
A Realtime GPU Subdivision Kernel

Le-Jeng Shiue∗

University of Florida

Ian Jones†

University of Florida

Jörg Peters‡

University of Florida

Figure 1: Catmull-Clark surfaces fully reevaluated (40 patches, depth 5) at 21 fps on an ATi 9700 mobile graphics chip.

Abstract

By organizing the control mesh of subdivision in texture memory
so that irregularities occur strictly inside independently refinable
fragment meshes, all major features of subdivision algorithms can
be realized in the framework of highly parallel stream processing.
Our implementation of Catmull-Clark subdivision as a GPU ker-
nel in programmable graphics hardware can model features like
semi-smooth creases and global boundaries; and a simplified ver-
sion achieves near-realtime depth-five re-evaluation of moderate-
sized subdivision meshes. The approach is easily adapted to other

refinement patterns, such as Loop, Doo-Sabin or
√

3 and it allows
for postprocessing with additional shaders.

CR Categories: I.3.4 [Computing Methodologies]: Computer
Graphics—Software Support I.3.5 [Computing Methodologies]:
Computer Graphics—Curve, Surface, Solid, and Object Represen-
tations I.3.8 [Computing Methodologies]: Computer Graphics—
Graphics Data Structures and Data Type

Keywords: subdivision surfaces, programmable graphics hard-
ware, shader, geometric data structure

1 Introduction

A number of important algorithms have been modified to rebalance
the workload between CPU and GPU (graphics processing unit),
and take advantage of parallel execution streams in programmable
graphics hardwares; e.g. for particle systems [Kipfer et al. 2004;
Kolb et al. 2004], collision detection [Govindaraju et al. 2003],

∗e-mail: sle-jeng@cise.ufl.edu
†e-mail: ijones@cise.ufl.edu
‡e-mail: jorg@cise.ufl.edu

cellular automata [Harris et al. 2003], global illumination [Purcell
et al. 2003] and other numerical computations [Krüger and Wester-
mann 2003; Bolz et al. 2003]. The algorithmic component on the
GPU, called shaders, rely essentially on accessing regularly laid out
data, typified by the 2D array, to minimize workflow branching and
maximize parallelism. Irregular access typically requires interac-
tion with the CPU. Therefore, for algorithms with irregular access
such as subdivision near extraordinary points, a good approach is
to precompute access patterns offline, and place the precomputed
data tables into texture images for use by shaders. An algorithm
along these lines was proposed in [Bolz and Schröder 2002] for
Catmull-Clark subdivision. It precomputes, for a fixed grid of pa-
rameters and the most common configurations, the limit values of
the Catmull-Clark generating functions to be combined at runtime.
Unfortunately, tabulated evaluation limits flexibility and can in-
crease downstream complexity: many tables are required to even
partially reproduce the spectrum of semi-smooth creases [DeRose
et al. 1998], and a complex procedure has to be followed to avoid
numerical roundoff gaps that can arise from different evaluation or-
der of mesh points [Bolz and Schröder].

By contrast, the proposed realtime GPU subdivision kernel gener-
ates the subdivision mesh at different depths on the GPU so that all
evaluation work rests with GPU shaders and all major features of
subdivision algorithms can be realized. The key to this approach is
a locality-preserving data access that keeps all irregularities strictly
inside independently refinable pieces of the mesh, called fragment
meshes. The resulting parallel streams of workflow per fragment
mesh and also per mesh node leverage the strengths of the GPU
compared to the CPU. The resulting implementation performs well
when measured in wall-clock frames-per-second (fps) on current
GPUs as is relevant for applications such as gaming and interactive
animation. The approach is not restricted to a specific subdivision
scheme or hardware and can compute
• all major refinement patterns [Catmull and Clark 1978; Doo and
Sabin 1978; Loop 1987; Kobbelt 2000],
• semi-smooth creases and global boundaries, and
• delivers a watertight mesh directly renderable within the GPU.
As Figure 1 illustrates, our implementation of Catmull-Clark sub-
division, based on the OpenGL Shading Language [John Kessenich
and Rost 2004], achieves near-realtime speed on an ATi 9700 mo-
bile graphics processor when fully reevaluating a moderately sized
model. Larger models, such as in Figure 2, require adaptive refine-
ment and adaptive reevaluation to reach this frame-rate.

(a) (b)

(c)

(d)

Figure 2: Subdivision surfaces generated by our GPU subdivision
kernel featuring semi-smooth creases (b) and global boundaries
(c,d).

2 Background: Subdivision Algorithms, Spa-
tial Data Structures and Shaders

Subdivision algorithms create smooth surface approximations by
recursively refining the connectivity and smoothing the geome-
try of a polyhedral input mesh, known as the control mesh (see
e.g. [DeRose et al. 1998; Warren and Weimer 2002]). In all popu-
lar algorithms the position of a new mesh node is obtained as the
weighted average of old nodes of a small submesh, whose graph is
called stencil. The major refinement patterns are shown in Figures
3, and the stencils with the weights of Catmull-Clark subdivision
are shown in Figures 4.

Subdivision implementations can be characterized by their underly-
ing spatial data structures. Halfedge data structures [Weiler 1985;
Guibas and Stolfi 1983; Kettner 1999]) are maximally flexible in
reconfiguring general meshes and interacting with mesh process-
ing algorithms. However, storing, maintaining and refining explicit
connectivity pointers is costly. The quad-tree-based implementa-
tion (see e.g. [Zorin 1999] for Loop’s subdivision) naturally sup-
ports adaptive refinement: each level of the tree represents one
refinement level of the mesh. However, the resulting recursive
non-uniform tree structure does not easily lend itself to parallel
computation; and rendering may require an expensive traversal to
neighbors in remote branches. Patch-based refinement has been
advocated for fast rendering [Pulli and Segal 1996], parallel eval-
uation [Padrón et al. 2002], a hardware mesh framework [Shiue
et al. 2003], hardware implementation [Bóo et al. 2001; Müller and
Havemann 2000], cut-and-paste editing [Biermann et al. 2002], and
surface conversion [Peters 2000]. Each patch represents the re-
fined submesh corresponding to an initial facet. The patches are
connected by a general, say halfedge, mesh data structure that can
often be identical to the initial data structure of the control mesh.
The internal connectivity is encoded in the row-column indexing
of a 2D-array so that the structure is easy to implement and uses

Control Mesh

pQqpTq dQq
√

3

Figure 3: Four different refinement strategies of a triangle fan
generally characterized by: p=primal, d=dual, T=triangulation,
Q=quadrilateral, q=quad-split. The refined fan can be constructed
by moving the red pointer-patterns along an outward spiraling path.

. . .

1

6

66

66

1

1

11

1

1 1

6

1 1

6

1

1

1 6 1

6

161

6 36

1

6

4n2 −7n

Figure 4: (from left to right) Catmull-Clark (pQq) subdivision sten-
cils with weights (to be scaled to sum to 1) for a regular vertex-
node, edge-node, facet-node, and an irregular vertex-node with n
neighbors.

memory efficiently and contiguously. [Bunnell 2005] implements
Catmull-Clark subdivision this way. On the downside, patch-based
refinement has only been developed for pTq and pQq patterns, re-
quires extra structures to access the neighbors of irregular nodes,
and care has to be taken to avoid numerical roundoff gaps due to dif-
ferent evaluation order of shared points at patch boundaries. Table
1 compares the three (generically implemented) approaches with
the proposed approach (labelled Frag-mesh). Here ‘n-gon’ refers
to the ability to represent multi-sided mesh facets, ‘locality’ to the
continuity of refined nodes in memory and ‘slower’ or ‘worse’ are
characterizations relative to the other schemes.

Flexibility Efficiency

n-gon Dual/
√

3 Adaptive Time Space Locality

Halfedge yes yes Yes slower worse no

Quadtree no no Yes slower worse no

Patch-based no no per patch faster better yes

Frag-mesh yes yes per frag faster better yes

Table 1: Subdivision surface implementations compared.

Modern GPUs provide programmable parallel stream processing in
the form of vertex shaders and fragment shaders [Lindholm et al.
2001]. Vertex shaders process attributes, such as positions, nor-
mals, and texture coordinates, of a single vertex without connectiv-
ity. The downstream fragment shaders process the rasterized data
(i.e. attributes per pixel) and assign the resulting pixels. Fragment
shaders are the key computation units for most GPU algorithms (as
well as ours) because of their computation power and ability to read
and write data by rendering to the framebuffer and copying to read-
able texture images. Strategies and techniques for computation on
GPUs can be found in [Harris et al. 2004].

3 Algorithm and Implementation

This section explains the subdivision kernel for Catmull-Clark sub-
division. Adjustments to other refinement patterns are discussed in
Section 4. The algorithm and the work distribution of CPU and
GPU are summarized in Figure 5. The control mesh is broken up
into fragment meshes consisting of two layers surrounding a ver-
tex. The fragment meshes are refined independently within the

CPU GPU

(a) (b) (c) (d)

Figure 5: Workflow and data distribution. On the CPU, the control
mesh is once refined and decomposed into fragment meshes that
overlap. On the GPU, each fragment mesh is processed indepen-
dently and the overlap shrinks towards the shared boundary.

GPU (and can be processed in parallel on multiple GPUs). The
final fragment meshes have exactly matching boundaries and can
be rendered directly.

Pre-computation (CPU level): At the CPU level, the control mesh
is once refined, if necessary, so that irregular vertices are isolated by
one layer of regular nodes. The mesh is broken up into multisided
fragment meshes, each consisting of one possibly irregular center
node and two layers of nodes surrounding it. Neighboring fragment
meshes overlap in two facet mesh layers (Figure 5(b,c)), the outer
of which (shaded in Figure 5(c,d)) is discarded when rendering the
final fragment mesh.

Nodes in a fragment mesh are mapped into a 1D texture, called
patch-texture, by starting with the central vertex and spiraling out-
ward to cover two rings, the footprint of Catmull-Clark subdivision.
The patch-texture contains pixels of floating-point channels, and
each RGBA pixel in the patch-texture represents the (x,y,z,w) coor-
dinates of a node. The texture coordinate is the index for accessing
the node. The spiral enumeration naturally encodes the multisided
fragment mesh avoiding the creation and maintenance of an explicit
structure of the connectivity within a patch; only for the input mesh,
which is subject to interaction and structural modification by a user
program, do we use a general halfedge data structure.

Subdivision kernel (GPU level): The subdivision kernel scales the
patch-texture and filters the pixels similar to geometry images [Gu
et al. 2002; Losasso et al. 2003], but on a more complex mesh struc-
ture (and therefore without the need for initial geometric resampling
and topological remeshing). A patch-texture of valence n at depth
d contains

σn,d := nq(q−1)+1, pixels, where q := 2d−1 +2.

The patch-texture at depth d +1 is computed by applying the subdi-
vision stencils to the patch-texture at depth d as illustrated in Figure
6. Grouped by valence, fragment meshes are processed depth first:
multiple refinement passes are applied to one fragment mesh up to
the prescribed subdivision depth. This minimizes switches in the
OpenGL context, the patch-texture, the shader, and the lookup ta-
ble. (The lookup table is discussed in detail below. It provides the
indices of the patch-texture nodes for stencil application).

To invoke the kernel, the viewport is initialized to contain σn,d+1 ×
1 pixels, and a full-screen quad is drawn with the data-dimensioned
viewport that has one texel per pixel. The rasterizer interpolates the
node indices (texture coordinates) for each pixel. In parallel, for
each pixel, the fragment shader obtains the patch-texture indices

[2]

[6]

[8]

[7] [0]

[3] [1]

[2]

[0]

[5]

[4]

[3]

[2]

[1]

[0]
[5]

[1][4]

[3]

d=1
d=2

d=2

d=3

d=3

d=4

f2
f3

f4

v3

v4e4

Figure 6: Catmull-Clark subdivision from depth d = 1 to 2 (upper
left pair), depth 2 to 3 (upper right) and depth 3 to 4. The initial
fragment mesh consists of a central node (red) and two surrounding
layers (blue). Subdivision steps d = 2,3,4 each add 1,2,4 orbits
(pink, yellow, green). Colors and node labels agree with Figure 7.

of the nodes in the local stencil from a lookup table, retrieves the
stencil node attributes from the input patch-texture, and computes
and renders the new pixel. The intermediate result is copied from
the framebuffer to the patch-texture for the next subdivision pass.

At the final depth, a shader computes the normals. Conceptually,
the normals are placed into a normal array and, ignoring the out-
ermost ring of nodes, the patch-texture vertices are placed into a
vertex array. To avoid rendering via the CPU, we use the super-
buffer extension [Mace 2004] binding the rendering target to the
vertex and the normal array. Additional shaders can be applied as
usual after this stage (Figure 10).

Fragment Shader Details: Using the OpenGL shading language,
we implemented the regular Catmull-Clark-stencils as in Listing
1: all three regular stencils are computed, and the valid one is nu-
merically masked to avoid branching. Central, irregular nodes are
computed in separate shaders. To support general crease rules, we
flag nodes on edges of the control mesh in the lookup table and
store the crease value in the alpha channel of the pixel. (Shader
length restrictions on the ATi 9700 forced us to break up the shader
into three in this case, tripling the execution time since each pixel
is visited three times and two computations are discarded). Global
boundaries are implemented as creases: the patch-texture is padded
with 0s to account for the missing sectors that are ignored during
rendering.

Since overlapping nodes are always regular and A op B = B op A on
the GPU, i.e. pairwise operations commute, the crosswise pairing in
Listing 1 for vertPos, edgePos, facePos results in an identical
computation of corresponding nodes in adjacent fragment meshes.

v4

v3

V EF

f4

f3

f2

e4d=4

d=3

d=2

Input

y
z
w

x

G

B
G
R
A
B

R
A

Type
Reserved
Reserved

B
G
R

A

[0]−[8]
Indices
Stencil

Fragment Mesh

Lookup Table

Figure 7: A stencil lookup table for depth 4 (same color coding
as in Figure 6). (top) Three RGBA channels (12 rows) store the
indices of stencil neighbors and additional tags. Three columns,
corresponding to v, e and f labels in Figure 6, show in more detail
the color-coded neighbor indices (and the unused channels). The
four bottom bars illustrate the growth of the patch-texture with re-
finement. Each slot stores the (x,y,z,w) coordinates of a node.

In other words, the refined mesh in the GPU is water-tight and no
stitching is required.

Lookup Table (Pre-computed Offline): For a given subdivision
scheme, one lookup table per valence n is created once and for all
and stored as a texture image in RGBA pixel format (Figure 7).
The layout and number of entries of the table is the same as for the
patch-texture (but the entries are fixed). Column i of this texture
lists the level d patch-texture indices of all nodes contributing to a
new node i at level d + 1. Nine channels suffice for the maximum
Catmull-Clark stencil. A tenth channel stores the stencil type (ver-
tex, edge or facet, cf. Figure 6) and the remaining two channels are
reserved for depth, crease and boundary flags. The first entry of
each lookup table, corresponding to the central valence n node, is
ignored since its stencil neighbors are known to be the first 2n + 1
nodes.

To cover more subdivision steps, the columns for new nodes are
simply appended to the lookup table. That is the lookup table at
depth d−1 consists of the lower entries of the lookup table of depth
d. By filling the lookup table to the maximum subdivision depth,
all lower depth indices are available. Alternatively, stencil lookups
could be computed on the GPU by circulating the stencil along with
the spiral, but this makes the shader program needlessly complex.

4 Generalization

As opposed to 2D-array patch-based schemes, spiral enumeration
is not restricted to primal quadrisection. By associating different
stencils, all the refinement patterns shown in Figure 3 can be im-
plemented. For example, creating a pTq subdivision shader (Loop
subdivision) is as easy as replacing the lookup table and slightly
changing the scheme for generating fragment meshes on the CPU.
For dQq schemes (Doo-Sabin subdivision), one refinement is per-
formed up-front and fragment meshes consist of two layers of nodes

surrounding a central facet. For
√

3, two steps of refinement are
performed as part of the initialization and fragment meshes consist
of three layers of nodes surrounding a central node. Changing to a
different subdivision scheme with the same refinement pattern only
requires changing the stencil weights in the shaders.

/ / The i n p u t p a t c h− t e x t u r e
uniform sampler2D I n p u t P a t c h ;

/ / The look up t a b l e t e x t u r e
uniform sampler2D LookUp ;

/ / T e x t u r e c o o r d i n a t e s t o a c c e s s look up t a b l e
varying vec2 LookupTC ;

/ / S u b d i v i s i o n s t e n c i l t y p e
d e f i n e FACE NODE 1

d e f i n e EDGE NODE 2

d e f i n e VERTEX NODE 4

/ / T r a n s f o r m a t i o n from i n d e x t o t e x t u r e c o o r d i n a t e
d e f i n e IDX2TC (1 . 0 / 2 0 4 8 . 0)

void main (void) {
/ / C o l l e c t t h e look up t a b l e e n t r y
vec4 rgba1 =

texture2D (LookUp , vec2 (LookupTC . s , 0 . 0 / 3 . 0)) ∗ IDX2TC ;

vec4 rgba2 =

texture2D (LookUp , vec2 (LookupTC . s , 1 . 0 / 3 . 0)) ∗ IDX2TC ;

vec4 rgba3 = texture2D (LookUp , vec2 (LookupTC . s , 2 . 0 / 3 . 0)) ;

i n t t y p e = i n t (rgba3 . g) ;

rgba3 = rgba3 ∗IDX2TC ;

/ / C o l l e c t t h e s t e n c i l nodes i n t h e i n p u t p a t c h− t e x t u r e
/ / as i n F i g u r e s 6 and 7 .
vec4 S [9] ;

S [0] = texture2D (I n p u t P a t c h , vec2 (rgba1 . r , 0)) ;

S [1] = texture2D (I n p u t P a t c h , vec2 (rgba1 . g , 0)) ;

S [2] = texture2D (I n p u t P a t c h , vec2 (rgba1 . b , 0)) ;

S [3] = texture2D (I n p u t P a t c h , vec2 (rgba1 . a , 0)) ;

S [4] = texture2D (I n p u t P a t c h , vec2 (rgba2 . r , 0)) ;

S [5] = texture2D (I n p u t P a t c h , vec2 (rgba2 . g , 0)) ;

S [6] = texture2D (I n p u t P a t c h , vec2 (rgba2 . b , 0)) ;

S [7] = texture2D (I n p u t P a t c h , vec2 (rgba2 . a , 0)) ;

S [8] = texture2D (I n p u t P a t c h , vec2 (rgba3 . r , 0)) ;

/ / Compute t h e p o s i t i o n u s i n g t h e v e r t e x−s t e n c i l
vec4 v e r t P o s = S [0] ∗ 9 . 0 / 1 6 . 0 +

((S [1] + S [2]) + (S [3] + S [4])) ∗ 3 . 0 / 3 2 . 0 +

((S [5] + S [7]) + (S [8] + S [6])) / 6 4 . 0 ;

/ / Compute t h e p o s i t i o n u s i n g t h e edge−s t e n c i l
vec4 edgePos = (S [0] + S [1]) ∗ 3 . 0 / 8 . 0 +

((S [2] + S [4]) + (S [3] + S [5])) / 1 6 . 0 ;

/ / Compute t h e p o s i t i o n u s i n g t h e f a c e−s t e n c i l
vec4 f a c e P o s = ((S [0] + S [2]) + (S [1] + S [3])) / 4 . 0 ;

/ / A s s i g n t h e v a l i d p o s i t i o n by n u m e r i c a l masking
g l FragColor = v e r t P o s ∗ f l o a t (t y p e = = VERTEX NODE) +

edgePos ∗ f l o a t (t y p e = = EDGE NODE) +

f a c e P o s ∗ f l o a t (t y p e = = FACE NODE) ;

}

Listing 1: Fragment shader for regular Catmull-Clark stencils.

The spiral enumeration works more generally than just for frag-
ment meshes. For example, it allows refining submeshes grouped
together as in Figure 8. Collecting and accessing neighbors across
group boundaries then only requires visiting nodes in reverse ori-
entation (for details see [Shiue and Peters 2005]). Downstream
techniques of modeling and rendering, developed for patch-based
access, are easily adapted to spiral enumeration.

Finally, using a lookup table for the weights in addition to the sten-
cil lookup table, spiral enumeration can be used to directly evaluate
to a fixed depth of refinement; or to apply stencils that evaluate to
the limit position on a fixed-size grid. The latter achieves the same
effect as [Bolz and Schröder 2002] with the corresponding draw-
back of requiring a specialized weight table for different scenarios
of semi-smooth creases (but with a simpler scheme to avoid bound-
ary mismatches).

Control Mesh f-grouping g-grouping v-grouping

Figure 8: Groupings of the cube mesh refinable by spiral enumera-
tion. The g-grouping contains only two submeshes.

5 Performance Analysis and Results

Lookup table textures are generated offline. On the CPU, the work
to construct fragment meshes is proportional to the number of nodes
in the mesh. On the GPU, the vertex processor and the rasterizer
only process four vertices per fragment mesh. The work mainly
rests with the fragment processor and consists of the computations
and random access of the lookup table and the patch-texture. This
and the pbuffer context switches are the current bottleneck. (We
expect that new memory technologies will reduce the performance
impact of the context switching so that performance should become
proportional to the pixel throughput of the fragment shader.)

Our implementation comparisons were performed on a laptop with
a 1.8GHz Pentium M CPU, 1Gb RAM and an ATi 9700 mobile
GPU with 4 pixel pipelines, 24-bit floating point precision in the
fragment shader, 32 bit textures with a maximum texture size of
2048× 2048, 400 MHz core and 200MHz memory. On the CPU,
both patch-based and spiral enumeration refinement of depth four
execute twice as fast as when based on the fastest, widely available
halfedge structure (CGAL [Kettner 1999]). The subdivision shader
improves this speed a remarkable 20 times, yielding 20+ frames-
per-second (fps) for moderately sized models. As expected, due
to the inherent per-patch and per-node parallelism, the frames-per-
second (fps) measure degrades linearly with the size of the input
mesh: if we render a scene with k copies of the model in Figure 1,
the frame rate reduces to 21/k fps. Correspondingly, increasing the
number of pipelines or reducing the number of patches by backface
culling yields linear speed up for our implementation.

6 Conclusion

Implementing subdivision via spiral-enumerated fragment meshes
preserves data locality, makes collecting neighbors simple, and is
efficient even for complex control mesh configurations due to par-
allel stream processing both per patch and per pixel. The ap-
proach will directly benefit from extensions such as superbuffers,
CPU/GPU clustering and hardware-implementation of the static
lookup tables. We anticipate that size limitation of the shader will
not be a factor with the next graphics hardware generation, and that
the increase of parallel execution streams on a single GPU and clus-
tering of GPUs will allow realtime animation suitable for interac-
tive gaming with multiple large input meshes. We are currently
comparing a number of adaptive update and rendering techniques
noting that, since the subdivision mesh is computed at intermediate
depths, it is straightforward to add displacement at different resolu-
tions.

Acknowledgements We thank Vineet Goel, Mark Segal, Eric Xi-
aobin Wu and Minho Kim for their valuable comments. The work
was supported by NSF Grants DMI-0400214 and CCF-0430891.

References

BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D.
2002. Cut-and-paste editing of multiresolution surfaces. In SIG-
GRAPH ’02 Conference Proceedings, 312–321.

BOLZ, J., AND SCHRÖDER, P. Evaluation of subdi-
vision surfaces on programmable graphics hardware.
http://www.multires.caltech.edu/pubs/GPUSubD.pdf.

BOLZ, J., AND SCHRÖDER, P. 2002. Rapid evaluation of Catmull-
Clark subdivision surfaces. In Proceedings of the Web3D 2002
Symposium, 11–18.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003.
Sparse matrix solvers on the gpu: conjugate gradients and multi-
grid. In SIGGRAPH ’03 Conference Proceedings, 917–924.

BÓO, M., AMOR, M., DOGGETT, M., HIRCHE, J., AND

STRASSER, W. 2001. Hardware support for adaptive subdi-
vision surface rendering. In Proceedings of the Workshop on
Graphics Hardware, 33–40.

BUNNELL, M. 2005. GPU Gems 2: Programming Techniques
for High-Performance Graphics and General-Purpose Compu-
tation. Addison-Wesley, Reading, MA, ch. Adaptive Tessellation
of Subdivision Surfaces with Displacement Mapping.

CATMULL, E., AND CLARK, J. 1978. Recursively generated B-
spline surfaces on arbitrary topological meshes. Computer Aided
Design 10, 350–355.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision
surfaces in character animation. In SIGGRAPH ’98 Conference
Proceedings, 85–94.

DOO, D., AND SABIN, M. 1978. Behaviour of recursive division
surfaces near extraordinary points. Computer Aided Design 10
(Sept.), 356–360.

GOVINDARAJU, N. K., REDON, S., LIN, M. C., AND

MANOCHA, D. 2003. Cullide: interactive collision detection
between complex models in large environments using graphics
hardware. In Proceedings of the Conference on Graphics Hard-
ware, Eurographics Association, 25–32.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. In SIGGRAPH ’02 Conference Proceedings, 335–361.

GUIBAS, L. J., AND STOLFI, J. 1983. Primitives for the manip-
ulation of general subdivisions and the computation of Voronoi
diagrams. In Proceedings of the Fifteenth Annual ACM Sympo-
sium on Theory of Computing, 221–234.

HARRIS, M. J., BAXTER, W. V., SCHEUERMANN, T., AND LAS-
TRA, A. 2003. Simulation of cloud dynamics on graphics hard-
ware. In Proceedings of the Conference on Graphics Hardware,
Eurographics Association, 92–101.

HARRIS, M., LUEBKE, D., BUCK, I., GOVINDARAJU, N.,
KRÜGER, J., LEFOHN, A. E., PURCELL, T. J., AND WOOL-
LEY, C. 2004. GPGPU: General-purpose computation on graph-
ics hardware. Course notes 32 of SIGGRAPH 2004.

JOHN KESSENICH, D. B., AND ROST, R. 2004. The OpenGL
shading language (version 1.10. Tech. rep., April.

KETTNER, L. 1999. Using generic programming for designing a
data structure for polyhedral surfaces. Computational Geometry
13, 1 (May), 65–90.

KIPFER, P., SEGAL, M., AND WESTERMANN, R. 2004. Uber-
flow: A GPU-based particle engine. In Eurographics Symposium
Proceedings Graphics Hardware 2004, 115–122.

KOBBELT, L. 2000.
√

3 subdivision. In SIGGRAPH ’00 Confer-
ence Proceedings, 103–112.

KOLB, A., LATTA, L., AND REZK-SALAMA, C. 2004. Hardware-
based simulation and collision detection for large particle sys-
tems. In Eurographics Symposium Proceedings Graphics Hard-
ware 2004.

KRÜGER, J., AND WESTERMANN, R. 2003. Linear algebra oper-
ators for gpu implementation of numerical algorithms. In SIG-
GRAPH ’03 Conference Proceedings, 908–916.

LINDHOLM, E., KLIGARD, M. J., AND MORETON, H. 2001. A
user-programmable vertex engine. In SIGGRAPH ’01 Confer-
ence Proceedings, 149–158.

LOOP, C. T., 1987. Smooth subdivision surfaces based on trian-
gles. Master’s Thesis, Department of Mathematics, University
of Utah.

LOSASSO, F., HOPPE, H., SCHAEFER, S., AND WARREN, J.
2003. Smooth geometry images. In Proceedings of the sym-
posium on Geometry processing, 138–145.

MACE, R. 2004. OpenGL ARB Superbuffers (OpenGL tutorial).
Tech. rep. Game Developers Conference.

MÜLLER, K., AND HAVEMANN, S. 2000. Subdivision surface
tesselation on the fly using a versatile mesh data structure. Com-
puter Graphics Forum 19, 3 (Aug.).

PADRÓN, E. J., AMOR, M., BÓO, M., AND DOALLO, R. 2002.
Efficient parallel implementations for surface subdivision. In
Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization, 113–121.

PETERS, J. 2000. Patching Catmull-Clark meshes. In SIGGRAPH
’00 Conference Proceedings, 255–258.

PULLI, K., AND SEGAL, M. 1996. Fast rendering of subdivision
surfaces. In Proceedings of the EUROGRAPHICS Workshop on
Rendering Techniques, 61–70.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proceedings of the Symposium
on Graphics Hardware, Eurographics Association, 41–50.

SHIUE, L.-J., AND PETERS, J. 2005. A pattern-based data struc-
ture for manipulating meshes with regular regions. In Graphics
Interface. to appear.

SHIUE, L.-J., GOEL, V., AND PETERS, J. 2003. Mesh muta-
tion in programmable graphics hardware. In Proceedings of the
Conference on Graphics Hardware, 15–24.

WARREN, J., AND WEIMER, H. 2002. Subdivision Methods for
Geometric Design. Morgan Kaufmann Publishers.

WEILER, K. 1985. Edge-based data structures for solid modeling
in curved-surface environments. IEEE Computer Graphics and
Applications 5, 1 (Jan.), 21–40.

ZORIN, D. 1999. Implementing subdivision and multiresolution
meshes. Chapter 6 of Course notes 37 of SIGGRAPH 99.

Figure 9: Global boundaries, semi-smooth creases, and the param-
eter lines of two fragment meshes (one in the interior, one on the
boundary) generated in realtime by our shader implementation.

Figure 10: Application of a cartoon-shader (top) and a glass-shader
(bottom) following the subdivision kernel.

	Introduction
	Background: Subdivision Algorithms, Spatial Data Structures and Shaders
	Algorithm and Implementation
	Generalization
	Performance Analysis and Results
	Conclusion

