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Purpose. To verify the Higuchi law and study the drug release from
cylindrical and spherical matrices by means of Monte Carlo computer
simulation.
Methods. A one-dimensional matrix, based on the theoretical as-
sumptions of the derivation of the Higuchi law, was simulated and its
time evolution was monitored. Cylindrical and spherical three-
dimensional lattices were simulated with sites at the boundary of the
lattice having been denoted as leak sites. Particles were allowed to
move inside it using the random walk model. Excluded volume in-
teractions between the particles was assumed. We have monitored
the system time evolution for different lattice sizes and different ini-
tial particle concentrations.
Results. The Higuchi law was verified using the Monte Carlo tech-
nique in a one-dimensional lattice. It was found that Fickian drug
release from cylindrical matrices can be approximated nicely with the
Weibull function. A simple linear relation between the Weibull func-
tion parameters and the specific surface of the system was found.
Conclusions. Drug release from a matrix, as a result of a diffusion
process assuming excluded volume interactions between the drug
molecules, can be described using a Weibull function. This model,
although approximate and semiempirical, has the benefit of providing
a simple physical connection between the model parameters and the
system geometry, which was something missing from other semiem-
pirical models.

KEY WORDS: drug release; Monte Carlo simulations; power law;
Weibull function.

INTRODUCTION

The modeling of drug release from delivery systems is
important for our understanding and elucidation of the trans-
port mechanisms and allows the prediction of the effect of the
device design parameters on the drug release rate. Hence, the
development of new pharmaceutical products is highly facili-
tated because the desirable release kinetics can be predicted
in advance and thus be better achieved. Despite the complex-
ity of the phenomena involved in drug release mechanisms,
the mathematical models commonly used to describe the ki-
netics of drug release from a large variety of devices are two
simple expressions, the Higuchi law and the power law.

The Higuchi law (1) states that

Mt = A�D�2co − cs�t (1)

where Mt is the cumulative amount of drug released at time t,

A is the surface area of the controlled release device exposed
to the release medium, D is the drug diffusivity, and co and cs

are the initial drug concentration and the drug solubility, re-
spectively. This law is valid for systems where the drug con-
centration is much higher than the drug solubility.

The power law (2) states that

Mt

M�

= kt n (2)

where Mt and M� are the amounts of drug released at times
t and infinity, respectively; k is an experimentally determined
parameter, and n is an exponent that depends on the geom-
etry of the system; it can be related to the drug release mecha-
nisms (3,4). Equation 2 is extensively used because of this
property.

In addition to the above two equations, various ap-
proaches have been developed that are based on the geom-
etry of the device and the physicochemical drug properties,
and they provide a comprehensive, mechanistic interpretation
of the drug release kinetics (5–10). One should also add that
zero-order release kinetics can be considered as a special case
of the power law [it is called Case II transport for polymeric
controlled release devices (3)] and is often a desirable feature.
(For a detailed presentation and comparison of the most com-
monly used drug release models, see Refs. 10 and 11.) Finally,
the Weibull function (12) is sporadically used in drug release
studies (13) in spite of its extensive empirical use in dissolu-
tion studies (14):

Mt

M�

= 1 − exp�−a t b� (3)

where a and b are constants. This model has the form of a
stretched exponential function. It describes experimental dis-
solution data (14) quite well, but up to now there is no physi-
cal reasoning for it or a physical meaning of the constants a
and b. In this paper we intent to provide such a physical
meaning for the use of Eq. 3.

It is well known that diffusion plays a significant role in
drug release mechanisms, irrespective of the geometry and
composition of the devices. The problem of release kinetics
with Fickian diffusion and no interaction between drug mol-
ecules has analytic solutions (15) for various device geome-
tries. These solutions are almost always in the form of infinite
series that are very weakly converging for short times, a fact
that makes them practically unusable. Moreover, there is no
known analytic solution when interactions between drug mol-
ecules are taken into account. These observations, coupled
with the approximate character (1–4) and the empirical use
(13) of the models in drug release studies, prompted us to
reexamine the release kinetics utilizing Monte Carlo simula-
tions based on the random walk model of Fickian diffusion
with excluded volume interactions, i.e., we assume that mov-
ing particles behave like hard spheres that collide and with no
possibility for a sphere to penetrate into another. Similar
Monte Carlo techniques have been used recently in several
other diffusion problems in biopharmaceutics with very sat-
isfactory results (16,17). To this end, we first studied drug
release kinetics for a system complying with the constraint
assumptions of the Higuchi law. We subsequently studied the
general problem of release kinetics of drug particles randomly
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distributed in cylinders of various heights and diameters as-
signed to various numbers of leaking sites on the external
surface of the cylinders. We have finally used the same com-
putational tools for study of spherical release devices.

THEORY OF THE RELEASE PROBLEM

Our main goal is the escape of particles from a release
device. We treat vessels of various shapes. As a starting point
let us consider a cylindrical device. The direct way to study
the problem is by solving the diffusion equation. Fu et al. (5)
described the analytic solution of Fick’s second law for cylin-
drical geometry, considering mass transfer in three dimen-
sions. Their basic result is that

Mt

M�

= 1 −
8

h2r2 �
m=1

�

am
−2 exp�−Dam

2 t��
n=1

�

�n
−2exp�−D�n

2 t�, (4)

where �n � (2n + 1)�/2h, am are the roots of the equation
J0(ra) � 0, and J0 is the zero-order Bessel function. Here, h
denotes the half-length, and r the radius of the cylinder. Note
that for small t the series is very slowly converging. Even
keeping 100 terms in the above series still it is not a good
enough approximation for short times. For long times all
terms with high values of am and �n decay rapidly, and only
the term with the lowest value survives. The series reduces to
a simple exponential after some time. The above solution is
valid when the diffusion coefficient is assumed to be constant
and when particles escape from the entire surface of the cyl-
inder. As we have pointed out, Eq. 4 is quite difficult to use,
and therefore empirical models, like the power law (Eq. 2),
are used instead.

Our intent is to derive a simple approximate solution of
the release problem that can be used to describe release even
when particles escape not from the entire surface but from
just a portion of the surface of the release device (not neces-
sarily a cylindrical device), and even when interactions be-
tween the particles are present.

We assume that particles are moving inside the vessel in
a random way. If the number of particles that exist in the
vessel at time t is N, we expect that the particle escape rate
will be proportional to the fraction f of particles that are able
to reach an exit in a time interval dt, i.e., the number of
particles that are sufficiently close to an exit. Initially the
molecules are homogeneously distributed over the matrix.
Later, as a result of the release, a concentration gradient will
arise with fewer molecules at the boundary of the release
system and a maximum at the central position. Concerning
the form of f, at this point we note that it should be a function
of time. We thus expect a differential equation of the form

dN

dt
= −a f �t�N (5)

to hold, where a is a proportionality constant, fN denotes the
number of particles that are able to reach an exit in a time
interval dt, and the negative sign means that N decreases with
time. If we assume the presence of interactions between the
particles, this is an additional constraint implying that f should
be a function of time. The reason is that as time elapses a
large number of particles leave the vessel, and the rest can
move more freely. This has to be included somehow in the
equation, and the way we propose to do this is through f. In
general we expect that in both cases Eq. 5 will be valid, but

the functional form of f(t) may be different depending on the
type of intermolecular interactions. In order to find an ap-
proximate solution of the release problem, one has to start
with a specific functional form for f(t).

A plausible assumption is to consider that f(t) has a form
f(t)∼ t –m. For m � 1/2 we see that N(t) � √t (as a short-time
approximation4), exactly as predicted by the Higuchi law (1).
For m � 0, we obtain, again as a short-time approximation,
the result N(t) � No− A t corresponding to “ballistic” exit
(zero order kinetics). The above imply that choosing f(t) �
t−m is quite reasonable. In this case Eq. 5 will be

dN

dt
= −a

N

tm (6)

dN

N
= −a t−m dt

Integrating both sides we find that ln N � −a tb + c where
b � 1 − m, and the above is also written as

N = N0 exp�−� tb�, (7)

where we have used the initial condition that N(t � 0) � N0.
Note the following limiting case: Suppose that f(t) � t−m

and that m � 0. Then from Eq. 5 we have

dN

dt
= −aN

dN

N
= −adt

. (8)

We obtain the result that N � N0 exp(−� t), which is similar
to the asymptotic result derived by Fu et al. (5) for pure
Fickian diffusion inside a cylinder for long times.

The above reasoning shows that the stretched exponen-
tial function Eq. 7, or Weibull function as it is known, may be
considered as an approximate solution of the release prob-
lem. We expect that it can be used to model release results in
the presence or absence of interactions.

It is clear that using this rationale it can not be proven
that the Weibull function is the best choice5 for approximat-
ing the release results. There exist several different choices
for the form of f(t), and some of them might be better than
the Weibull equation. The advantage of this choice is that it is
general enough to allow us to describe release from vessels of
various shapes, in the presence or absence of interactions, by
adjusting the values of the parameters � and b. Our simula-
tion results, as well as several experimental results, show that
it is indeed a good choice. We will use our simulation results
to derive a systematic way to calculate the values of the pa-
rameters � and b and gain some physical insight for the be-
havior for different vessel shapes and sizes.

4 There are two ways to calculate a short-time approximation for the
solution of Eq. 5. The direct way is to make a Taylor expansion of
the solution. The second, more physical way is to realize that for
short initial time intervals the release rate dN/dt will be independent
of N. Thus, the differential Eq. 5 can be approximated by (dN/dt) �

−c f (t). Both ways lead to the same result.
5 Actually it is not the best choice. There is an obvious weakness of

the Weibull. The release rate dN/dt is singular at t � 0. The same,
however, is true for the Higuchi law and the power law as well. We
prefer to keep the functional form of f (t) as simple as possible,
despite this weakness. Our simulation results support this choice.
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The above reasoning is quite important because it pro-
vides a physical model for the use of the Weibull function in
order to fit experimental release data, and it elucidates some
aspects of this empirical model, which is already sporadically
used in release studies (13) without any justification of its
physical origin.

METHODS

Our main methodology is based on Monte Carlo simu-
lations performed on the systems that we are examining.
Briefly, this method is based on considering finite-size sys-
tems made up of a specified number of units. These systems
are statistically averaged over a large number of configura-
tions in order to mimic correctly the system behavior. All
decisions are taken by the use of random numbers drawn
from a uniform random number distribution, a function that
is inherent nowadays in all computers. Thus, the system dy-
namics can be inferred by the resulting configurations. Each
decision corresponds to an arbitrary time unit (called Monte
Carlo Step, MCS), which may eventually be shown to corre-
spond to a real time unit.

Higuchi Law Simulations

In order to mimic the conditions of the Higuchi law, we
constructed a one-dimensional matrix of 200 sites. Each site is
labeled with the number of particles it currently hosts. Ini-
tially all sites have 10 particles. We assume that drug mol-
ecules move inside the matrix by the mechanism of Fickian
diffusion. The diffusion process can be simulated using the
random walk model (18–20). We also assume that the mol-
ecules cannot move to a site unless this site is empty. Thus,
the system is expected to behave as if its “drug concentration”
(10 particles per site) is much higher than its “solubility” (1
particle per site), which is the basic assumption made in the
theoretical derivation of the Higuchi law. The matrix can leak
only from the site at its edge.

The diffusive escape process is simulated by selecting a
particle at random and moving it to a randomly selected near-
est neighbor site. If the new site is an empty site then the
move is allowed, and the particle is moved to this new site. If
the new site is already occupied, the move is rejected. A
particle is removed from the lattice as soon as it migrates to
the leak site; see Fig. 1 for a schematic.

After each particle move, time is incremented. The in-
crement is chosen to be 1/N, where N is the number of par-
ticles remaining in the system. This implies that the unit time
characterizing the system is the mean time required for every
one of the N particles to be offered the possibility of moving
one step. This is a typical approach in Monte Carlo simula-
tions (18). We monitor the number of particles that are pres-
ent inside the cylinder as a function of time until the cylinder
is completely empty of particles.

Simulations for the General Problem of Drug Release
from Cylinders

We assume here that the drug molecules move inside the
cylinder by the mechanism of Fickian diffusion. We also use
excluded volume interactions between the particles. This
means that each molecule occupies a volume V where no
other molecule can be at the same time. We start with a
known initial drug concentration and with randomly distrib-
uted drug molecules inside the cylinder.

We first consider a three-dimensional lattice in the form
of a cube with L3 sites. We next define inside this cubic lattice
a cylinder. A site is uniquely defined by its 3 indices i,j,k
(coordinates). We label sites as follows (r is the radius of the
cylinder):

If i2 + j2 < (r − 1)2 then it belongs to the interior of the
cylinder and it can host drug molecules. If, on the other hand,
i2 + j2 > r2 then it is outside the cylinder; it is marked as a
restricted area, and particles are not allowed to go there; see
Fig. 2 for a schematic. Finally, we label leak sites. We can
label as leak sites as many surface sites as we want. For ex-
ample, in order to obtain the results presented in Fig. 4, we
labeled as leak sites the sites with indices (r − 1)2 � i2 + j2 �
r2, thus defining a cylinder leaking from its round surface but
not from its top or bottom, whereas in Fig. 6 we label all
surface sites as leak sites. The simulation method proceeds as
follows: We place a number of particles randomly on the sites
of the cylinder, according to the initial particle concentration

Fig. 1. Schematic of a system that is used to follow the Higuchi law.
(a) Initial configuration of the system; (b) evolution after time t.
Particles are allowed to leak only from the right side of the system.

Fig. 2. A cylindrical cross section with radius r � 30 sites. The dark
area is restricted to particles. The gray area indicates the leaking sites.
The white area is where the drug particles are initially located. Each
site in the white area can be either occupied or empty.
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c, avoiding double occupancy. For example c � 0.5 means
that 50% of the sites are initially occupied by particles, and
the rest are empty. The diffusion process is simulated by se-
lecting a particle at random and moving it to a randomly
selected nearest neighbor site. If the new site is an empty site,
then the move is allowed, and the particle is moved to this
new site. If the new site is already occupied, the move is
rejected (since we assume excluded volume interactions). A
particle is removed from the lattice as soon as it migrates to a
site lying within the leak area. We count time using the same
method as in the previous section (Higuchi law simulation).
We average our results using different initial random configu-
rations but the same parameters.

Simulations for the Drug Release Problem from
Spherical Matrices

The simulation technique used is the same as above, the
only difference being that now sites with indices i2 + j2 + k2 >
r2 are considered outside of the sphere and marked as a re-
stricted area while leak sites are those whose indices satisfy
the inequalities

�r − 1�2 � i2 + j2 + k2 � r2.

RESULTS AND DISCUSSION

Our simulation results verify the Higuchi law. In Fig. 3
we show the function (1 − N/N0) vs. time. The slope of the line
is equal to 0.51, which is very close to the value 0.50 expected

by the Higuchi law. We observe that the Higuchi law (1) and
the Weibull function are apparently quite different in form.
The Higuchi law is valid for very dense systems. Figure 3
demonstrates that the Higuchi law can be derived from our
simulation model as a “short” time case (60% of the release
data) of such a system. This approximation is in good agree-
ment with the analysis of Siepmann and Peppas (10).

We now use the theoretically derived Weibull function in
combination with our simulation results in order to:

a. Check if the Weibull can describe the simulation data.
b. Obtain some physical insight for the meaning of the

Weibull parameters � and b.
c. Discuss the relevance of the power law to the Weibull

function model.

Figure 4 shows our simulation results for four cylinders
of different sizes. In all cases it is possible to achieve a quite
accurate fitting of the simulation results for N(t) using the
stretched exponential law. It turns out that the stretched ex-
ponent b takes values in the range 0.69 to 0.75. Figure 5 shows
that the fitting is very accurate, especially at the beginning,
and it remains quite good until all of the drug molecules are

Fig. 3. Log-log plot of 1 − N/N0 vs. time (Monte Carlo units). We
present simulation results (points) and linear fitting (solid line). The
slope of the line n � 0.51 corresponds to the exponent of the Higuchi
law. The theoretical prediction is 0.50. We plot the initial 60% of the
release data.

Fig. 4. Number of particles inside a cylinder as a function of time. (1)
Cylinder with height of 31 sites and diameter 16 sites. Number of drug
molecules N0 � 1,750. (2) Cylinder with height 7 sites and diameter
31 sites. Number of drug molecules N0 � 2,146. (3) Cylinder with
height 5 sites and diameter 41 sites. Number of drug molecules N0 �

2,843. (4) Cylinder with height 51 sites and diameter 21 sites. Number
of drug molecules N0 � 6,452.
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released. We may summarize our results as follows. The num-
ber of particles that have escaped from a matrix is equal to

Q�t� = N0 − N�t� = N0 �1 − exp�−� t b�� (9)

where � and b are parameters that have to be experimentally
determined. We have been able to verify the above relation
using Monte Carlo simulations by assuming that the particles
perform a random walk inside the matrix and by taking into
consideration excluded volume interactions. References 21
and 22 include experimental data fitted to Weibull functions.
In Ref. 21 the authors explicitly study release from coated
theophylline particles and present results from an experimen-
tal drug release study for different values of coating and plas-
ticizer added to the coating polymer. The values of b expo-
nent are in all cases in the range of 0.54 to 1.18, depending on
the amount of coating and plasticizer. The higher value is
found in the absence of plasticizer and coating, and it can be
explained if we take into account that in this case there is an
additional release mechanism related to the erosion of the
release device and the penetration of water into the release
capsule. When a film coating and the proper amount of plas-
ticizer cover the release device, this second release mecha-

nism ceases to be important, and the release is more or less
Fickian. In these cases the experimentally determined expo-
nents are within the range predicted in our simulations.

As already indicated in the theory section, Ritger and
Peppas (3,4) have proposed the power law model, which is
believed to describe accurately the release at short times.
According to that model release is described by Eq. 2. This
power law model is being successfully used in order to de-
scribe Fickian release. It is valid when the exponent n has
values close to 0.5. For Case II release, n must be around 1.0,
and anomalous diffusion prevails for 0.5 < n < 1. It is easy to
show that the two models (Eqs. 2 and 9) coincide for small
values of t. For small values of x we can use the approximation
e−x ∼ 1 − x (Taylor expansion). From Eq. 9, setting x = at b,
one gets (for small values of � t b)

Q�t��N0 = 1 − �1 − a tb� = a tb (10)

which has the same form as the power law model. (Note that
Q(t)/N0 is directly linked to Mt /M�.) For this approximation
to hold, the quantity (at b) has to be small. This does not mean
that t itself must be small. As long as � is small, t may take
larger values, and the approximation will still be valid. Pub-
lished results using the power law (13,23) calculate the value
of the power law exponent using data up to point when 60%
of the release is completed. The small time approximation is
not valid for such long time intervals (more terms should be
considered in the Taylor expansion of e−x). Thus, the values
of the power law parameters from results (13,23) will not be
the same as the Weibull function parameters in case one uses
the Weibull function to describe the same experimental data.

Figure 5 shows simulation results and fittings with the
Weibull and the power law model. Obviously, the Weibull
model describes quite well all release data, whereas the power
law diverges after a certain point in time. Of course, both
models can describe equally well experimental data for the
initial part of the release curve.

In Fig. 6 we present results of a release simulation in
which we have allowed the cylinders to leak from their entire
surface, i.e., round, top, and bottom parts. The two cylinders
have similar specific surface, i.e., surface-to-volume ratio. In
fact, one has a specific surface equal to 0.271 and the other
equal to 0.277. They can both be fitted to a Weibull function,
and as anticipated, the Weibull parameters are also almost
the same in both cases (namely � � 0.073 and b � 0.71 for
the first case and � � 0.074 and b � 0.71 for the second case).

The parameters � and b are somehow connected to the
geometry and size of the matrix that contains the particles. To
investigate this connection we performed release simulations
for several cylinder sizes and for several initial drug concen-
trations. We fitted our results using the Weibull function
model. We denote as Nleak the number of leak sites and Ntotal

the total number of sites. In the continuum limit the ratio
Nleak/Ntotal is proportional to the leak surface of the system.
Plots of � vs. Nleak /Ntotal (Fig. 7) are independent of the initial
drug concentration and are straight lines, so we may assume
that � in our model is proportional to the specific leak surface.
In Fig. 7 the slopes of curves are in the range of 0.30 to 0.35
(values of a linear fitting). Further, if we impose that a(0) � 0
the corresponding slopes are in the range 0.26 to 0.30. The
value of the slope can be explained as follows, using the math-
ematical model presented in the theoretical section. In order

Fig. 5. Number of particles inside a cylinder as a function of time.
Dotted line, simulation for cylinder with height 21 sites and diameter
21 sites; number of drug molecules N0 � 2,657. Thin solid line, plot
of curve n � 2,657 exp(−0.049 t0.72) (Weibull model fitting). Dashed
line, plot of curve n � 2,657(1 − 0.094 t 0.45) (power law fitting).
Weibull function describes simulation data more accurately till the
end of the release.
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to derive the Weibull distribution, we assumed �q 5. From the
simulation we found that a N � 0.28(Nleak /Ntotal). Assuming
a uniform distribution of particles, Nleak /Ntotal is the probabil-
ity that a particle is at a site that is just one step from the exit.
Thus, (Nleak /Ntotal) is the mean number of particles that are
able to escape at a given instance. Because there are six neigh-
boring sites in the three-dimensional space, the probability
that a particle will make the escaping step is 1/6 (∼0.17). It is
quite close to the 0.28 value of the simulation. The difference
results from the fact that the distribution of particles is not
uniform because of the concentration gradient that is created
near the exits.

We plot b vs. Nleak /Ntotal (Fig. 8). Notice again that the
slope of b is practically independent of the initial concentra-
tion. Considering it to be a straight line, we find that b � 0.65
+ 0.4 Nleak /Ntotal. We see that there are two terms contribut-
ing to b. One depends on the Nleak/Ntotal, and the other does
not. Actually b is expected to be proportional to the specific
surface because a high specific surface means that there are a

lot of exits, so finding an exit is easier. The constant term is
expected to depend on the ability of the particles to move
inside the matrix, the interaction between the particles, etc.

In Figs. 7 and 8 we have also included the parameters �
and b resulting from our simulation method for spheres (in-
stead of cylinder) with initial drug concentration c � 0.5. As
we can see, the simulation results imply that the parameter �
seems independent of the geometry of the device. For the
parameter b we see that although the slope seems indepen-
dent of the geometry, the y-intercept is slightly less for a
sphere than for a cylinder. This fact is in agreement with
Siepmann and Peppas’s (10) remarks for the power law
model, where the power law exponent for a sphere is slightly
less than that for a cylinder.

An interesting question now arises: If we know the prop-
erties of the polymer matrix and the properties of the drug
molecule, is there a way to calculate the parameters of the
Weibull model? We note that computer simulations use a
Monte Carlo length and time scale. In order to study a cyl-
inder we divide it in small cells. Because we study Fickian
diffusion, each cell length can be considered to be equal to the
mean free path �l of the molecules (We do not know the
mean free path, but a good approximation is to consider it of
the same order of magnitude as the intermolecular distances
of the matrix). The same holds for the time scale, which we
may consider equal to the mean free time 	. Thus, a proce-
dure to estimate release from cylinders is the following.

First, one may estimate the mean free time knowing the
mean free path and the diffusion coefficient by the definition

Fig. 6. Number of particles inside a cylinder as a function of time.
The cylinder is allowed to release from its round surface, top and
bottom. Triangles, cylinder with height h � 31 sites and diameter d �

19 sites; number of drug molecules N0 � 2,857. Squares, cylinder with
height h � 21 sites and diameter d � 21 sites; number of drug
molecules N0 � 2,404. Both cylinders have almost the same specific
surface. Fitting of the Weibull function to data gives the same values
for parameters � and b as anticipated (� � 0.07, b � 0.71 in both
cases.)

Fig. 7. Parameter � vs. Nleak /Ntotal for various initial drug concentra-
tions c. Slope of the curves is ∼0.28 in all cases. Note that higher
values of Nleak /Ntotal correspond to smaller cylinder sizes. Computa-
tional errors become more significant when cylinder size is decreased.
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D =
��l)2

2	
. (11)

It is difficult to calculate or measure the mean free path ex-
actly. However, reasonable approximations can be done, as
pointed out above.

Second, we calculate

Nleak

Ntotal

using

Nleak

Ntotal
=

S

V
�l

where S/V is the specific surface of the cylinder.
Third, knowing

Nleak

Ntotal

we calculate the � and b parameters using the above derived
relationships.

Finally, the release from a cylinder may be estimated as
follows:

Mt

M�

≈ 1 − exp�−0.28 ��
S

V
� t

	
�0.65+0.4�l

S

V� (12)

We can now answer several interesting questions. For ex-
ample, we can predict the effect that an increase in tempera-
ture will have on the release. An increase in temperature will
increase the drug particles’ average speed and thus will de-
crease the mean free time 	. Thus, the release will be faster,
and we may use Eq. 12 to estimate quantitatively how much

faster. Of course, temperature has many other effects on real
matrices. However, the Weibull model, as presented here, is
the only semiempirical model that takes into account the sim-
plest temperature effect. This is an advantage compared to
the widely used power law model. Surely there are limitations
in using Eq. 12 for practical purposes because there are no
published values of the mean free path and mean free time of
diffusive movement of drugs inside polymer matrices, and
such measurements are not easy to perform. Also, for each
particular geometry, the apparent specific surface S/V will be
different from the actual active specific surface, first, because
of the surface microstructure, and second, because of the pos-
sibility that some surface elements do not serve as leak sites.
Equation 12 simply provides a link between the Weibull
model and the physical kinetics of the release procedure.

CONCLUSIONS

We derived the Higuchi law as a limiting case of the
diffusion process for a very dense system using Monte Carlo
simulations. We have described drug release from a cylindri-
cal matrix as a result of a diffusion process assuming excluded
volume interactions between the drug molecules using Eq. 7,
in which � is strongly dependent on the specific surface of the
matrix, and b is subject to two influences. The more signifi-
cant is the one resulting from the particle interactions and
their ability to move inside the matrix, and a weaker contri-
bution is that from the specific surface. Our simulation results
reveal that:

1. Both � and b are very weakly dependent on the initial
concentration of particles.

2. The power law may be considered as a short-time
approximation of Eq. 3.

The above results substantiate the use of the Weibull
function in drug release studies (13) and underline the role of
the specific surface during the release processes. The role of
the specific surface is not new (24). Its importance is known
from experimental data and verified from our simulation re-
sults. But the other existing semiempirical models do not ex-
plicitly predict a dependence of their parameters on the spe-
cific surface.
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