inter-
net topology from July 19, 2001 at 10 am in this simulation.
To faithfully replicate the worm propagation event, we also
consider the deactivation of the infected hosts, reported in
[33]. Such deactivation happens when a previously infected
host stops sending out scans, possibly because it was patched
or disconnected from the network. Deactivation starts after
the 14th hour of worm outbreak. Figure 4(a) shows our
simulation results compared with the CAIDA’s observation
of the real worm propagation in the Internet [33]. We re-
trieve the real worm data from the CAIDA’s animation of
the geographic spread of Code Red, in five minute intervals
[43]. Worm behavior in PAWS simulation exactly matches
the Code Red v2 spread in the real Internet. In Figure 4(b)
we show the deactivation rate used by PAWS (red circles)
compared to the observed deactivation rate reported in [33]
(lines).

7.2 Simulation of SQL Slammer
SQL Slammer [34] propagated on January 25, 2003, start-

ing from 5:30 am UTC and infected more than 90% of the
vulnerable hosts within 10 minutes. Totally at least 75,000
hosts were infected and a large portion of the Internet was
congested by worm probes.

In this experiment, we simulate the Slammer spread with
a vulnerable population of 75,000 hosts. These vulnerable
hosts are distributed among ASes using the log−normal(6, 4)
distribution. Slammer worm probes were carried by the User
Diagram Protocol (UDP), which facilitated its high scanning
speed. The largest scanning rate of an infected host is re-
stricted at 26,000 scans per second, as observed by Moore et
al. [34], and is further limited by the limited bandwidths of
the inter-AS links and the hosts’ access links. We initialize
host access link bandwidths using the Annual Bandwidth
Report for 2003 [29]. According to the worm code analysis
[34], there are two flaws in Slammer’s random-number gen-
erator, which reduce the quality of scan distribution because
all the scanned addresses from any worm instance share the
same two bits. In PAWS experiment, we simulate this worm
flaw by restricting each worm’s scan space to 230 addresses,
instead of 232 addressees.

Figure 5 shows our simulation result, compared with the
Slammer’s propagation as observed at the University of Wis-
consin’s tarpit network [44] and scaled to the whole Internet.
Since this measurement only captured successfully received
scans, we compare its results with the successfully received
scans in the PAWS simulation, in the Figure 5(a). Our
simulation matches well the total number of scans observed
during the propagation. We also show the observed and
simulated per-worm scanning rate in the Figure 5(b). The
scanning rate per worm first increases sharply, and then falls
slowly to a flat horizontal line around 1,000 scans per sec-
ond. This can be interpreted as follows: Initially there are
only a few infected hosts that send out scans as fast as their
Internet connections allow. This leads to the high initial
per-worm scanning rate, especially if the early infected hosts
have a high-speed Internet connection. As spread continues
and the congestion builds up, many worm scans get dropped
while the number of infected hosts increases. Jointly, this
leads to a slow decline of the per-worm scanning rate. This
effect cannot be observed using mathematical worm spread
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Figure 5: Simulation of SQL Slammer propagation

models or using simulations that do not replicate limited In-
ternet link bandwidths. The simulated per-worm scanning
rate matches the dynamics of the observed rate, but the peak
heights are lower than the observed ones. We attribute this
to the real worm compromising several well-connected hosts
in its early propagation, that account for the observed scan-
ning rate peaks. Since we randomly assign host access link
speeds from a uniform distribution, we do not observe this
event in the simulation.

7.3 Realistic model’s influence on worm
simulation fidelity

PAWS strives to replicate many realistic Internet features
to increase the fidelity of the worm spread simulation. In
this section we demonstrate how a failure to simulate these
features compromises simulation fidelity. We compare the
results of the PAWS Slammer simulation, from the previous
section, with a PAWS simulation that applies one of the
following assumptions and simplifications that are widely
used in worm research:

1. Infinite bandwidth of Internet links: there is no limit
on the inter-AS link capacity and no congestion oc-
curs. Each infected host can send out scans at the
maximum rate of 4,000 per second. This was the aver-
age observed scanning rate during the real event [33].

2. Infinite bandwidth of host access links: each infected
host scans at 4,000 scans per second.

3. Uniform distribution of vulnerable hosts: the vulnera-
ble hosts are evenly distributed in the IP address space,
they scan at 26,000 scans per second.

4. No simulation of the legitimate traffic: the background
traffic and its interaction with the worm spread is not
simulated, but the worm scans are dropped when they
exhaust limited access and Internet link bandwidth.
Infected hosts scan at 26,000 scans per second.

We present the results in Figure 6. The infinite link band-
width assumption leads to a very fast spread, almost five
times faster than observed, even though we use more than
six times lower scanning rate. The infinite access link band-
width results in a slower spread; this is the effect both of
the lower-than-observed scanning rate and the congestion

build-up at the inter-AS links. The uniform distribution of
vulnerable hosts speeds up the spread almost twice, as com-
pared to the non-uniform distribution and using the same
scanning rate. This speedup occurs because each scan has a
higher chance of leading to a successful infection. The legit-
imate traffic simulation only slows down the worm propaga-
tion in the early stages, when the volume of the legitimate
traffic is comparable to the worm scan traffic and it can
fairly compete for the limited bandwidth. While the worm
spread dynamics is not significantly affected by the legiti-
mate traffic simulation, we believe that this simulation is
important to understand the damage inflicted by the worm
spread to the Internet users.

Figure 6: Simulation of the Slammer spread with

different simplifications

8. PAWS PERFORMANCE
Two major PAWS’s activities during worm simulation are

the processing of the worm scans and the simulation syn-
chronization via network communication. Worm scan pro-
cessing encompasses the operation of sending a worm scan
from each infected host, traversing the routing path of this
scan hop by hop, and receiving this scan on the target host.
This is the major task of the PAWS simulator and it con-
sumes most of the CPU time. In the simulations with a



higher number of vulnerable hosts or higher scanning rate,
PAWS spends more time on scan processing. Simulation
synchronization includes the transfer of worm scans and
worm spread reports among simulation nodes, and intro-
duces synchronization delay. As there are more scans in
the simulation, this communication overhead grows. Since
PAWS uses distributed simulation we can reduce the over-
all processing time by engaging more simulation nodes and
thus lowering the simulation demand on each CPU, but this
increases synchronization overhead. Time unit scaling, de-
scribed in Section 6.3 can help us amortize the effect of the
increased synchronization overhead, while benefiting from a
faster simulation when we engage more simulation nodes.

We illustrate the effect of the simulation distribution on
the execution speed, by running the Slammer spread sim-
ulation using different numbers of simulation nodes. For
each experiment, we measure execution time (with time unit
scaling) and the average PTS (simulated packet transmis-
sions per second) for the first 5 minutes of worm spread and
present them in the Figure 7. We see that the simulation
time declines as more machines are used for simulation. This
decline is fast at first, as the processing load is being shared,
but then it slows down because the communication overhead
increases. The average PTS grows almost linearly with the
simulation distribution. We note that our simulation speed
of 5M PTS with four common PCs is comparable to the
reported 5.5M PTS achievable by PDNS and GTNetS on
a dedicated 136-CPU cluster [24]. We achieve comparable
performance with much fewer machines because we aggre-
gate scan transmissions in one time unit and simulate them
together, unlike PDNS and GTNetS that simulate each scan
separately.

Finally, we investigate the effect of the time unit scal-
ing, described in the Section 6.3 on simulation fidelity. In
the Figure 8 we depict the number of infected hosts during
the Slammer worm propagation, with and without time unit
scaling. We observe that the dynamics curves look very sim-
ilar and that the curve with scaling is slightly faster than
the curve without scaling, because it misses some synchro-
nization events and overestimates the speed of the worm
infection. This difference, however, is very small and does
not affect the overall spread dynamics, while the simulation
with scaling is more than four times faster than that without
scaling.

9. CONCLUSIONS
We present the design and implementation of a distributed

worm simulator, PAWS, that replicates a realistic Inter-
net environment and its interaction with a simulated worm.
This detailed and realistic Internet simulation leads to high-
fidelity reconstruction of the worm spread events. By using
PAWS, researchers can investigate congestion effects of In-
ternet worm spread and its interactions with the background
traffic. PAWS further supports various user-customizable
parameters that can be specified for each simulated host,
which facilitates testing of different host and network diver-
sity models, worm scanning strategies and Internet topolo-
gies. Our simulation results of the propagation of Code Red
and Slammer validate the correctness of PAWS, and support
our claim for faithful simulation of complex Internet-scale
events.

In our future work, we plan to extend PAWS for simula-
tion of other Internet-scale events, like distributed denial-of-

Figure 7: PAWS performance with different number

of simulation nodes

Figure 8: Number of infected hosts with and with-

out time unit scaling

service (DDoS) attacks, flash-crowd events, botnet recruit-
ment and organization, spam, etc. We also plan to improve
our Internet model with more realistic data and dynamics,
such as the simulation of the routing dynamics and routing
interaction with the congestion events, and the simulation
of the time-variable traffic demand and offer between the AS
pairs.
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