
A Reasoner for Simple Conceptual Logic
Programs?

Stijn Heymans, Cristina Feier, and Thomas Eiter

Knowledge-Based Systems Group, Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 9-11, A-1040 Vienna, Austria
{heymans,feier,eiter}@kr.tuwien.ac.at

Abstract. Open Answer Set Programming (OASP) can be seen as a
framework to represent tightly integrated combined knowledge bases of
ontologies and rules that are not necessarily DL-safe. The framework
makes the open-domain assumption and has a rule-based syntax sup-
porting negation under a stable model semantics. Although decidability
of different fragments of OASP has been identified, reasoning and effec-
tive algorithms remained largely unexplored. In this paper, we describe
an algorithm for satisfiability checking of the fragment of simple Con-
ceptual Logic Programs and provide a BProlog implementation. To the
best of our knowledge, this is the first implementation of a (fragment) of
a framework that can tightly integrate ontologies and non-DL-safe rules
under an expressive nonmonotonic semantics.

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has re-
ceived considerable attention over the past years with tightly-coupled approaches
such as Description Logic Programs [7, 13]1, DL-safe rules [14], r-hybrid knowl-
edge bases [16], DL+log [15], and Description Logic Rules [12], as well as loosely-
coupled approaches such as dl-programs [4]. In [8], we proposed a tightly-coupled
approach to combine knowledge bases using a similar semantics as Rosati’s r-
hybrid knowledge bases. However, instead of syntactically restricting the rule set
to DL-safe2 rules, we required the rule set to fall into a decidable fragment of
Open Answer Set Programming (OASP) [11].

OASP is a language that combines attractive features from both the DL and
the Logic Programming (LP) world: an open domain semantics from the DL
side allows for stating generic knowledge, without mentioning actual constants,
? A preliminary version of this work, without the implementation, was presented at

the 3rd Int. Workshop on Applications of Logic Programming to the (Semantic) Web
and Web Services (ALPSWS 2008) for a limited audience.

1 Note that even though the approaches of [7] and [13] carry the same name, they are
different.

2 A rule is DL-safe if each variable appears positively in a non-DL atom, where a
non-DL atom is an atom that is not formed using a DL concept as predicate.

and a rule-based syntax from the LP side supports nonmonotonic reasoning via
negation as failure. Decidability of several fragments of OASP was identified
by syntactically restricting the shape of logic programs, while carefully safe-
guarding expressiveness, e.g., Conceptual Logic Programs (CoLPs) [9] and Forest
Logic Programs (FoLPs) [10].

Decidability of combined knowledge bases KB = 〈Φ, P 〉, where Φ is a theory
in a DL DL and P is a program in a decidable fragment L′ of OASP, can then be
shown whenever DL is reducible to L′. For example, if Φ is a SHIQ DL theory
and P is a CoLP, KB can be translated to a CoLP P ′ such that satisfiability is
preserved. Relying on such OASP fragments, rules can then deduce results about
anonymous individuals, in contrast with (weakly) DL-safe rules where deductions
are only taking into account the instances in the knowledge base. OASP is thus
a suitable alternative integrative formalism for both ontologies and rules. To
make it a suitable implementation vehicle though, the lack of effective reasoning
procedures for decidable fragments of OASP has to be overcome.

In this paper, we describe a terminating, sound and complete algorithm for
satisfiability checking in a fragment of Conceptual Logic Programs, and report
on a prototype implementation.

The major contributions of the paper can be summarized as follows:

– We identify a fragment of Conceptual Logic Programs (CoLPs), called simple
CoLPs, that are expressive enough to simulate the DL ALCH.

– We define an algorithm for deciding satisfiability, inspired by tableaux-based
methods from DLs, that constructs a finite representation of an open answer
set. We show that this algorithm is terminating, sound, complete, and runs
in nondeterministic exponential time.

– We provide a prototypical implementation in BProlog [2]. Note that, to
date, this provides the basis for the first implementation of a non-trivial
tightly-coupled approach that supports a minimal model semantics and is
not depending on (a variant of) DL-safeness.

Detailed proofs and discussion of related work can be found in [5].

2 Preliminaries

We recall the open answer set semantics from [11]. Constants a, b, c, . . ., variables
X,Y, . . ., terms s, t, . . ., and atoms p(t) are defined as usual. A literal is an
atom p(t) or a naf-atom not p(t). For a set α of literals or (possibly negated)
predicates, α+ = {l | l ∈ α, l an atom or a predicate} and α− = {l | not l ∈
α, l an atom or a predicate}. For a set X of atoms, not X = {not l | l ∈ X}.
For a set of (possibly negated) predicates α, we will often write α(x) for {a(x) |
a ∈ α} and α(x, y) for {a(x, y) | a ∈ α}.

A program is a countable set of rules α ← β, where α and β are finite sets
of literals. The set α is the head of the rule and represents a disjunction, while
β is called the body and represents a conjunction. If α = ∅, the rule is called a
constraint. Free rules are rules q(X) ∨ not q(X)← for variables X; they enable

a choice for the inclusion of atoms. We call a predicate q free in a program if
there is a free rule q(X) ∨ not q(X)← in the program. Atoms, literals, rules,
and programs that do not contain variables are ground. For a rule or a program
χ, let C(χ) be the constants in χ, V(χ) its variables, and P(χ) its predicates with
P1(χ) the unary and P2(χ) the binary predicates. A universe U for a program P
is a non-empty countable set U ⊇ C(P). We denote by PU the ground program
obtained from P by substituting every variable in P by every possible element in
U . Let BP (LP) be the set of atoms (literals) that can be formed from a ground
program P . An interpretation I of a ground P is any subset of BP and it is an
answer set of P if the usual definition holds, see, e.g., [6].

In the following, programs are assumed to be finite; infinite programs only
appear as byproducts of grounding a finite program with an infinite universe. An
open interpretation of a program P is a pair (U, M) where U is a universe for P
and M is an interpretation of PU . An open answer set of P is an open interpre-
tation (U, M) of P with M an answer set of PU . For example, an open answer
set of the rules p ← not q(X), p ← not p, and q(a) ← is ({a, b}, {q(a), p}).
Note that if the universe U is constrained to {a}, the set of constants appearing
in the rules, the set of rules is inconsistent, i.e., there is no answer set. An n-ary
predicate p in P is satisfiable, if there is an open answer set (U, M) of P and a
x ∈ Un such that p(x) ∈M .

We define trees as tuples T = (NT , AT), with NT the set of nodes of the
T , and AT the set of edges of T . We denote the root of T with ε. For a node
x ∈ NT , we denote with succT (x) the successors of x. The arity of T is the
maximum number of successors any node has in T . For x, y ∈ NT , x ≤ y iff x is
an ancestor of y (possibly x = y). As usual, x < y if x ≤ y and y 6≤ x.

3 Simple Conceptual Logic Programs

In [9], Conceptual Logic Programs (CoLPs), were defined as a syntactical frag-
ment of logic programs for which satisfiability checking under the open answer
set semantics is decidable. We restrict this fragment by disallowing the occur-
rence of inequalities and inverse predicates, and by restricting the dependencies
between predicate symbols which appear in the program.

Definition 1. A simple conceptual logic program (simple CoLP) is a program
with only unary and binary predicates, without constants, and such that any rule
is either (i) a free rule, (ii) a unary rule

a(X)← β(X),
(
γm(X ,Ym), δm(Ym)

)
1≤m≤k

(1)

where for all m, γ+
m 6= ∅, or (iii) a binary rule

f (X ,Y)← β(X), γ(X ,Y), δ(Y) (2)

with γ+ 6= ∅.
Furthermore, for such a set of rules P , let D(P) be the marked predicate

dependency graph: D(P) has as nodes the predicates from P and as edges tuples

(p, q) if there is either a rule (1) or a rule (2) with a head predicate p and a
positive body predicate q. An edge (p, q) is marked, if q is a predicate in some δm

for rules (1), respectively δ for rules (2). In order for P to be a simple CoLP,
D(P) must not contain any cycle that has a marked edge.

Intuitively, the free rules allow for a free introduction of atoms (in a first-order
way) in answer sets; unary rules consist of a root atom a(X) that is motivated
by a syntactically tree-shaped body, and binary rules motivate f(X, Y) for x and
its ‘successor’ Y by a body that only considers literals involving Y and Y . The
restriction on D(P) ensures that there is no path from some p(x) to some p(y)
in the positive atom dependency graph of PU , where p ∈ P1(P), and x, y are
from an arbitrary universe U . Indeed, observe that any marked cycle in D(P)
contains a unary predicate and thus corresponds to a path from some p(x) to
some p(y) in the atom dependency graph of PU . Consider the program P :

r1 : a(X)← b(X), f (X ,Y),not a(Y)
r2 : b(X)← a(X)
r3 : f (X ,Y)← g(X ,Y), b(Y)

The marked dependency graph is depicted in Figure 1.

a b

f g

*

Fig. 1. Marked dependency graph of a CoLP P

There is a single marked edge in D(P), viz. the edge (f, b). Although the
cycle (a, b, a) does not contain any marked edge, the cycle (a, f, b, a) contains
the marked edge (f, b) and thus P is not a simple CoLP. If we leave r3 out, the
remaining program is a simple CoLP . Intuitively, simple CoLPs allow for local
recursion (through X) and non-local negative recursion (through Y , see r1), but
not for non-local positive recursion.

As satisfiability checking of CoLPs is exptime-complete [9], checking satis-
fiability of simple CoLPs is in exptime. Moreover, using a similar simulation
of DLs as in [9], one can show that satisfiability checking of ALCH3 concepts
w.r.t. a ALCH TBox can be reduced to satisfiability checking of a unary predi-
cate w.r.t. a simple CoLP. Thus, satisfiability checking of unary predicates w.r.t.
simple CoLPs is exptime-complete.
3 For a definition of ALCH, we refer the reader to [3].

4 Illustration of the Algorithm

Before formally defining the algorithm for satisfiability checking of a unary pred-
icate p w.r.t a simple CoLP P , we show an example run of the algorithm.

As in tableaux algorithms for Description Logics, the algorithm’s basic data
structure is a labeled tree where the labels are sets of positive and negative
predicates. Indeed, the algorithm essentially tries to construct a tableau for the
predicate and the program, thus representing an open answer set by a finite
structure. Additionally – to take care of minimality – we keep track of the
dependencies between atoms by means of a dependency graph.

Expansion rules expand the labeled tree in accordance with the simple CoLP,
to construct a partial open answer set, based on the following principles.

1. The occurrence of a positive predicate p in a label has to be motivated by
making the body of a rule with head predicate p true in the labeled tree.
This principle is similar to the principle of foundedness in ordinary Answer
Set Programming. We keep track of those dependencies in a positive atom
dependency graph that must be acyclic (no atom can motivate itself).

2. The occurrence of a negative predicate not p has to be justified by showing
that no body of a rule with head predicate p is true in the labeled tree. This
ensures satisfaction of rules.

Applicability rules constrain the use of expansion rules:

– We can only expand nodes that have a saturated parent node, i.e., the parent
node has to be fully expanded: it should contain either positive or negative
information about all unary predicates in its label and about all binary
predicates in its outgoing edges, and no expansion rules are applicable on
that parent node.

– Similarly as in DL tableaux, we have a blocking rule, that takes care of
stopping an expansion on a node x if the label of an ancestor y of x, y < x,
subsumes the label of x. We thus avoid infinite expansions, and represent a
possibly infinite open answer set by a finite structure.

– Additionally, the caching rule prohibits to expand a node if the label of a
node somewhere else in the tree (thus, not necessarily an ancestor) subsumes
the current label. They are not necessary to make the algorithm sound,
complete, and terminating, but they make the completion tree smaller.

The algorithm succeeds (p is satisfiable w.r.t. to P), if a labeled tree T and
a dependency graph G can be built such that the tree does not contain labels
with contradiction (for example, not p and p in one label) and the dependency
graph is not cyclic.

As an example we take the simple CoLP P and check satisfiability of a ∈
P1(P):

r1 : a(X)← f (X ,Y1), b(Y1),not f (X ,Y2), g(X ,Y2), b(Y2)
r2 : b(X)← f (X ,Y),not c(Y)
r3 : c(X)← not b(X)

with f and g free.
The initially labeled tree consists of a single node ε with label a:

ε {au}

The dependency graph G contains the corresponding atom a(ε). Note that we
draw the tree with each predicate in the label superscripted with an indication
of its expansion status – au means a is unexpanded.

Recall that we want to construct a (partial) open answer set. As in ordinary
ASP, an atom that is in an (open) answer set has to be motivated by a rule, i.e.,
there has to be a rule with head predicate a that has a true body. The Expand
Unary Positive rule does exactly this (see (i) in Section 5.1): it selects a rule
with head predicate a and expands the labeled tree according to the body of
the rule. In the example, the only relevant rule is r1. To make its body true, we
extend the tree with 2 successors (corresponding to Y1 and Y2), such that both
successors are labeled with b and its edges with f , and not f and g respectively:

ε

1

{fu}

2

{not fu, gu}

{ae}

{bu} {bu}

The predicate a is now expanded; the root has two children, 1 and 2, with the
unexpanded b in their label as well as unexpanded binary predicates on the
outgoing edges.

The root node is not saturated yet (see (vii) in Section 5.2), i.e., there are
unary predicates in P of which we do not have a positive or negative occurrence
in the label, neither have all choices been made for ε’s outgoing edges and the
binary predicates in P . Moreover, there are predicates in the successors of the
root that are not expanded yet. Thus, we cannot start expanding the root’s
children.

Note that all binary positive predicates in the outgoing edges from ε are free
such that they are trivially minimally motivated (we do not need to make any
bodies true to motivate the presence of either f or g). Remains the negative
predicate not f on the edge (ε, 2). In order to justify the presence of not f , one
has to negate the bodies of all binary rules that have f as head predicate. As
there are no such rules, not f can be set to expanded and considered justified.

The root is still not saturated after the above operations (it does not contain
all positive or negative versions of the unary predicates). In order to mend this,
we choose a unary predicate (see (iii) in Section 5.1). The algorithm picks a
predicate, b for example, and adds its negation to the content of ε. Note that
the algorithm can pick either b or not b. Currently, we use the naive heuristics,
though, that it is more likely that something is not in a node.

Additionally to its unexpanded superscript u, we keep track of all the rules
with head b (in this case only r2). Recall that we are trying to construct a

partial open answer set with as a universe (part of) the tree we are constructing.
In the example, the universe is currently ε, 1, and 2. Intuitively, the negative
presence of b has to be justified by making sure all bodies, ground with this
universe, of rules that have head predicate b are made false. Otherwise, there
would be a rule that has a true body and thus forces us to introduce b instead
of not b. In the example program, the body of r2 is f(X, Y),not c(Y) which
becomes true for the current tree, if there is a successor of ε that connects with
ε via f and where not c holds. Thus, in order to make sure that this body
does not become true, we have to enforce that for each successor of ε either it
is not connected via f or its label contains c. The example is simplistic: if the
body would be f(X, Y1), c(Y1), g(X, Y2), d(Y2) one would need to show for each
2 successors y1, y2 of ε (the node with which X is unified) that f is not present
on the outgoing edge to y1 or that c is not in the label of y1 or that g is not
present on the outgoing edge to y2 or that d is not in the label of y2.

Note that in order to justify a negative unary predicate, we need knowledge of
all possible successors of a node. We only obtain this knowledge after all positive
unary predicates that are or will be appearing in this node have been expanded
(recall that positive unary predicates might introduce new successors, as did
a). The algorithm thus tries to complete the node first with either negative or
positive predicates, and only starts expanding negative predicates if all positive
ones have been expanded. In the current tree, we are thus still missing a choice
for c. By default, we again choose not c which has to be justified by r3.

ε

1

{fe}

2

{not fe, ge}

{ae,not bu,r2 ,not cu,r3}

{bu} {bu}

Now, all unary predicates are present in ε and all positive ones (a) are ex-
panded, i.e., with the current label no more successors can be introduced, such
that we can start expanding the negative predicates. We choose to justify not c
in the root ε by making the body of r3 false, i.e., b has to be in ε. Clearly, this
would cause a contradiction, such that we backtrack on the choice for c and
include c in ε. Now, there is a positive predicate c that is not yet expanded, such
that before expanding not bu,r2 , we have to expand c as c might introduce new
successors that influence the justification of not b. Clearly, c can be motivated,
using r2, as not b is present in ε.

Thus, we can now justify not bu,r2 , i.e., for each successor of ε we need that
either f is not present in the outgoing edge or c has to be present in the label
of that successor (see rule (ii) in Section 5.1). Thus, as not f is already in the
label of the edge from ε to 2 and f is in the label of the edge from ε to 1 , we
only have to add the unexpanded c to 1. We have the following tree:

ε

1

{fe}

2

{not fe,ge}

{ae,not be, ce}

{bu, cu} {bu}

To finally saturate ε one can see that either g or not g is missing in the edge
(ε, 1). The Choose a Binary Predicate rule (see (vi) in Section 5.1) adds not g.

ε

1

{fe,not ge}

2

{not fe,ge}

{ae,not be, ce}

{bu, cu} {bu}

Now, one can see that to expand cu in node 1 one needs not b in 1, by r3.
However, bu is already present. The algorithm backtracks, i.e., removes not ge

again, removes ce again, up until the wrong choice of the Choose a unary predi-
cate rule, to introduce bu instead of not bu,r2 .4 Expanding this bu using rule r2

introduces not cu in node 1, and choosing not c in ε and 1 and not g in the edge
(ε, 1), leads to

ε

1

{fe,not ge}

2

{not fe,ge}

{ae, be,not ce}

{bu,not cu,r3} {bu}

Now that ε is saturated, one can consider node 1. One sees that the label of
1 is a subset of the label of ε (not taking into account the expansion status),
and, intuitively, one can use the expansions used on ε to further expand 1 simi-
larly. This technique is called blocking and is similar to the blocking used in DL
tableaux methods: node 1 is blocked by ε.

Due to the condition on simple CoLPs that D(P) does not contain cycles
with marked edges, one can construct an open answer set by rolling out at 1 the
subtree that resides at ε. Similarly, one can see that node 2 is blocked by ε as
well.

The constructed dependency graph G is

{(a(ε), f(ε, 1)), (a(ε), b(1)), (a(ε), f(ε, 2)), (a(ε), b(2)), (b(ε), f(ε, 1))}

i.e., the graph that keeps track of the positive dependencies. We thus have con-
structed a labeled tree where no rules are applicable anymore, that does not

4 Note that if we would have picked not c before not b above, we could have avoided
this backtracking. It is future work to investigate how to optimize backtracking.

contain contradictions, and where the dependency graph is acyclic. The algo-
rithm concludes that a is satisfiable w.r.t. P . This is indeed correct.

If we replace in P the rule r1 with

r ′1 : a(X)← a(X), f (X ,Y1), b(Y1),
not f(X, Y2), g(X, Y2), b(Y2)

we end up with the same labeled tree; however, the dependency graph G′ is
G∪ {(a(ε), a(ε))} and thus cyclic. One can check that a is indeed not satisfiable
w.r.t. P , as no open answer set exists that contains some a(x).

Note that we make extensive use of the choose rules and the concept of
saturation to complete the labels of nodes such that they contain either the
negative or positive versions of all unary predicates in the program (and similarly
for binary predicates in the edges). Assume we would not do such a completion,
i.e., we would drive the expansion of the nodes purely on what is entailed by
the predicate p to satisfy and would not choose predicates that we apparently
do not need to satisfy p.

Such a driven computation would not guarantee the global satisfaction of
the program. Instead, it explores a partial solution pattern that would be able
to satisfy a predicate. To make sure that this partial solution pattern can be
extended to an open answer set, we have to complete it repeatedly. For example,
if in the example program, we would add a rule d(X)← not d(X) the program
would not have any open answer sets. However, an expansion that starts with
a and does not make choices for the “non-relevant” predicate d would wrongly
succeed. Thus, we need to make a choice for d or not d in every node. Once we
do, one would not be able to construct a labeled tree without contradictions.

In tableaux methods for DLs, one does not have this problem. The TBox
(the program in our setting) is usually internalized and the satisfiability of the
resulting concept is checked. There is no need to make extensive nondeterministic
choices for each concept name in this concept expression.

5 Algorithm

In this section, we define a sound, complete, and terminating algorithm for sat-
isfiability checking w.r.t. simple CoLPs.

For every non-free predicate q and a simple CoLP P , let Pq be the rules of P
that have q as a head predicate. For a predicate p, ±p denotes p or not p, whereby
multiple occurrences of ±p in the same context refer to the same symbol (either
p or not p). The negation of ±p (in a given context) is ∓p, that is, ∓p = not p
if ±p = p and ∓p = p if ±p = not p.

The basic data structure for our algorithm is a completion structure.

Definition 2. A completion structure for a simple CoLP P is a tuple 〈T, G,
ct, st〉 where T = (NT , AT) is a tree, G = 〈V,A〉 is a directed graph with
nodes V ⊆ BPNT

and edges A ⊆ V × V , and ct : NT ∪ AT → 2P(P)∪not(P(P))

and st : {(x,±q) | ±q ∈ ct(x), x ∈ AT } ∪ {(x, q) | q ∈ ct(x), x ∈ NT } ∪

{(x,not q, r) | not q ∈ ct(x), x ∈ NT , r ∈ Pq} → {exp, unexp} are labeling
functions.

The tree T together with the labeling functions is used to represent/construct
a tentative tree-shaped open answer set, where NT represents the tentative uni-
verse. G = 〈V,A〉 is a directed graph which helps to keep track of dependencies
between atoms in the constructed model, where V represents the tentative model
(such a structure enables checking of the minimality requirement: no atom should
depend on itself). The role of the labeling functions is as follows:

– The content function ct maps a node of the tree to a set of (possibly negated)
unary predicates and an edge of the tree to a set of (possibly negated) binary
predicates such that ct(x) ⊆ P1(P) ∪ not(P1(P)) if x ∈ NT , and ct(x) ⊆
P2(P) ∪ not(P2(P)) if x ∈ AT . The presence of a predicate symbol p (resp.
negated predicate symbol not p) in the content of some node/edge x of T
indicates that p(x) is part (resp. not part) of the tentative model represented
by T .

– The status function st attaches to every (possibly negated) predicate which
appears in the content of an edge x and every positive predicate in the
content of a node x a status value which indicates whether the predicate
has already been expanded in that node/edge. As indicated in Section 4,
for negative predicates in nodes, we additionally keep track of the rule that
justifies the negative occurrence.

The algorithm starts with defining an initial completion structure which ba-
sically captures the constraint that p, the predicate checked to be satisfiable is
in the content of some node x, or in other words p(x) is in the open answer set
for some individual x.

Definition 3. An initial completion structure given a unary predicate p and a
simple CoLP P is a completion structure 〈T, G, ct, st〉 with T = (NT , AT),
NT = {ε}, AT = ∅, G = 〈V,A〉, V = {p(ε)}, A = ∅, ct(ε) = {p}, and
st(ε, p) = unexp.

Next, we show how to evolve by means of expansion rules an initial comple-
tion structure of p and P to an expanded clash-free structure that corresponds
to a finite representation of an open answer set in case p is satisfiable w.r.t. P .
Applicability rules state the necessary conditions to to apply these expansion
rules. Note that when multiple expansion rules can be applied, one is chosen
non-deterministically.

5.1 Expansion Rules

The expansion rules update the completion structure by making explicit what
is needed for justifying the presence or absence of a certain atom in the par-
tial model represented by the current completion. We first define a recurring
operation in the expansion rules which describes the necessary updates in the

completion structure whenever justifying a literal l in the current model imposes
the presence of a new literal ±p(z) in the model. In such a case ±p is inserted
in the content of z if it is not already there and marked as unexpanded, and in
case ±p(z) is an atom, it should be a node in G. Moreover, if l is also an atom,
a new edge from l to ±p(z) should be created to indicate the dependency of l
on ±p(z) in the model. Formally:

– if ±p /∈ ct(z), then ct(z) = ct(z) ∪ {±p} and st(z,±p) = unexp,
– if ±p = p and ±p(z) /∈ V , then V = V ∪ {±p(z)},
– if l ∈ BPNT

and ±p = p, then A = A ∪ {(l,±p(z))}.

As a shorthand, we denote this sequence of operations as update(l,±p, z);
more general, update(l, β, z) for a set of (possibly negated) predicates β, denotes
∀ ± a ∈ β, update(l,±a, z).

In the following, for a completion structure 〈T, G, ct, st〉, let x ∈ NT and
(x, y) ∈ AT be the node, resp. edge, under consideration.
(i) Expand unary positive. For a unary positive (non-free) p ∈ ct(x) such
that st(x, p) = unexp,

– nondeterministically choose a rule r ∈ Pp of the form (1). The rule will
motivate the presence of p(x) in the tentative open answer set. To this end
we continue by enforcing the body of this rule to be true in the constructed
completion structure.

– for the β in the body of r, update(p(x), β, x),
– nondeterministically pick up (or define when needed) k successors for x,

(ym)1≤m≤k, such that for every 1 ≤ m ≤ k: ym ∈ succT (x) or ym is a new
successor of x and T is updated: NT = NT ∪ {ym}, AT = AT ∪ {x, ym},

– for every successor ym of x, 1 ≤ m ≤ k: update(p(x), γm, (x, ym)) and
update(p(x), δm, ym),

– set st(x, p) = exp.

(ii) Expand unary negative. Justifying a negative unary predicate not p ∈
ct(x) (the absence of p(x) in the constructed model) means refuting the body
of every ground rule which defines p(x) (a body that is true in the constructed
model would otherwise enforce the presence of p(x), a contradiction with the
fact that not p ∈ ct(x)). Formally, for a unary negative not p ∈ ct(x) and a
rule r ∈ Pp of the form (1) and st(x,not p, r) = unexp do one of:

– choose some ±q ∈ β, update(not p(x),∓q, x), and set st(x,not p, r) = exp,
or

– if for all p ∈ P1(P), p ∈ ct(x) or not p ∈ ct(x), and for all p ∈ ct(x),
st(x, p) = exp, then for all yi1 , . . . , yik

such that (1 ≤ ij ≤ n)1≤j≤k, where
succT (x) = {y1, . . . yn}, do one of the following:
• for some m, 1 ≤ m ≤ k, pick up a binary (possibly negated) predicate

symbol ±f from γm and update(not p(x),∓f, (x, yim
)), or

• for some m, 1 ≤ m ≤ k, pick up a unary negated predicate symbol not q
from δm and update(not p(x), q, yim).

Set st(x,not p, r) = exp.

One can see that once the body of a ground version of a unary rule r ∈ Pp, for
which the head term X is substituted with the current node x, is locally refuted,
the bodies of all ground versions of this rule, for which X is substituted with x,
are locally refuted, too. For the other refutation case, all possible groundings of
a rule have to be considered and this is not possible until all successors of x are
known. This is the case when all positive predicates in the content of the current
node have been expanded and no positive predicate will be further inserted in
ct(x). If this condition is met, an iteration over all possible groundings of the
rule r is triggered. For every possible grounding, one of the body literals from
the non-local part of the rule (γs or δs) has to refuted.
(iii) Choose a unary predicate. If for all q ∈ ct(x), st(x, q) = exp, and for
all (x, y) ∈ AT , and for all ±f ∈ ct(x, y), st((x, y),±f) = exp, and there is a
p ∈ P1(()P) such that p /∈ ct(x), and not p /∈ ct(x), then either add p to ct(x)
with st(x, p) = unexp, or add not p to ct(x) with st(x,not p, r) = unexp, for
every rule r ∈ Pp.

In other words, if there is a node x for which all positive predicates in its
content and all predicates in the contents of its outgoing edges have been ex-
panded, but there are still unary predicates p which do not appear in ct(x), one
has to pick such a p and inject either p or not p in ct(x). This is needed for
consistency: it does not suffice to find a justification for the predicate to satisfy,
but one also has to show that this justification is part of an actual open answer
set, which is done by effectively constructing it (cf. end of section 4). We do not
impose that all negative predicate symbols are expanded as that would constrain
all the ensuing literals to be locally refuted.

Similarly to rules (i), (ii), and (iii) one can define the expansion rules for
binary predicates: (iv) Expand binary positive, (v) Expand binary negative, and
(vi) Choose binary.

5.2 Applicability Rules

The applicability rules restrict the use of the expansion rules.
(vii) Saturation. A node x ∈ NT is saturated, if for all p ∈ P1(P), p ∈ ct(x)
or not p ∈ ct(x), and no ±q ∈ ct(x) can be expanded with rules (i-iii), and
for all (x, y) ∈ AT and f ∈ P2(()P), f ∈ ct(x, y) or not f ∈ ct(x, y), and no
±f ∈ ct(x, y) can be expanded with (iv-vi). No expansions should be performed
on a node from T until its predecessor is saturated.
(viii) Blocking. A node x ∈ NT is blocked, if its predecessor is saturated and
there is an ancestor y of x, y < x, s.t. ct(x) ⊆ ct(y).

No expansions can be performed on a blocked node. Intuitively, if there is
an ancestor y of x whose content includes the content of x one can reuse the
justification for y when dealing with x.
(ix) Caching. A node x ∈ NT is cached, if its predecessor is saturated and there
is a non-cached node y ∈ NT such that y £ x, x £ y, and ct(x) ⊆ ct(y).

No expansions can be performed on a cached node. Intuitively, x is not further
expanded, as one can reuse the (cached) justification for y when dealing with x.

5.3 Termination, Soundness, and Completeness

A completion structure is contradictory if either (i) for some x ∈ NT and
a ∈ P1(P), {a,not a} ⊆ ct(x) or (ii) for some (x, y) ∈ AT and f ∈ P2(P),
{f,not f} ⊆ ct(x, y). An expanded completion structure for a simple CoLP P
and p ∈ P1(P), is a completion structure that results from applying the expan-
sion rules to the initial completion structure for p and P , taking into account
the applicability rules, s.t. no expansion rules can be further applied. An ex-
panded completion structure CS = 〈T, G, ct, st〉 is clash-free if: (1) CS is not
contradictory, (2) G does not contain cycles.

One can show that an initial completion structure for a unary predicate
p and a simple CoLP P can always be expanded to an expanded completion
structure (termination), such that, if p is satisfiable w.r.t. P , there is a clash-
free expanded completion structure (completeness), and, finally, that, if there is
a clash-free expanded completion structure, p is satisfiable w.r.t. P (soundness).

Theorem 1. Let P be simple CoLP and p ∈ P1(P). Then, (1) one can con-
struct a finite expanded completion structure by a finite number of applications
of the expansion rules to the initial completion structure for p w.r.t. P , taking
into account the applicability rules, and (2) there exists a clash-free expanded
completion structure for p w.r.t. P iff p is satisfiable w.r.t. P .

The OASP-R system implements the above algorithm in BProlog [2]. The
source code for the program together with some example input programs is
available at http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/.

The implementation is a straightforward translation of the algorithm into
BProlog, using BProlog’s backtracking mechanism to take care of the nondeter-
ministic choices in our algorithm. We chose a Prolog engine for its fast prototype
capabilities and BProlog in particular for it being one of the fastest performing
Prolog engines currently available.5

6 Complexity Results

Let CS = 〈T, G, ct, st〉 be a completion structure and let CS ′ be the com-
pletion structure from CS by removing from NT all blocked and cached nodes
y. There are at most k × l such nodes, where k is bound by |P1(P)| and the
number of non-empty γm (resp. γ) of rules of the form (1) (resp. (2)) and l is
the number of nodes in CS ′. If CS ′ has more than 2n nodes, then there must
be two nodes x 6= y such that ct(x) = ct(y); if x < y or y < x, either x or
y is blocked, which contradicts the construction of CS ′. If x 6< y and y 6< x,
x or y is cached, again a contradiction. Thus, CS ′ contains at most 2n nodes,
so l ≤ 2n. Since CS ′ resulted from CS by removing at most k × l nodes, the
number of nodes in CS is at most (k + 1)2n, and the algorithm has to visit a
number of nodes that is exponential in the size of P . At each visit, executing

5 http://probp.com/performance.htm

an expansion rule or checking an applicability rule can be done in exponential
time. The graph G has as well a number of nodes that is exponential in the size
of P . Since checking for cycles in a directed graph can be done in linear time, we
obtain the following result: the algorithm runs in nondeterministic exponential
time, a nondeterministic variant of the worst-case complexity characterization.
Note that such an increase in complexity is expected. For example, although
satisfiability checking in SHIQ is exptime-complete, practical algorithms run
in double nondeterministic exponential time [17].

6.1 Experimental Evaluation

We investigated the performance of our BProlog implementation on some ex-
ample programs: a set of rules describing family relations and a set of rules
describing a game environment.6

The family program contains 64 rules and 88 predicates; the game program
contains 265 rules and 544 predicates. A run of 1000 satisfiability checks results
in an average of 0.131 seconds for the family program and 15.919 seconds for
the game program, where each satisfiability check resulted in a positive answer.
Time spent goes significantly up when more rules/predicates are present. This
is not surprising as the number of nondeterministic choices increases with the
rules/predicates present. In case predicates are not satisfiable, the location of
the rules that cause the inconsistency is vital. If the inconsistency arises within
the rules high up in the program, satisfiability checking stays under 0.2 seconds
for both example programs; if the inconsistency arises within rules low in the
program, our reasoner does not return within 300 seconds. This difference in
behavior depending on the location of the inconsistency is due to the BProlog
backtracking mechanism and the order in which it solves goals.

Note that adding more rules can actually lead to better results in OASP-R.
For example, using the rules from game+ which extends game by adding rules
in the beginning, one gets an average of 13.686 seconds per satisfiability check,
i.e., 2 seconds better than without those extra rules.

7 Outlook

We intend to investigate several optimizations of the algorithm originating from
both the DL tableaux as well as ASP reasoning algorithms. For example, dependency-
directed backtracking will allow to backtrack on the choices that caused an in-
consistency instead of backtracking on the last choice the BProlog engine made.
Similar to DL tableaux, we will investigate whether we can internalize a program
to a form that reduces the amount of nondeterminism in the algorithm. A Java
implementation will allow us to more flexibly implement optimization strategies.
6 Experiments were done on a QuadCore Intel(R) Xeon(R) CPU E5450 at 3GHz

under Linux (openSUSE 11.0 (X86-64)). All example programs can be found at
http://www.kr.tuwien.ac.at/staff/heymans/priv/oasp-r/ and originated from on-
tologies that accompanied the RacerPro DL reasoner [1].

References

1. RacerPro 1.9.0. Racer Systems GmbH & Co. KG. http://www.racer-
systems.com/index.phtml.

2. BProlog 7.1. Afany software. http://www.probp.com/.
3. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,

editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

4. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the semantic web. Artificial
Intelligence, 172(12-13):1495–1539, 2008.

5. C. Feier and S. Heymans. A sound and complete algorithm for sim-
ple conceptual logic programs. Technical Report INFSYS RESEARCH
REPORT 184-08-10, KBS Group, Technical University Vienna, Austria,
October 2008. http://www.kr.tuwien.ac.at/staff/heymans/priv/projects/fwf-
doasp/alpsws2008-tr.pdf.

6. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988.

7. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
combining logic programs with description logic. In Proc. of the World Wide Web
Conference (WWW), pages 48–57. ACM, 2003.

8. S. Heymans, J. de Bruijn, L. Predoiu, C. Feier, and D. Van Nieuwenborgh. Guarded
hybrid knowledge bases. Theory and Practice of Logic Programming, 8(3):411–429,
2008.

9. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual logic programs.
Annals of Mathematics and Artificial Intelligence (Special Issue on Answer Set
Programming), 47(1–2):103–137, June 2006.

10. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming
for the semantic web. Journal of Applied Logic, 5(1):144–169, 2007.

11. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming
with guarded programs. ACM Transactions on Computational Logic (TOCL), 9(4),
October 2008.

12. M. Krötzsch, S. Rudolph, and P. Hitzler. Description logic rules. In Proc. 18th
European Conf. on Artificial Intelligence(ECAI-08), pages 80–84. IOS Press, 2008.

13. T. Lukasiewicz. A novel combination of answer set programming with description
logics for the semantic web. In Proc. of ESWC 2007, pages 348–398, 2007.

14. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules.
Journal of Web Semantics, 3(1):41–60, July 2005.

15. R. Rosati. DL+log: Tight integration of description logics and disjunctive datalog.
In Proc. KR, pages 68–78, 2006.

16. Riccardo Rosati. On the decidability and complexity of integrating ontologies and
rules. Journal of Web Semantics, 3(1):61–73, 2005.

17. S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, 2001.

This work is partially supported by the Austrian Science Fund (FWF) under
the projects P20305 and P20840, and by the European Commission under the
project OntoRule (IST-2009-231875). We would like to thank Uwe Keller for his
valuable comments.

