
A Realistic Study on Multithreaded Superscalar Processor Design
Yuan C. Chou, Daniel P. Siewiorek, and John Paul Shen

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.
{ yuanchou,siewiorek, shen } @ ece.cmu.edu

Abstract. Simultaneous multithreading is a recently proposed technique in
which instructions from multiple threads are dispatched and/or issued concur-
rently in every clock cycle. This technique has been claimed to improve the
latency of multithreaded programs and the throughput of multiprogrammed
workloads with a minimal increase in hardware complexity. This paper presents
a realistic study on the case for simultaneous multithreading by using extensive
simulations to determine balanced configurations of a multithreaded version of
the PowerPC 620, measuring their performance on multithreaded benchmarks
written using the commercial P Threads API, and estimating their hardware
complexity in terms of increases in die area. Our results show that a balanced 2-
threaded 620 achieves a 41.6% to 71.3% speedup over the original 620 on five
multithreaded benchmarks with an estimated 36.4% increase in die area and no
impact on single thread performance. The balanced 4-threaded 620 achieves a
46.9% to 111.6% speedup over the original 620 with an estimated 70.4%
increase in die area and a detrimental impact on single thread performance.

1 Introduction
Simultaneous multithreading is a recently proposed technique in which

instructions from multiple threads are dispatched and/or issued concurrently in every
clock cycle. To aggressively exploit instruction-level parallelism on a wide-issue
superscalar, a large number of functional units are necessary to achieve good perfor-
mance even though the average utilization of most of the functional units is low. This
is due to the unsmooth parallelism profile of most programs. By executing instructions
from multiple threads concurrently, simultaneous multithreading has the potential
effect of smoothing the aggregate parallelism profile and thereby making better use of
the functional units to improve the latency of a multithreaded program or the through-
put of a multiprogrammed workload, making it an attractive microarchitectural tech-
nique.

Recent studies in simultaneous multithreading [9, 10] have demonstrated an
average throughput of 5.4 instructions per cycle (IPC) on a suite of multiprogrammed
workloads each comprising of 8 SPEC benchmarks. While these results are very prom-
ising, the chosen workloads may not be very representative of realistic environments.
Other studies [6, 7, 8, 14] have demonstrated the potential of simultaneous multi-
threading on multithreaded applications. However, these research have assumed the
use of a custom threading paradigm. We believe that for simultaneous multithreading
to be widely adopted in industry, it must be able to take advantage of the multithreaded
programs that have been written for symmetric multiprocessors (SMPs). These pro-
grams are usually written in a threads package supported by the operating system. Cur-
rent operating systems such as OSF/1, Mach, Solaris, AIX, Windows NT and

1093

Windows 95 all support multithreading and provide programmers with threads appli-
cation programming interfaces (APIs).

This paper attempts to present a more realistic examination of the case for
simultaneous multithreading by evaluating the performance of realistic simultaneous
multithreaded superscalar processor models on multithreaded applications written
using a commercial threads API and estimating the complexity required to implement
these processors in terms of die area. Towards this end, we choose a real superscalar
processor, the PowerPC 620 [1], as the baseline microarchitecture, and the IBM AIX
4.1 P Threads API, which is based on the emerging POSIX 1003.1c industry standard
for a portable user threads API, as the threads API for creating our multithreaded
applications. In the course of our study, we also attempt to understand the bottlenecks
of a realistic simultaneous multithreaded processor and answer questions such as the
number of threads the processor should support, the fetch and dispatch strategy the
processor should employ and the functional unit mix the processor should adopt in
order to achieve an efficient and balanced design. This is in contrast to previous studies
in which execution resources are predetermined (usually arbitrarily expanded from a
non-multithreaded design) before support for simultaneous multithreading is added to
this baseline processor.

The rest of this paper is organized as follows. Section 2 gives an overview of
the methodology employed in this research, as well as a description of the simulation
environment and the benchmarks used. Section 3 describes the PowerPC 620 and the
parameters studied in designing a balanced multithreaded 620. Section 4 presents the
effects of varying these parameters and the resulting configurations of balanced multi-
threaded 620s while Section 5 presents an estimation of the extra complexity required
to implement these processors. Section 6 briefly mentions related work. Finally, Sec-
tion 7 concludes thispaper.

2 M e t h o d o l o g y

To evaluate the performance of simultaneous multithreaded superscalar pro-
cessor models, we first identify the resources of the baseline PowerPC 620 that have to
be replicated or modified in order to support simultaneous multithreading, and we also
identify the major parameters that affect the performance of the multithreaded proces-
sor. The PowerPC 620 is chosen as the baseline microarchitecture because it represents
the current state-of-the-art in superscalar processor design and because we already
have a cycle-accurate trace-driven simulator for this microarchitecture [2]. Simulations
are then performed using five multithreaded benchmarks written using the IBM AIX
4.1 P Threads API and based on the simulation results, we identify balanced configura-
tions of the multithreaded processors.

2.1 Simulation Environment
We modified the original PowerPC 620 simulator to incorporate the addi-

tional features required to support simultaneous multithreading. In addition, we also
developed a tool that automatically generates PowerPC traces from multithreaded C/
C++ programs written using the IBM AIX 4.1 P Threads API. This trace generation
tool works by instrumenting the assembly files of the original C/C++ multithreaded
program. In addition to generating the instruction and data traces, it also generates

1094

additional thread synchronization information that is used by the simulator to ensure
that the synchronization structure of the original multithreaded program is preserved
during simulation.

2.2 Benchmarks
Five multithreaded benchmarks representing CAD, multimedia and scientific

applications are used in the simulations. We believe that these applications are realistic
workloads for current and future high performance computers and therefore are good
target applications for simultaneous multithreaded processors. The first three are inte-
ger benchmarks while the last two are floating-point benchmarks. All benchmarks are
simulated till completion. These benchmarks are briefly described in Table 1.

TABLE 1. Description of benchmarks.

Dynamic
Benchmark Description Inst Count

Router

MPEG

Matrix Multiply

FFT

LU

Multithreaded version of ANAGRAM n [3].

Parallel decoding of four MPEG-1 video streams.

Parallel integer matrix multiply [4].

P Threads implementation of SPLASH-2 [5] FFr.

P Threads implementation of SPLASH-2 [5] LU.

14.1M

26.4 M

5.1M

22.9 M

16.6 M

3 The Multithreaded PowerPC 620
The PowerPC 620 [1,2] is used as the baseline processor in developing our

simultaneously multithreaded processor models.

3.1 Replicated Resources
In the P Threads API, a thread is defined as a basic unit of CPU utilization

that consists of a program counter, a register set, and a stack space, that shares its
address space with other peer threads. To allow instructions from multiple threads to
exist in the processor at the same time, the program counter, the GPR and FPR files,
the Condition Register (CR), the Link Register as well as its Link Register Stack and
Shadow Link Registers, the Count Register as well as its Shadow Count Register are
replicated. To simplify branch misprediction and exception recovery, the reorder buffer
is also replicated.

Although the GPR, FPR and CR rename buffers can be shared among
threads, this will result in a multiplicative increase in the number of read and write
ports to these buffers which can seriously impact machine cycle time. Therefore, we
choose to replicate these rename buffers rather than to share them among threads.

Depending on the instruction fetch strategy employed, the number of instruc-
tion cache ports may or may not need to be increased. The instruction queue can be
replicated or shared among threads. We choose to replicate it because it reduces the
complexity of the dispatch mechanism.
3.2 Shared Resources

The functional units and their reservation stations are shared by all threads, as

1095

are the instruction and data caches and their memory management units. The bus inter-
face unit and the L2 cache interface are also shared by all threads. Since all threads
share the same code section, the branch target address cache (BTAC) is shared. We
also choose to share the branch history table (BHT). In Section 4.5, we show that
simultaneous multithreading has little impact on the hit rates of the shared caches and
the prediction accuracy of the BHT.

3.3 Va r i ab l e Parameters
Having identified the replicated and shared resources, we identify four major

parameters that can be varied to achieve a balanced multithreaded 620. They are: 1)
the number of threads supported, 2) the instruction fetch strategy and bandwidth, 3) the
instruction dispatch strategy and bandwidth, and 4) the functional unit mix. The effects
of varying these parameters are presented in the next section.

4 Experimental Results
In order to prune the design space to a manageable size (which is necessary

since each simulation run takes about 2 days to complete on our fastest CPUs), we
adopted the following design space exploration methodology. We first examine the
effects of different fetch and dispatch strategies while assuming an expanded func-
tional unit mix, and we select combinations that provide good cost-performance trade-
offs. Next, assuming these selected instruction fetch and dispatch strategies, we gradu-
ally scale back the functional unit mix, eliminating those units that do not contribute to
better performance. As the number of instructions executed by each benchmark
remains constant for all processor configurations, the results are presented in terms of
the average number of instructions completed per cycle (IPC). We do not attempt to
quantify the impact of our microarchitectural changes and additions on machine cycle
time. In all the tables presented in this section, the numbers shown are IPC numbers.
"IT" means that configuration supports one thread (i.e. it is non-multithreaded) while
"2T" and "4T" represent configurations that support two and four threads respectively.

4.1 Number of Threads
In Section 3.1, the resources that have to be replicated for each thread sup-

ported by the processor are described. In addition, the number of threads supported
also has a direct impact on the number of buses connecting the functional units to the
rename buffers and reorder buffers. Moreover, since the main advantage of a multi-
threaded processor over a multiprocessor is its ability to share functional units to
reduce the amount of resources required to achieve the same performance level,
increasing the number of threads supported increases the number of replicated
resources relative to the number of shared resources, thus diminishing this advantage.
For this reason, in our study, we only consider supporting two threads and four threads.
The one threaded case is included for comparison purposes.

4.2 Fetch and Dispatch
The number of threads from which instructions are fetched in each cycle (F)

can be varied, from fetching from one thread to fetching from all threads. Although the
number of instructions fetched from a thread can also be varied, we choose to retain
the 620's design of fetching at most four instructions per thread. To fetch from multiple

1096

threads in each cycle, we model the instruction cache as being multi-ported. In terms
of dispatch strategy, we assume that instructions are dispatched from all threads in
every cycle and we vary the number of instructions dispatched from each thread per
cycle (D).

TABLE 2. Functional unit configuration of the baseline 620.

#Reservation Issue
Functional Unit Type #Units Station Entries Latency

Single-Cycle Integer Unit (SCIU)
Multi-Cycle Integer Unit (MCIU)

Floating Point Unit (FPU)

Load/Store Unit (LSU)
Branch Unit (BRU)

1

3-8 (multiply)
37 (divide)

1 (multiply-add)
18 (divide)

22 (square root)
1

The functional unit mix of the original 620 is shown in Table 2. In studying
the effects of our fetch and dispatch combinations, we double the number of SCIUs,
MCIUs and FPUs, and we add a second execution pipeline to both the LSU and the
BRU. Since simultaneous multithreading increases the dispatch rate, we double the
number of reservation station entries of each functional unit. The number of SCIUs,
MCIUs, and FPUs can easily be increased but not the LSU. This is because of the cost
and complexity of having multiple data cache ports and because of the complexity of
the 620's alias detection mechanism (the 620 allows loads and stores to execute out-of-
order). The second execution pipeline allows up to two loads or two stores to be issued
and executed in every cycle. In the enhanced BRU, the two execution pipelines share a
common reservation station. Within a thread, branch instructions are issued in-order.

TABLE 3. Effects of varying instruction fetch and dispatch strategy (IPC).

Matrix
Router MPEG Multiply FFI" LU

<F,D> IT 2T 4T IT 2T 4T 1T I 2T 4T IT [2T 4T IT 2T 4T
i i

,~ ~ ~ d <1,2> 1.80 1.95! ~ ! 2 . 5 4 2,99 1.63 1.81 ~ 1 . 7 3 i2.04 ~ ~ 175 1.8o

<t,8> 1.3'0 1.93 ~ 1,89 2.66 ~ 1.20 1 ~ 1 " 6 1 1.18 I].76 ~ ! 1.11 1.76
<2,2> ~ t.83 2.19 ~ 2.63 3.60 ~ 1 . 6 2 LS01~] .76 iZ .Z5 ~ 176 1.96
<2,4> ~ I.97 2.26 ~z.g13.69 ~I.tI t.771~1'TS~Z.27 ~l.771,97
<2,8> ~ 1.97 ~ ~ 2.93 ~ 1.61 ~ 1 1.80 ~ ~ 1.78

2.24 ® .26 1.,7
<4,4> 2.32 .73 2.2 1.97

F = number of threads instructions are fetched from in every cycle
D = number of instructions dispatched per thread in every cycle

1097

Table 3 shows the effects of the various fetch and dispatch combinations on
the performance of the multithreaded 620. For the 2T processor, fetching from two
threads in every cycle and dispatching 4 instructions/thread (<F, D> = <2, 4>) is a
good trade-off. For the 4T processor, if the total dispatch bandwidth is limited to 8
instructions/cycle (i.e. dispatch 2 instructions/thread/cycle), fetching from 2 threads/
cycle almost matches the performance of fetching from 4 threads/cycle except on the
Router benchmark. Increasing the total dispatch bandwidth to 16 instructions/cycle
results in a moderate performance gain on the Router and MPEG benchmarks. How-
ever, dispatching 16 instructions/cycle may be unrealistic given current technology.
Therefore, we conclude that for the 4T processor, fetching f rom two threads every
cycle and dispatching 2 instructions/thread (<F, D> = <2, 2>) is a good trade-off.
Finally, we note that dispatching 8 instructions/thread/cycle for both the 1T and 2T
processors results in little performance gain because we limit the fetch bandwidth to 4
instructions/thread. Fetching more than 4 instructions/thread may require fetching
from multiple cache lines (since the typical basic block length is 4-5 instructions for
integer programs), thus demanding more sophisticated fetching mechanisms [15].

4.3 Functional unit Mix
In our study of instruction fetch and dispatch strategies, we have deliberately

assumed a rich functional unit mix. However, not every one of the functional units may
be well utilized and the number of functional units may possibly be scaled back with
little or no sacrifice in performance.

Table 4 shows the effects of scaling back the number of functional units. Case
A is the expanded functional unit mix assumed earlier. In Cases B and C, we scale
back the number of SCIUs by one and two units respectively. In Cases D and E, we
remove the second MCIU and the second FPU respectively. In Case F, we remove the
second LSU execution pipeline, while in Case G, we remove the second BRU execu-
tion pipeline. Examining this table, we observe that for both the 2T and the 4T proces-
sors, removing the second LSU execution pipeline and removing two SCIUs each
results in significant performance degradation, while eliminating the second BRU exe-
cution pipeline has little impact on performance. Eliminating the second MCIU only
degrades the performance of the 4T processor on the Matrix Multiply benchmark.
Removing the second FPU degrades the performance of both the 2T and the 4T pro-
cessors on the FFT benchmark by less than 4%. Since a FPU is expensive to imple-
ment (see Table 6), the second FPU is difficult to justify.

Based on these observations, in Case H (<S, M, E L, B> = <3, 1, 1, 2, 1>), we
eliminated the second MCIU, the second BRU execution pipeline, the second FPU as
well as the fourth SCIU, resulting in a functional unit mix that is a good trade-off for
both the 2T and the 4T processors. For comparison purposes, in Case I, we set the
functional unit mix and number of reservation entries to that of the original 620. The
performance of the 2T and 4T processors are much lower than in Case H, indicating
that the functional unit mix and reservation station entries of the original 620 must be
suitably enriched for simultaneous multithreading to be effective. At this point, we
make two observations. First, among functional units, the LSU is a bottleneck in the
multithreaded processors. In fact, when the rich functional unit mix of Case A is

1098

assumed, our simulation statistics show that the dual execution pipeline LSU is the
most saturated functional unit of both the 2T and 4T processors. Second, in addition to
the second LSU execution pipeline, only an additional SCIU need to be added to the
functional unit mix of the 620 for effective multithreading. This indicates that simulta-
neous multithreading is making more efficient use of the execution resources due to
the smoothing of the aggregate parallelism profile.

TABLE 4. Effects of varying functional unit mix (IPC).

Case

<S, M, F, L, B>

A <4, 2, 2, 2, 2>

B <3, 2, 2, Z 2>

C <2, 2, 2, 2, 2>

D <4, 1, 2. 2, 2>

E <4, 2, 1.2, 2>

F <4, 2, 2, I, 2>

G <4, 2, 2, 2, 1>

t t<3, 1, 1,2, 1>

I Original 620

R o u t e r

IT 2T 4T

1.29 1.97 2.19

! 1.29 1.96 2.19

1.29 1.92 2.16

1.29 1.96 2.19

1.29 1.96 2.19

1.24 1.86 2.04

1.28 1.96 2.19

1.28 I 1.95 2.19

1.20 t 1.77 1.82

MPEG

IT 2T 4T

1.89 2.91 3.60

1.88 2.86 3.58

1.84 2.63 3.09

1.87 2.89 3.58

1.89 2.91 3.60

1.77 2.69 3.24

1.87 2.86 3.56

1.85 2.81 3.47

1.64 2.24 2.67

Matrix
Multiply

IT 2T 4T

1.19 1.60 1.80

1.19 1.61 1.82

1.19 1.61 1.80

1.19 1.60 1.65

1.19 1.61 1.80

1.13 1.59 1.66

1.19 1.61 1.82

1.19 1.60 1.66

1.16 1.57 1.64

FI~T

IT 2T 4T

1.18 1.78 2.25

1.18 1.78 2.24

1.17 1.75 2.21

1.18 1.78 2.25

1.14 1.72 2.17

1.15 1.72 2.12

1.18 1.78 2.25

1.14 1.72 2.18

1.08 1.51 2.00

LU

1T 2'1" 4T

1.11 1.77 1.96

1.I1 1.78 1.96

1.11 1.78 1.94

1.10 1.76 1.95

1.11 1.78 1.92

1.07 1.57 1.62

1.11 1.76 1.96

1.10 1.75 1.92

1.06 1.55 1.52

<S, M, E L, B> = <#SCIUs, #MCIUs, #FPUs, #LSU pipelines, #BRU pipel ines>

4.4 Comparison of Multithreaded 620 vs. Original 620

To evaluate the effectiveness of simultaneous multithreading, the perfor-
mance of the balanced multithreaded 620s is compared to that of the original 620. The
balanced 2-threaded (2T) 620 fetches instructions from both threads in every cycle,
dispatches and completes up to four instructions per thread per cycle (<F, D> = <2,
4>). In addition to the baseline 620's functional unit mix, it has a dual-execution pipe-
line LSU and an additional SCIU (<S, M, F, L, B> = <3, 1, 1, 2, 1>). It also has twice
as many reservation station entries in each functional unit. The balanced 4-threaded
(4T) 620 fetches instructions from two threads in every cycle, dispatches and com-
pletes up to two instructions per thread per cycle (<E D> = <2, 2>), and has the same
functional unit mix and number of reservation station entries as the balanced 2T 620.
Also included in the comparisons is an expanded but still single-threaded 620. The
expanded 620 dispatches and completes up to four instructions per cycle (<E D> = <1,
4>), and has the same functional unit mix and number of reservation station entries as
the balanced 2T and 4T 620s. Table 5 presents the results of the comparison. The
expanded 620 improves upon the performance of the original 620 by 3.8% to 12.8%.
The balanced 2T 620 shows a 41.6% to 71.3% improvement, while the balanced 4T
620 shows a 46.9% to 111.6% improvement.

Although simultaneous multithreading improves the performance of multi-
threaded programs, it can also degrade the performance of single-threaded programs
since the dispatch bandwidth is now partitioned among multiple threads. To highlight

1099

the impact of simultaneous multithreading on single-thread performance, the perfor-
mance of the balanced 2T and 4T processors are measured on two SPEC92 single-
threaded benchmarks, eqntott and tomcatv. As shown on the right half of Table 5, the
2T processor has the same performance as the expanded 620 since it dispatches 4
instructions/thread every cycle (like the original and expanded 620s) and has an identi-
cal functional unit mix. In contrast, because the 4T processor dispatches only 2 instruc-
tions/thread in every cycle, its performance on these single-threaded programs suffers.
On the eqntott benchmark, its performance is 21.2% worse than the original 620. This
leads to the observation that if separate instruction queues are assumed for each thread
and the total dispatch bandwidth is limited to 8 instructions/cycle, the 2T processor is a
better trade-off than the 4T processor when the target applications of the processor
comprise both multithreaded and single-threaded applications.

TABLE 5. Balanced multithreaded 620s vs. original 620 on multithreaded and
non-multithreaded benchmarks (IPC).

iOriginal 620

Expanded 620

Balanced 2-threaded 620

Balanced 4-threaded 620

M u l t i t h r e a d e d B e n c h m a r k s

R o u t e r M P E G N~Iu~][lrpL~y F F F L U

1.20 1.64 1.13 1.08 1.06

1.28 1.85 1.19 1.14 1.10
+6.7 +12.8 +5.0 +5.6 +3.8

1.95 2.81 1.60 1.72 1.75
+62.5 +71.3 +41.6 +59.3 +65.1

2.19 3.47 1.66 2.18 1.92
+82.5 +111.6 +46.9 +101.9 +81.1

S i n g l e - t h r e a d e d

e q n t o t t t o m c a t v

1.32 1.00

1.35 1.01
+2.3 +1.0

1.35 1.01
+2.3 +1.0

1.04 0.99
- 21.2 - 1.0

4.5 Ef fec t s o n C a c h e s a n d B r a n c h Pred ic t ion

We also studied the impact of simultaneous multithreading on the hit rates of
the shared instruction and data caches and the prediction accuracy of the shared branch
history table (BHT) when the multithreaded benchmarks are run. Due to limited space,
we briefly state that simultaneous multithreading has negligible impact on the hit rate
of the shared instruction cache. It degrades the hit rate of the data cache by less than
2% on all benchmarks for both the 2T as well as the 4T processor. It also has little
impact on the shared BHT. The prediction accuracy for both the 2T and 4T processors
are within 3% of that of the original 620.

5 C o m p l e x i t y E s t i m a t i o n

The commonly cited advantage of a multithreaded processor over a multipro-
cessor is that the former requires less resources to achieve a given level of performance
because of the sharing of execution units. In this section, a first-order estimation of the
extra complexity required to implement the balanced multithreaded 620s is made.

The estimation is made by determining from the die photo (not shown due to
space limitations) of the original 620 the die areas of the various shared and replicated
resources. We make the simplistic assumption that the area of the replicated resources

1100

scale linearly with the number of replications unless otherwise stated. Since the num-
ber of reservation station entries of the functional units are doubled in the 2T, 4T and
Expanded 620s, we estimate the die areas of these functional units to be 25% larger.
Although the instruction cache of the 2T and 4T processors are assumed to be dual-
ported in our simulations, here we assume that they occupy the same die area as the
data cache which is two-way interleaved. We assume that the die area of the enhanced
LSU is twice that of the original LSU. We also assume that the die area occupied by
the dispatch and completion unit of the 2T 620 is twice that of the original 620 while
that of the 4T 620 is four times larger.

The results of the estimation are shown in Table 6. The units of area are rela-
tive square units. The balanced 2-threaded 620's die area is estimated to be 36.4%
larger than that of the original 620, while that of the balanced 4-threaded 620 is esti-
mated to be 70.4% larger. For comparison purposes, the expanded 620 is estimated to
be 12.6% larger than the original 620. Overall, the die area increases appear to be more
significant than implied in previous studies but is still reasonable.

TABLE 6. Comparison of die areas (in relative square units).

Original Expanded620 Balanced2T 620 Balanced4T 620

Instruction Cache + MMU 26 26 31 31

Data Cache + MMU 31 31 31 31

19 19 Bus + L2 Interface + Perf. Monitor + PLL
+ COP JTAG

SCIU 10

7.5

19

15

19

15

MCIU 6 7.5 7.5

FPU 18 22.5 22.5 22.5

LSU 9 18 18 18

BRU 6.5

6

6.5

3

6.5

12 GPR and Rename Buffers

FPR and Rename Buffers 6 6 12 24

16 32 64

147 200.5
+36.4

16

165.5
+12.6

Dispatch + Completion Unit

Total 250.5
+70.4

6 R e l a t e d W o r k
Other than the studies mentioned in Section 1, [11] studied the effects of lim-

ited fetch bandwidth and instruction queue size on a 2-threaded superscalar processor
with unlimited issue width and unlimited functional units while [12, 13] studied simul-
taneous multithreaded processors that dynamically interleave VLIW instructions.

7 C o n c l u s i o n
The cost/performance trade-offs of both the 2-threaded and 4-threaded pro-

cessors when executing multithreaded benchmarks are reasonable although much less
impressive than reported in previous studies using multiprogrammed workloads. The

1101

dispatch bandwidth and load/store unit limitations result in the diminishing returns of
the 4T processor. Because of the partitioning of the dispatch bandwidth among multi-
ple threads, the 4-threaded processor actually degrades the performance of non-multi-
threaded programs.

In conclusion, we believe that the future of simultaneous multithreading
depends on the widespread adoption of the multithreaded programming paradigm. If
this programming paradigm is widely adopted, resulting in a proliferation of multi-
threaded applications, simultaneous multithreaded processors are an efficient means of
exploiting the thread and instruction level parallelism of these applications. On the
other hand, if single-threaded applications continue to dominate or if future single-
threaded processors are able to effectively utilize the available dispatch bandwidth, the
future of simultaneous multithreading may be less promising.

References
[1] D. Levitan. T. Thomas, and P. Tu, "The PowerPC 620 Microprocessor: A High Performance Superscalar RISC

Microprocessor", in Spring CompCon 95 Proceedings, pages 285-291, 1995.
[2] T.A. Diep, C. Nelson and J. P. Shen, "Performance Evaluation of the PowerPC 620 Micmarchitecture", in Pro-

ceedings of the 22nd Annual lnternational Symposium on Computer Architecture, pages 163-175, 1995.
[3] J.M. Cohn, D. J. Garrod, R. A. Rutenbar, and L. R. Carley, "KOAN/ANAGRAM 11: New Tools for Device-Level

Analog Placement and Routing", in IEEEJournal of Solid-State Circuits, Vol. 26, No. 3, March 1991.
[4] J. Boyldn, D. Kirschen, A. Langerman, and S. LoVerso, "Programming Under Mach", Addison- Wesley, 1993.
[5] S.C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, "The SPLASH-2 Programs: Characterization and Meth-

odological Considerations", in Proceedings of the 22rid Annual International Symposium on Computer Architec-
ture, pages 24-36, 1995.

[6] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase, and T. Nishizawa, "An Elementary
Processor Architecture with Simultaneous Instruction Issuing from Multiple Threads", in Proceedings of the 19th
Annual International Symposium on Computer Arehitecture, pages 136-145, 1992.

[7] M. Gulati and N. Bagherzadeh, "Performance Study of a Multithreaded Superscalar Micmprocessor", in Second
International Symposium on High-Performance Computer Architecture, pages 291-301, 1996.

[8] M. Loikkanen and N. Bagherzadeh, "A Fine-Grain Multithreading Superscalar Architecture", in Proceedings of
PACT "96, pages 163-168, 1996.

[9] D.M. Tunsen, S. J. Eggers, and H. M. Levy, "Simultaneous Multithreading: Maximizing On-Chip Parallelism", in
Proceedings of the 22nd Annual International Symposium on Computer Architeeture, pages 392-403, 1995

[10] D.M. TuUsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stature, "Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous Multithreading Processor", in Proceedings of the 23rdAnnual
International Symposium on Computer Architecture, pages 191-202, 1996.

[11] G.E. Daddis and H. C. Torng, "The Concurrent Execution of Multiple Instruction Streams on Superscalar Proces-
sors", in International Conference on Parallel Processing, pages 176-83, 1991.

[12] R.G. Prasadh and C. Wu, "A Benchmark Evaluation of a Multi-Threaded RISC Processor Architecture", in Inter-
national Conference on Parallel Processing, pages 1 84-91, 1991.

[13] S.W. Keckler and W. J. Dally, "Processor Coupling: Integrating Compile Time and Rtmtime Scheduling for Paral-
lelism", in Proceedings of the 19th Annual International Symposium on Computer Architecture, pages 202-213,
1992

[14] M. Bekerman, A. Mendelson, and G. Sheaffer, "Performance and Hardware Complexity Trade-offs in Designing
Multithreaded Architectures", in Proceedings of PACT '96, pages 24-34, 1996.

[15] T.M. Conte, K. N. Menezes, P. M. Mills, and B. Patel, "Optimization of Instruction Fetch Mechanisms for High
Issue Rates", in Proceedings of the 22rid Annual International Symposium on Computer Architecture, pages 333-
344, 1995.

Acknowledgments
This research is supported by the NSF under grant MIP-9403473 and by the ONR
under Contract N00014-96-1-0347.

