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Abstract. This paper presents a functional formulation of the groundwater flow inverse
problem that is sufficiently general to accommodate most commonly used inverse
algorithms. Unknown hydrogeological properties are assumed to be spatial functions that
can be represented in terms of a (possibly infinite) basis function expansion with random
coefficients. The unknown parameter function is related to the measurements used for
estimation by a ‘‘forward operator’’ which describes the measurement process. In the
particular case considered here, the parameter of interest is the large-scale log hydraulic
conductivity, the measurements are point values of log conductivity and piezometric head,
and the forward operator is derived from an upscaled groundwater flow equation. The
inverse algorithm seeks the ‘‘most probable’’ or maximum a posteriori estimate of the
unknown parameter function. When the measurement errors and parameter function are
Gaussian and independent, the maximum a posteriori estimate may be obtained by
minimizing a least squares performance index which can be partitioned into goodness-of-
fit and prior terms. When the parameter is a stationary random function the prior portion
of the performance index is equivalent to a regularization term which imposes a
smoothness constraint on the estimate. This constraint tends to make the problem well-
posed by limiting the range of admissible solutions. The Gaussian maximum a posteriori
problem may be solved with variational methods, using functional generalizations of
Gauss-Newton or gradient-based search techniques. Several popular groundwater inverse
algorithms are either special cases of, or variants on, the functional maximum a posteriori
algorithm. These algorithms differ primarily with respect to the way they describe spatial
variability and the type of search technique they use (linear versus nonlinear). The
accuracy of estimates produced by both linear and nonlinear inverse algorithms may be
measured in terms of a Bayesian extension of the Cramer-Rao lower bound on the
estimation error covariance. This bound suggests how parameter identifiability can be
improved by modifying the problem structure and adding new measurements.

1. Introduction

Inverse problems are likely to arise whenever mathematical
models are used to explain or enhance observations. Examples
may be found in fields as diverse as astronomy, medicine,
meteorology, quantum mechanics, and hydrology. The generic
inverse problem is concerned with the estimation of spatially
variable model ‘‘parameters’’ which have physical significance
but are difficult to measure. Under certain circumstances these
parameters may be inferred from measurements of related
‘‘dependent variables.’’ A typical example is the estimation of
log hydraulic conductivity (a parameter) from scattered obser-
vations of piezometric head (a dependent variable). Over the
years, hydrologists have become aware of the fact that such
inverse problems are difficult to solve and may, in fact, be
inherently ‘‘ill-posed’’ [Yakowitz and Duckstein, 1980; Carrera
and Neuman, 1986a; Dietrich and Newsam, 1989, 1990]. At the
same time, new developments in applied mathematics and
other fields have provided conceptual insights and analytical

tools which can help hydrologists deal with the inverse prob-
lems they encounter in practice.
Groundwater inverse methods have been reviewed by

McLaughlin [1975], Yeh [1986], Kuiper [1986], Carrera [1987],
Ginn and Cushman [1990], and Sun [1994]. Other relevant
reviews may be found in work by Kubrusly [1977], Polis [1982],
Lorenc [1986], Daley [1991] and Bennett [1992]. In addition,
there is an extensive inverse literature which spans many dis-
ciplines ranging from engineering applications to theoretical
mathematics. It is not clear at first glance how all the concepts
and methods described in this literature are related. As a start,
it is convenient to characterize an inverse method by (1) the
way it describes spatial variability (the ‘‘parameterization’’ it
adopts), (2) the forward equation it uses to relate parameters
to measurements, (3) the performance criterion it uses to de-
fine ‘‘good’’ parameter estimates, and (4) the solution tech-
nique it uses to find these estimates. Although all four factors
are important, the inverse algorithms used by groundwater
hydrologists differ most significantly in their approaches to
parameterization. Parameterization deserves special consider-
ation because it has a strong influence on the ‘‘well-posedness’’
of an inverse problem and on the physical plausibility of its
solution.
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Most groundwater inverse algorithms adopt either a blocked
or a geostatistical (random field) description of spatial vari-
ability. The first approach divides the region of interest into a
number of discrete blocks which are believed to correspond to
distinct geologic units [see, e.g., Carrera and Neuman, 1986a, b,
c; Cooley, 1977, 1979, 1982, 1983]. Each block is characterized
by a set of spatially uniform hydrogeologic properties which
are treated as parameters in an appropriate inverse problem.
The geostatistical alternative views the properties of interest as
stationary random fields which vary relatively smoothly over
space [see, e.g., Hoeksema and Kitanidis, 1984; Dagan, 1985].
Although the two approaches are based on different param-
eterizations, they both treat hydrogeologic properties as spatial
functions. This suggests that it should be possible to formulate
a general inverse theory which encompasses both the blocked
and geostatistical alternatives, as well as hybrid methods which
lie between these extremes.
This paper shows how the methods of functional analysis

may be used to develop a general groundwater inverse theory.
The estimated parameters in this theory are scalar functions of
location rather than vectors of spatially discretized variables. A
functional approach to the inverse problem offers several ad-
vantages. It relates the blocked and geostatistical approaches
and provides a framework for evaluating particular inverse
algorithms proposed in the literature. It suggests how new
inverse algorithms can be derived from alternative geologically
motivated parameterizations. Finally, it brings the powerful
tools of functional analysis to bear on the problems of ill-
posedness and identifiability, and it suggests methods for im-
proving the stability of inverse algorithms.
The spatially variable parameters of most interest in

groundwater inverse applications include hydraulic conduc-
tivity, groundwater recharge and discharge, fluxes and pi-
ezometric heads on designated boundaries, and chemical
rate coefficients. All of these parameters are uncertain, but
some may be more important (have a greater effect on
predictions) than others in any given application. Although
a general discussion of the groundwater inverse problem
would consider all potentially important parameters, our
present purpose is better served by a more focused discus-
sion. Therefore we concentrate on the problem of estimat-
ing large-scale variations in log hydraulic conductivity from
point measurements of log conductivity and head. This is a
reasonable choice for a review paper since hydraulic con-
ductivity estimation has long been the primary focus of
groundwater inverse research. In any case, the concepts we
develop for the conductivity estimation problem extend nat-
urally to problems where boundary conditions, chemical
rate coefficients, and other spatially variable parameters
must also be estimated from field data. Examples are pro-
vided in the work of Cooley [1977, 1979, 1982, 1983], Carrera
and Neuman [1986a, b, c], Rubin and Dagan [1987a, b], and
Townley and Wilson [1989], among others.
In the next section we discuss some important concepts and

terms used in the rest of the paper. We then formulate and
solve a functional (maximum a posteriori) version of the
groundwater inverse problem. Next we show how a number of
different groundwater inverse algorithms can be derived from
or related to the maximum a posteriori solution. We conclude
with a discussion of several important issues which are closely
related to inverse estimation.

2. Background
2.1. Inversion and Well-Posedness

In groundwater inverse problems the estimated parameters
are usually hydrogeologic properties and the measured depen-
dent variables are quantities such as piezometric head, solute
concentration, or temperature. We assume here that the de-
pendent variables are functions of location and time but that
the parameters are only functions of location. The M discrete
measurements used for estimation can be collected in a vector
z with scalar components z1, z2, z z z , zM. It is often natural to
express the relationship between the measurement vector and
a single scalar parameter function a(x) in the following ‘‘for-
ward’’ form [Tikhonov and Arsenin, 1977; Banks and Kunisch,
1989; Anger, 1990]:

z 5 ^̂ ~a! 1 v (1)

where a(x) lies in a normed function space A, z lies in an
M-dimensional Euclidean vector space Z , and the forward
operator ^̂ is a functional that maps a to z. The M -
dimensional measurement error vector v also lies in Z. The
more general multiparameter case can be handled by defining
a(x) to be a vector of unknown functions. In the remainder of
this paper italic fonts indicate scalars and scalar functions, bold
lower case fonts represent vectors, bold upper case fonts indi-
cate matrices or tensors, script fonts indicate scalar functionals,
and bold script fonts indicate vectors of functionals. Sub-
scripted fonts are generally scalar elements of vectors or ma-
trices.
The basic goal of inverse estimation is to identify a gener-

alized inverse operator & which maps the measurement vector
to an estimate of a:

â 5 &~z! 5 &@^̂ ~a! 1 v# (2)

The estimate â(x) lies in a normed function space Aad con-
sisting of all admissible estimates of a(x). The estimate is
selected to be ‘‘close’’ to the true parameter function a(x),
where the definition of closeness remains to be defined. Figure
1 illustrates the definitions of the operators ^̂ and &. If there
is no measurement error (v 5 0) and the functional ^̂ is
invertible on (A, Z) an obvious choice for & is ^21:

â~x! 5 ^21~z! 5 ^21@^̂ ~a!# 5 a~x! (3)

In this special case the estimate is identical to the true param-
eter function and Aad 5 A. If measurement noise is present or
if the forward operator is not invertible, it is generally not
possible to estimate a(x) perfectly.

Figure 1. Relationship between parameter and measure-
ment spaces for the groundwater inverse problem.
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It is important to know whether or not a given inverse
problem will yield an acceptable solution in practice. This
question is addressed by Tikhonov and Arsenin [1977], who
extended Hadamard’s [1952] concept of ‘‘well-posedness’’ to
the general inverse problem stated above. An inverse problem
is well-posed if it satisfies the following three requirements
[Tikhonov and Arsenin, 1977]: (1) For every measurement vec-
tor z [ Z there exists a parameter solution a [ Aad. (2) The
parameter solution is unique. (3) The inverse problem is stable
on the spaces (Aad, Z); that is, small changes in the measure-
ment produce small changes in the parameter solution, where
‘‘small’’ is defined with respect to the norms of Aad and Z .
The first two of these requirements insure that a unique

solution exists in the strict mathematical sense. The third re-
quirement insures that the inverse solution is physically mean-
ingful (not overly sensitive to measurement error).
The well-posedness of an inverse problem depends on the

form of the inverse operator and on the definitions of the
parameter and measurement spaces. An ill-posed problem can
often be replaced by a well-posed problem if the definitions of
^, Aad, and/or Z are modified [Banks and Kunisch, 1989].
Although there is no general theory for constructing well-
posed inverse problems, groundwater hydrologists have devel-
oped many methods for dealing with ill-posedness. Some of the
most successful include imposing stress on the groundwater
system (e.g., pumping), using transient data, adding more or
new kinds of measurements, and constraining the set of ad-
missible parameter functions. It is important to note that ill-
posedness does not imply that an inverse problem is meaning-
less. It merely indicates that the problem formulation must be
modified or supplemented in some way before an acceptable
solution can be obtained. The relevant issues can be illustrated
with a few simple examples which introduce many of the con-
cepts discussed in this paper.
Consider one-dimensional steady state saturated flow in the

region defined by x [ [0, L]. If the piezometric head is
specified at each boundary, the relevant flow equation is

­

­ x FK~ x!
­h~ x!

­ x G 5 0 x [ @0, L# (4)

with boundary conditions

h~ x! 5 h0 x 5 0
(5)

h~ x! 5 hL x 5 L

where K( x) is the hydraulic conductivity and h( x) is the pi-
ezometric head at location x. We assume that the unknown
parameter a( x) 5 ln K( x) lies in the space A 5 Aad 5 L2[0,
L] of functions which are square integrable on [0, L]. Also, we
assume for the moment that noise-free head measurements are
available and differentiable everywhere so that the measure-
ment vector z can be replaced by a measurement function z( x)
which lies in the space Z 5 C1[0, L] of functions which are
differentiable on [0, L]. The solution to (4) at any x can be
written as

z~ x! 5 h~x! 5 ^~a!~ x!

5 h0 1
hL 2 h0

E
0

L

e2a~j! dj

E
0

x

e2a~j! dj x [ @0, L# (6)

The^(a) obtained for this problem is not invertible since h( x)
remains unchanged everywhere in [0, L] if a( x) is shifted by

an arbitrary constant. The problem is ill-posed because a given
z( x) does not yield a unique a( x). Also, note that the forward
operator is nonlinear in a since ^(a1 1 a2) does not equal
^(a1) 1 ^(a2) for all admissible a1 and a2 (this comment also
applies if ^ is written as a functional operating on K rather
than ln K).
Now suppose that the downstream head boundary condition

is replaced by the following specified flux condition:

K~ x!
­h~ x!

­ x 5 Q x 5 L (7)

where Q is a known flux. The resulting solution is

z~ x! 5 h~ x! 5 ^~a!~ x! 5 h0 1 Q E
0

x

e2a~j! dj (8)

x [ @0, L#

The forward operator is now invertible on (A, Z) so long as Q
is nonzero. A unique parameter estimate can be obtained from

â~ x! 5 ^21~ z! 5 ln F 1Q ­ z~ x!
­ x G (9)

The ill-posed problem has been made well-posed by forcing
the system with a specified flux (i.e., by modifying the forward
operator to make it invertible).
If head measurements are available only atM discrete points

(as specified in the beginning of this section), the measurement
space Z is an M-dimensional Euclidean space, and ^ is no
longer invertible because an infinite number of different a( x)
functions can reproduce any given set of M head measure-
ments. In this case the problem can be made well-posed by
changing the definition of either the admissible parameter
space Aad or the measurement space Z . We briefly consider
both possibilities in the following paragraphs.
Suppose that two noise-free head measurements z1 and z2

are available at locations x1 5 L/4 and x2 5 3L/4. The
problem can then be made well-posed if a( x) is constrained to
have the following form:

a~ x! 5 a1f1~ x! 1 a2f2~ x! x [ @0, L# (10)

where

f i~ x! 5 1 if x [ @~i 2 1!L/ 2, iL/ 2! i 5 1, 2

(11)
f i~ x! 5 0 otherwise i 5 1, 2

This is equivalent to defining Aad to be the function space
spanned by the two linearly independent basis functions f1 and
f2. If (10) is substituted for a(x) in (8) and z( x) is evaluated at
x1 and x2, the result is a system of two equations in the two
unknowns a1 and a2. The unique solution is

â1 5 ln F QL
4~ z1 2 h0!

G (12)

â2 5 ln F QL
4~ z2 2 2z1 1 h0!

G (13)

The inverse problem has been made well-posed by modifying
the definition of Aad so that ^(a) is invertible on (Aad, Z).
Note that f i(x) need not be continuous since the inverse
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solution for the constrained point measurement problem does
not require differentiation of z(x).
An alternative is to construct a ‘‘measured’’ head function by

fitting a differentiable function (e.g., a second-order polyno-
mial) to the upstream head boundary condition and the two
measured heads at x1 and x2. This has the effect of ‘‘embed-
ding’’ the original two-dimensional Euclidean measurement
space in a function space spanned by the basis functions {1, x,
x2}. The fitted measurement function may be written as

z~ x! 5 h~ x! 5 h0 1 b1 x 1 b2 x2 (14)

where

b1 5
2
3L @9z1 2 z2 2 8h0# (15)

b2 5 2
8
3L2 @3z1 2 z2 2 2h0# (16)

This head measurement function may be inserted into (9) to
give a unique parameter estimate. In this case the problem has
been made well-posed by modifying the definition of Z so that
the forward operator is invertible on (Aad, Z).
Note that problemmodifications such as those discussed above

are not intended to produce perfect estimates of the true param-
eter function. They are simply methods for obtaining a unique
inverse solution which is consistent with the original problem
statement. In practical applications, constraints on the parameter
and measurement spaces should be chosen to reflect physical
understanding of the hydrogeologic system under investigation.
This is the best way to insure that solutions to modified inverse
problems are geologically reasonable as well as unique.
So far our discussion has focused on problems with noise-

free measurements and on estimators which are derived from
the inverse operator ^21. This so-called direct approach to
inversion has been applied to groundwater problems by Nelson
[1960, 1961], Kleinecke [1971], Neuman [1973], and Scott
[1992]. Most inverse research suggests that ^21 is not gener-
ally the best choice for & when noise is present [Tikhonov and
Arsenin, 1977; Tarantola, 1987; Banks and Kunisch, 1989].
Other estimators may yield estimates which are, in some sense,
‘‘closer’’ to the true parameter value. Generally speaking, the
best estimators are those which minimize the effect of the noise
term in (2) while capturing the dominant features of the param-
eter function. One possibility is the estimator obtained by mini-
mizing the following ‘‘regularized’’ least squares performance in-
dex [Wahba, 1990; Fitzpatrick, 1991]:

)~a! 5 @z 2 ^̂ ~a!#TWv @z 2 ^̂ ~a!#

1 E
D

E
D

@a~x! 2 #a~x!#Wa~x, j!

z @a~j! 2 #a~j!# dx dj (17)

where #a(x) is a ‘‘prior’’ estimate of the unknown parameter
function, Wv is a positive definite weighting matrix, and
Wa(x, j) is a positive-definite weighting function. In this case
the estimate is constrained to lie in a function space Aad with
a squared norm given by [Fitzpatrick, 1991]:

iaiAad
2 5 E

D

E
D

a~x!Wa~x, j!a~j! dx dj (18)

The first (measurement fit) term in (17) penalizes deviations of
model predictions from measurements, while the second (reg-
ularization) term penalizes deviations of estimates from #a (x),
which can be viewed as a reasonable ‘‘first guess’’ for a(x). The
regularization term helps make the problem well-posed by
keeping the estimate ‘‘close’’ to the prior, where ‘‘closeness’’ is
measured in terms of the Aad norm [Tikhonov and Arsenin,
1977; Banks and Kunisch, 1989; Chavent, 1991]. Once the
weighting factors in (17) are selected, variational methods may
be used to find the parameter function that minimizes )(a).
Equation (17) is the basis for the functional inverse algorithm
described in the next section.
Inverse problems based on minimization of (17) are gener-

ally better posed then those based on direct inversion tech-
niques. In fact, (17) will always yield a unique and stable
minimum â(x) 5 #a(x) when Wv 5 0. Unfortunately, this is a
degenerate solution which does not depend on the measure-
ments at all! In more realistic situations where Wv is nonzero
the least squares problem may have a unique global minimum,
but this minimum may be difficult to find (see work by Chavent
[1991] for a detailed discussion of this point). In such cases,
ill-posedness manifests itself in the form of performance indi-
ces which have many local minima or which are relatively
insensitive to changes in a(x). So, although least squares in-
verse algorithms are able to deal with measurement error, they
still must be applied with caution.

2.2. Upscaling, Effective Properties, and the Measurement
Process

The simple examples discussed above do not consider how
the hydraulic conductivity function might vary over space at
real field sites. This is an important issue which we must ad-
dress in order to define more precisely just what it is we wish
to estimate. It is now widely recognized that hydraulic conduc-
tivity can vary by orders of magnitude over scales ranging from
a few centimeters to hundreds of meters or more. This is
confirmed by field data obtained from air and water per-
meameters, flowmeter measurements, piezometer tests, and
larger-scale pumping tests (see work by Gelhar [1993, pp. 284–
297] for a brief review with references). We clearly cannot
expect to estimate centimeter-scale conductivity variations
from point head and conductivity measurements spaced tens of
meters apart. In fact, it is not obvious why we would even want
to do so. Most groundwater flow investigations are concerned
with large-scale variations in the piezometric head (e.g., draw-
down in the vicinity of a pumping field) or with aggregate
large-scale fluxes (e.g., total discharge to a river). In such cases,
small-scale fluctuations about regional trends are important
only to the extent that they influence point measurements.
These ideas can be made more precise if we suppose that the

values of log conductivity and head at a given point can be
expressed as the sum of a ‘‘large-scale’’ component or trend
and a ‘‘small-scale’’ component or fluctuation, as shown in
Figure 2:

ap~x! 5 a l~x! 1 a s~x! (19)

hp~x, t! 5 hl~x, t! 1 hs~x, t! (20)

Here the p, l, and s subscripts refer to point, large-scale, and
small-scale values, respectively. The large-scale log conductiv-
ity and head are qualitatively defined to be the components of
the point variables that we can expect to estimate from avail-
able measurements. The corresponding small-scale values are
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unidentifiable deviations from the large-scale trends. Clearly,
the distinction between the two scales is application-
dependent. Although it is possible to imagine more than two
scales of variability in some situations, the simple decomposi-
tion proposed above is sufficient for present purposes.
It is convenient to adopt a stochastic (Bayesian) view of

spatial variability and assume that each component of the head
or log conductivity is a distinct random field characterized by
its own statistical properties [Rajaram and McLaughlin, 1991].
This assumption facilitates our discussion of the various in-
verse methods used in groundwater hydrology. If the mean of
the small-scale component is chosen to be 0, then the large-
scale component is just the (nonstationary) mean of the point
value:

a l~x! 5 Eas@ap~x!# (21)

hl~x, t! 5 Ehs@hp~x, t!# (22)

where it is understood that the expectations Ea s
and Ehs are

taken over the probability densities of the small-scale fields.
We assume that the large-scale component of the log conduc-
tivity has a constant mean Ea l

[a l] 5 Ea l
{Ea s

[ap(x)]}, where
Ea l

is taken over the probability density of a l. Fluctuations of
a l and as about their respective means are characterized by
the large- and small-scale covariances Ca l

(x, j) and Ca s
(x, j).

Note that a l and as are generally nonstationary random func-
tions with covariances that depend on two spatial coordinates
x and j. The prior statistics of these random functions can be
estimated from field data or inferred in other ways, depending
on one’s perspective. Inference of prior log conductivity statis-
tics is an important practical issue which we consider further in
section 5.1. For now, we will assume that these statistics are
known.
A number of investigators have examined the problem of

deriving an equation for the large-scale head when the log
conductivity statistics are given. If certain assumptions are
made, this upscaled equation can have the same general form
as the familiar point groundwater flow equation (see (35)). The
hydraulic conductivity appearing in the upscaled equation is,
however, an ‘‘effective’’ conductivity tensor which typically de-
pends on both the large- and small-scale properties of the log

conductivity [Gelhar and Axness, 1983; Rubin and Gomez-
Hernandez, 1989; Durlovsky, 1991; Indelman and Dagan, 1993;
Beckie et al., 1994]. An example is the expression derived by
Gelhar and Axness [1983] for the case of three-dimensional
flow in a statistically isotropic medium:

@K ef f ~x!# ij 5 eal~x!F 1 1
sas
2

6 G d ij i, j 5 1, 2, 3

(23)

where d ij is equal to 1 if i 5 j , and 0 if i Þ j . This effective
conductivity depends on the variance of the small-scale log
conductivity sa s

2 as well as the value of the large-scale log
conductivity a l(x) at x. Anisotropic extensions of (23) also
depend on the directional correlation scales of as(x) [Gelhar,
1993, pp. 111–113]. Since we assume here that the large-scale
log conductivity is a random field, the effective conductivity is
also a random field, with statistical properties that can be
derived from those of a l.
Other effective conductivity formulas can be derived from

other upscaling theories. In applications where there is no
explicit use of an upscaling theory, the effective conductivity is
often assumed to be an isotropic tensor with all diagonal
elements equal to the geometric mean, so [Kef f (x)]ij 5
exp [a l(x)]d ij. Since the large-scale log conductivity a l ap-
pears in most commonly used effective conductivity expres-
sions it is the parameter that we emphasize in our discussion of
the inverse problem. In some applications it may be useful to
also estimate small-scale statistics (such as sa s

2 ) in the inverse
procedure.
The head and log conductivity measurements used to esti-

mate the large-scale log conductivity are typically defined over
a smaller scale (i.e., have a smaller ‘‘support’’) than the char-
acteristic scales of a l(x) or hl(x). The most extreme examples
are measurements derived from soil samples or piezometers
that average over scales of a few centimeters. For all practical
purposes, such measurements are point observations. Equa-
tions (19) and (20) can be used to develop the following ex-
pressions for point measurements of log conductivity and head
at (xi, t i):

zai 5 api 1 vai 5 a li 1 a si 1 vai (24)

Figure 2. Large- and small-scale components of a hypothetical log hydraulic conductivity profile.
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zhi 5 hpi 1 vhi 5 hli 1 hsi 1 vhi (25)

where api 5 ap(xi), hpi 5 hp(xi, t i), etc. The additive noise
terms vai and vhi are included to account for the effect of
instrumentation and recording errors. From the perspective of
inverse estimation the small-scale fluctuations asi and hsi can
also be regarded as noise since they obscure the large-scale
trends a li and hli, which are of primary interest. For this
reason it is convenient to combine the small-scale fluctuation
and instrumentation-recording error terms in each measure-
ment equation. If we drop the l subscripts on large-scale vari-
ables to simplify notation, the log conductivity and head point
measurement equations become

zai 5 a i 1 vai (26)

zhi 5 hi 1 vhi (27)

where a i 5 a li, hi 5 hli, and the composite noise terms are
vai 5 asi 1 vai and vhi 5 hsi 1 vhi. The properties of vai

and vhi depend on the nature of small-scale variability in the
vicinity of the sampling point and on the technology used to
collect the measurements. It should be noted that the analysis
outlined here for point measurements can be generalized to
provide explicitly for temporal and spatial averaging. This is
accomplished by integrating (24) or (25) over appropriate time
and space intervals [Bencala and Seinfeld, 1979; McLaughlin,
1995].
In this section we have identified some of the basic issues

which must be considered when developing a practical ground-
water inverse procedure. In particular, we have seen that the
success of inverse estimation depends strongly on the way the
problem is posed. It is important to have realistic expectations
which recognize the limitations of the data available for esti-
mation. With this in mind, we can now formulate a general
approach to the problem.

3. A Functional Approach to the Groundwater
Inverse Problem
Our functional approach to the inverse problem requires us

to specify (1) a stochastic parameterization which describes
how the large-scale log conductivity varies over space, (2) a
forward equation which relates the unknown log conductivity
to the measurements used for estimation, (3) an estimation
performance index, and (4) a solution algorithm for computing
the optimum estimate. Each of these topics is discussed in one
of the following subsections. We begin with a Bayesian descrip-
tion of spatial variability which can be applied to both blocked
and geostatistical formulations of the inverse problem. We
then derive a generic forward equation from the classic
groundwater flow equation and an analysis of the measure-
ment process. This is followed by a discussion of the maximum
a posteriori (or ‘‘most probable’’) approach to estimation.
When the unknown log conductivity and measurement error
are jointly Gaussian the maximum a posteriori estimate mini-
mizes a generalized least squares performance index similar to
(17). We conclude with a discussion of variational methods for
solving this functional minimization problem. The general
problem formulation developed in this section provides a con-
venient framework for our discussion (in section 4) of several
widely used groundwater inverse algorithms.

3.1. Parameterization

In section 2 we identified the large-scale log conductivity
a(x) as the parameter to be estimated in our inverse proce-

dure. We now consider in more detail how this unknown pa-
rameter function might be characterized. Since a(x) lies in a
function space A its properties will be determined by the way
we structure this space. In particular, if a(x) is random, this
must be reflected in the definition of the norm of A [see Kuelbs
et al., 1972; Kuo, 1975; Fitzpatrick, 1991]. If A satisfies suitable
mathematical requirements, any random function in A can be
expressed in a discrete form, as an expansion in a set of linearly
independent ‘‘basis functions’’:

a~x! 5 O
i51

N

aif i~x! (28)

where f i(x) is the ith basis function, ai is the corresponding
basis function coefficient, and N is the (possibly infinite) di-
mension of A. When N is finite we may assemble the basis
functions and their coefficients in the N-dimensional vectors
f(x) and a and then write the expansion as a dot product:

a~x! 5 fT~x!a (29)

Truncated finite-dimensional basis expansions are typically in-
troduced when inverse algorithms are discretized for numeri-
cal implementation. The choice of a basis is not unique, al-
though some alternatives may be more useful than others in
any given application. Figure 3 shows several methods for
expressing a large-scale log conductivity function as a weighted
sum of simple basis functions. The cell and node-based ap-
proaches break the function into many small parts, each char-
acterized by a different unknown coefficient. The regionalized
method divides the function into a few constant blocks which
are meant to correspond to distinct geological units. The poly-
nomial/spline approach expresses the function as a smooth
function with a relatively small number of unknown coeffi-
cients. The influence function approach expresses the function
as a sum of elementary functions (e.g., covariances) which
decay from measurement values towards the prior mean. All of
these methods have been used in groundwater inverse algorithms.
Once a set of basis functions is selected, uncertainties in a(x)

can only come from uncertainties in the ai coefficients, which
must be random variables if a(x) is a random function. The
statistical properties of the parameter function and its basis
function coefficients are closely related. This is most clearly
illustrated for the case of Gaussian functions and coefficients,
which are completely characterized by their respective means
and covariances. The mean and covariance of a(x) may be
expressed in terms of the basis functions and the prior ai
statistics:

#a~x! 5 O
i51

N

#a if i~x! 5 fT~x! #a (30)

Ca~x, j! 5 @a~x! 2 #a~x!#@a~j! 2 #a~j!#

5 O
i51

N O
j51

N

@ai 2 #ai#@aj 2 #aj#f i~x!f j~j!

5 O
i51

N O
j51

N

@Ca# ijf i~x!f j~j!

5 fT~x!Caf~j! (31)
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where #a i is the mean of ai and [Ca] ij is the covariance between
ai and aj. The concise vector expressions which appear in the
final equalities of these equations apply only when N is finite.
Equations (30) and (31) indicate how a functional parame-

terization (the mean and covariance of a(x)) can be derived
from a given discrete parameterization (a set of basis functions
and the means and covariances of the corresponding ai’s). We
can also derive a discrete parameterization from a given func-
tional parameterization when a(x) is mean-squared continu-
ous. The basis functions are obtained by solving the following
Karhunen-Loeve integral equation for f i(x) [Papoulis, 1984,
pp. 303–305; Braud et al., 1993]:

E
D

Ca~x, j!f i~j! dj 5 l if i~x! (32)

i 5 1, z z z , N

(no summation over i). This equation defines an eigenvalue
problem where l i is the eigenvalue associated with the ith
eigenfunction f i(x). The eigenfunctions (sometimes called
‘‘empirical orthogonal functions’’) form an orthonormal basis
for A. The coefficients (ai’s) associated with the Karhunen-

Loeve basis functions are uncorrelated random variables with
means and covariances given by

#ai 5 E
D

f i~x! #a~x! dx (33)

@Ca# ij 5 l id ij (34)

(no summation over i). The dimension of the parameter space
(the number of basis functions) is generally infinite if a(x) is a
stationary random field. However, since the magnitude of the
eigenvalues decreases with i, a reasonable approximation of
a(x) can often be obtained with a finite N. It is worth noting
that discrete approximations to the Karhunen-Loeve basis
functions can be constructed from the eigenvectors of Ca (see
section 4.2.1).
The above paragraphs suggest that functional and discrete

descriptions of random parameters such as the large-scale log
conductivity are interchangeable in the Gaussian case, pro-
vided that the number of basis functions can be infinite. This
enables us to derive blocked and geostatistical groundwater
inverse algorithms from a common mathematical framework
which can be expressed in either a functional or a discrete
form. Since the functional form is usually more convenient in
geostatistical applications, while the discrete form is usually
more convenient in blocked applications, we will move freely
between the two alternatives. Nevertheless, it is important to
remember that the functional and discrete parameterizations
described here are based on the same Bayesian estimation
philosophy and lead to inverse algorithms which are, in many
cases, formally equivalent. This will become more apparent as
our discussion develops.

3.2. The Forward Equation

The forward equation relates the unknown parameter a(x)
to the various measurements used in the estimation algorithm.
In order to derive a forward equation we must first consider
particular kinds of measurements. The relationship between
a(x) and the large-scale piezometric head at any given time
and location is governed by the following upscaled groundwa-
ter flow equation [Bear, 1979]:

S
­h
­t 2 ¹ ? Kef f ~a!¹h 5 Q x [ D, 0 , t # T (35)

with the following initial and boundary conditions:

h~x, t! 5 h0~x! x [ D, t 5 0

h~x, t! 5 hb~x, t! x [ ­Dd, 0 # t # T

2Kef f ~a!¹h~x, t! ? n~x! 5 qb~x, t! x [ ­Dn, 0 # t # T

where h is the large-scale head and Kef f(a) is the effective
hydraulic conductivity tensor. The large-scale log conductivity
a enters the flow equation through the effective conductivity
tensor, which may be derived from an appropriate upscaling
theory (see the discussion accompanying (23)).
In (35) the variables Q and S are the effective recharge rate

and storage coefficient, respectively. The spatial domainD may
be one-, two-, or three-dimensional. A head boundary condi-
tion is specified on the portion of the domain boundary de-
noted by ­Dd while a flux condition is specified on the portion
denoted by ­Dn, with n(x) indicating the unit outward pointing
vector normal to ­Dn at x. The functions h0(x), hb(x, t), and

Figure 3. Some alternative methods for describing spatial
variability with finite-dimensional basis function expansions.
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qb(x, t) are the large-scale initial head, boundary head, and
boundary outflow, respectively. In practice the boundary may
include a free surface, but we assume here that the location of
the boundary is known and time-invariant. We also assume
that Q, S, h0, hb, and qb are all known. These simplifications
facilitate our discussion but are not crucial (see section 5.1 for
further discussion of this point).
An explicit solution to (35) may be written, at least formally,

in terms of the flow equation Green’s function G(x, j, t , t ua)
evaluated at some specified location and time (x, t) [Courant
and Hilbert, 1953; Greenberg, 1971]:

h~x, t! 5 ^h~a!~x , t!

5 E
0

T E
D

G~x, j, t, t ua!Q~j, t! dj dt

1 E
D

S~j!G~x, j, t, 0 ua!h0~j! dj

1 E
0

T E
­Dd

Kef f ~a!¹jG~x, j, t, t ua!

? n~j!hb~j, t! dj dt

1 E
0

T E
­Dn

G~x, j, t, t ua!qb~j, t! dj dt (36)

where ^h(a)(x, t) is a nonlinear functional (the head predic-
tion operator) that maps the function a(x) to the scalar h(x, t).
Equation (36) shows that this functional may be decomposed
into four integral terms, each associated with one of the source
terms or auxiliary conditions introduced in (35). Note that
G(x, j, t, t ua) depends on the entire a(x) function and that
the spatial gradient is taken with respect to the j variable.
Since it is usually not possible to obtain a closed form expres-
sion for the Green’s function, h(x, t) is typically obtained by
solving the flow equation numerically rather than by actually
evaluating the integrals in (36). Nevertheless, it is helpful to
introduce an explicit integral expression for the prediction
operator. This enables us to apply the techniques of functional
analysis and variational calculus to the inverse problem.
Equation (36) may be used to derive a forward operator

which relates a(x) to a vector zh of discrete point head mea-
surements taken at the Mh measurement points (x1, t1), z z z ,
(xMh

, tMh
). The predicted large-scale heads at the measure-

ment points may be assembled in an Mh-dimensional vector
functional ^̂h(a) (the head measurement operator) with com-
ponents given by

hi 5 h~x i, t i! 5 ^hi~a! 5 ^h~a!~x i, t i! (37)

It follows from (25) that the ith component of the point head
measurement equation may be written as

zhi 5 hi 1 vhi 5 ^hi~a! 1 vhi (38)

where vhi is the composite measurement noise associated with
measurement i. This noise term accounts for the effects of
small-scale fluctuations of the actual point head from the large-
scale trend and for instrumentation/recording errors (see the
discussion following (24)).

An analogous forward operator can be identified for point
measurements of log hydraulic conductivity. To do this we
define a linear functional ^a(a) (the log conductivity predic-
tion operator) which samples the value of the large-scale log
conductivity at a particular location x:

a~x! 5 ^a~a!~x! 5 E
D

d~x 2 j!a~j! dj (39)

where d( ) is the Dirac delta function, which is introduced to
enable a(x) to be written as a functional. The predicted large-
scale log conductivities at the Ma log conductivity measure-
ment points xMh11

, z z z , xMh1Ma
may be assembled in an

Ma-dimensional vector functional ^̂a(a) (the log conductivity
measurement operator) with components given by

a i 5 a~x i! 5 ^ai~a! 5 ^a~a!~x i! (40)

It follows from (24) that the ith component of the point log
conductivity measurement equation may be written as

za i 5 a i 1 va i 5 ^a i~a! 1 va i (41)

where vai is the composite measurement noise associated with
measurement i. As mentioned earlier, nonpoint measurements
may be accommodated by integrating the point measurement
equations over appropriate time or space intervals.
The head and log conductivity measurement equations may

be combined to give a composite expression for all of the M 5
Mh 1 Ma measurements used for inverse estimation:

z 5 F zhza
G 5 F ^̂ h~a!

^̂ a~a!G 1 F vhva
G 5 ^̂ ~a! 1 v (42)

This forward equation has the same form as (1).

3.3. Formulation of the Estimation Problem

Our task in this section is to derive an estimator &(z) which
maps the measurement z to a ‘‘good’’ estimate of the large-
scale log conductivity function. Although there are many ways
to define ‘‘good’’ estimate, the most convenient choice for
present purposes is the maximum a posteriori approach, which
is based on a Bayesian interpretation of parameter uncertainty
[Jazwinski, 1970; Schweppe, 1973, pp. 328–334; Bard, 1974, pp.
72–73]. In order to introduce this approach we first consider
the case where the dimension N of the parameter space is
finite, so that the large-scale log conductivity function may be
written in the vector form given in (29):

a~x! 5 fT~x!a (43)

We focus for the moment on the estimation of the basis func-
tion coefficient vector a, recognizing that an estimate of a(x)
can always be constructed from (43) once an estimate of a is
available.
The maximum a posteriori estimate â is the value of a which

is most likely, given a particular set of measurements z. To
simplify notation we suppose that a and v are independent
random vectors and that v is zero mean. In this case the
maximum a posteriori estimate is defined more precisely by the
following condition:

â is the a which maximizes

pauz~a uz! 5
pzua~z ua! pa~a!

pz~z!
5
pv@z 2 ^̂ ~fTa!# pa~a!

pz~z!
(44)
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where pa( ) and pa uz( ) are the prior and a posteriori
probability densities of a, pz ua( ) is the conditional density of
z given a, and pz( ) and pv( ) are the measurement and
measurement error probability densities. The first equality of
(44) is the classical statement of Bayes rule. The second equal-
ity follows from (42), (43), and the independence of a and v.
Note that the argument of ^̂ is written as fTa so that the
dependence on a is explicit. The estimate obtained from (44) is
the mode (the ‘‘most likely’’ value) of the a posteriori proba-
bility density [Jazwinski, 1970]. Since this estimate is condi-
tioned on the measurements it is frequently called the ‘‘con-
ditional mode.’’
In most applications of maximum a posteriori estimation the

prior and measurement error probability densities which ap-
pear in (44) are assumed to be Gaussian. We follow this pre-
cedent here. It should be noted that there is limited experi-
mental evidence suggesting that the first-order probability
density of the log hydraulic conductivity is Gaussian [Freeze,
1975; Hoeksema and Kitanidis, 1985]. While this evidence does
not guarantee that higher-order (joint) densities of a are Gaus-
sian, it does lend credibility to the multivariate Gaussian as-
sumption. All of the groundwater inverse algorithms discussed
in subsequent sections are based, either explicitly or implicitly,
on the Gaussian assumption.
If pa( ) and pv( ) are Gaussian with covariance matrices

Ca and Cv, respectively, the a posteriori probability density has
the form

pauz~a uz! 5 c~z! exp $2 1
2

@z 2 ^̂ ~fTa!#TCv
21@z 2 ^̂ ~fTa!#%

z exp $21
2

@a 2 #a#TCa
21@a 2 #a#% (45)

where c(z) is a normalization factor that does not depend on a
and #a is the prior mean of a. It is useful to consider the form of
pauz( ) for the special case of a linear ^̂(a). In this case it can be
shown (by ‘‘completing the square’’ in (45)) that pauz(auz) is a
multivariate Gaussian probability density function with mean and
covariance given by [Schweppe, 1973, p. 521]

E@a uz# 5 #a 1 CazC z
21@z 2 ^̂ ~fT #a)] (46)

E@~a 2 #a!~a 2 #a!Tuz# 5 Ca 2 CazC z
21Caz

T (47)

where Caz is the unconditional cross covariance between a and
z. Since the mode of a Gaussian a posteriori density is equal to
its mean, the maximum a posteriori estimate defined by (44) is
equal to (46) when ^̂(a) is linear and a and v are jointly
Gaussian (see Figure 4a). In fact, in this special case the max-
imum a posteriori estimate, the conditional mean, and the
familiar minimum variance unbiased estimate of Bayesian es-
timation theory are all the same [Schweppe, 1973, p. 329].
When ^̂(a) is nonlinear the a posteriori density is generally

not Gaussian, even when a and v are jointly Gaussian, and the
a posteriori mean and covariance are no longer given by (46)
and (47) [Schweppe, 1973; pp. 328–334]. Moreover, the mean
and mode of the a posteriori density are no longer equal (see
Figure 4b). All of these factors complicate solution of the
nonlinear inverse problem. It is worth emphasizing that the
maximum a posteriori estimation approach does not require
the forward equation to be linear or the a posteriori density to
be Gaussian [Jazwinski, 1970, pp. 169–174; Schweppe, 1973, pp.
391–395; Bryson and Ho, 1975, pp. 377–388]. This is in contrast
to the impression left by comments of Gavalas et al. [1976],
Carrera [1987], and Ginn and Cushman [1990]. The maximum

a posteriori approach is actually of most interest in the non-
linear case, when the conditional mean is difficult to derive.
The attractive properties of the maximum a posteriori estimate
are discussed in more detail by Bard [1974, pp. 72–73].
When pa uz(auz) is given by the Gaussian density of (45) it is

convenient to find the maximum a posteriori estimate by min-
imizing 22 ln pa uz, which is a monotonic function of pa uz. In
this Gaussian case (44) is equivalent to the following weighted
least squares criterion [Schweppe, 1973, pp. 394–395]:

â is the a which minimizes

J~a! 5 @z 2 ^̂ ~fTa!#TCv
21@z 2 ^̂ ~fTa!#

1 @a 2 #a#TCa
21@a 2 #a# (48)

The solution to this estimation problem is a compromise be-
tween the ‘‘best fit’’ estimate (which minimizes only the first
term) and the ‘‘prior’’ estimate (which minimizes only the
second term). When ^̂(a) is nonlinear, the maximum a pos-
teriori estimate can be obtained by minimizing J(a) with an
iterative search algorithm (see section 3.4 and work by Gill et
al. [1981]).
The discrete maximum a posteriori estimation criterion

given in (48) may be expressed in a more general functional
form which accommodates both blocked and geostatistical de-
scriptions of spatial variability. This can be accomplished if
fTa is replaced by a in the first term of (48) and if the identity
(A4), derived in Appendix A, is used to write the second term
as an integral:

Figure 4. Symmetric and nonsymmetric a posteriori proba-
bility density functions.
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â(x) is the a(x) which minimizes

)~a! 5 @z 2 ^̂ ~a!#TCv
21@z 2 ^̂ ~a!#

1 E
D

E
D

@a~x! 2 #a~x!#Ca
21~x, j!

z @a~j! 2 #a~j!# dx dj (49)

where Ca
21(x, j) is a scalar ‘‘inverse covariance function’’

which is defined with an identity similar to the one used for the
matrix inverse:

D
E
D

Ca
21~x, j!Ca~j, m!a~m! dj dm 5 a~x! (50)

Equation (50) may be used to derive Ca
21 once Ca is specified (an

example is provided below). Note that (49) defines a deterministic
minimization problem which yields a deterministic solution â(x)
[Aad for any given z (see the discussion accompanying (17)). The
maximum a posteriori approach links this minimization problem
to the stochastic description of spatial variability introduced in
section 2 [Wahba, 1990; Fitzpatrick, 1991]. It also provides a ra-
tionale for selecting the covariance weighting factors which ap-
pear in each term of )(a).
Although (49) was derived from a finite-dimensional parame-

terization of a(x) it also applies when a(x) is infinite-dimensional
(e.g., when it is a stationary random field). A rigorous demon-
stration of this result is complicated by the fact that prior and
posterior probability densities (countably additive Lebesgue mea-
sures) do not exist when a lies in an infinite-dimensional space
[Tarantola, 1987, chap. 6; Kuo, 1975, chap. 1]. Fortunately, it is
possible to define an alternative probability measure over the
infinite-dimensional parameter space A for the special case of
Gaussian random functions. The theoretical basis for defining
Gaussian probability measures and related expectations on func-
tion spaces is discussed in a number of texts, including those by
Vakhania [1981] and Kuo [1975]. More applied discussions deal-
ing with infinite-dimensional Gaussian extensions of maximum a
posteriori estimation are provided by Kuelbs et al. [1972], Larkin
[1972], and Fitzpatrick [1991]. Jazwinski [1970] presents a heuristic
derivation of the infinite-dimensional Gaussian maximum a pos-
teriori estimator which, like more rigorous approaches, yields the
estimation criterion given in (49).
Some of the insights provided by a functional formulation of

the inverse estimation problem can be appreciated if we consider
the structure of (49) when a(x) is a stationary and statistically
isotropic exponentially correlated random function of three spa-
tial coordinates. In this case the covariance of a has the following
form:

Ca~x, j! 5 sa
2 exp F2

ux 2 j u
l G (51)

where sa
2 and l are the variance and correlation scale, respec-

tively. Tarantola [1987, pp. 579–584] uses a Fourier transform
technique to derive the corresponding inverse covariance func-
tion from (50). This inverse covariance is a generalized func-
tion (i.e., a weighted sum of derivatives of spatial Dirac delta
functions) which may be defined implicitly as

E
D

Ca
21~x, j!a~j! dj 5

1
8psa

2l3

z @a~x! 2 2l2¹2a~x! 1 l4¹4a~x!# (52)

If we substitute (52) into (49), invoke Green’s theorem, and
assume that l is small compared to the dimensions of D (so
that we can neglect boundary terms), the resulting expression
for )(a) is [Tarantola, 1987, pp. 583–584]

)~a! 5 @z2 ^̂~a!#TCv
21@z2 ^̂~a!# 1

1
8psa

2l3

zE
D

@a~x! 2 #a~x!#2 1 2l2¹@a~x! 2 #a~x!#

? ¹@a~x! 2 #a~x!# 1 l4$¹2@a~x! 2 #a~x!#%2 dx (53)

Since the prior term in the performance index decreases when
the spatial derivatives of the estimate are small, the exponen-
tial correlation assumption has the effect of imposing a
smoothness condition on the inverse problem. The regulariza-
tion provided by the prior covariance helps to make the inverse
problem well-posed by restricting the set of admissible param-
eter functions [Tikhonov and Arsenin, 1977]. A related ap-
proach which accomplishes a similar result is described by
Emsellem and Marsily [1971].
It is instructive to note that an estimate produced by mini-

mizing (53) will always be smoother than a random sample
function having the covariance given in (51). In fact, an expo-
nentially correlated sample function would produce an infi-
nitely large regularization term since such functions are not
differentiable. We can generalize this result by noting that the
infinite-dimensional parameter space Aad of admissible deter-
ministic parameter estimates is always inherently ‘‘smoother’’
than the infinite-dimensional space A of random parameter
functions which generate the measurements. More detailed
discussions of this point are provided by Wahba [1985, 1990]
and Fitzpatrick [1991].
The example considered above reveals a fundamental con-

nection between stochastic and deterministic approaches to
the inverse problem (see work by Wahba [1990] and Bennett
[1992] for detailed discussions). Depending on one’s view-
point, our weighted least squares performance index can be
derived probabilistically by introducing Bayesian prior infor-
mation or it can be derived deterministically by imposing a
smoothness condition. In some situations smoothness condi-
tions based on geological arguments may provide better de-
scriptions of log conductivity variability than probabilistic mod-
els which are derived from very limited databases. We return to
this important topic in section 5.1.

3.4. Solution of the Estimation Problem

In this section we consider how variational methods can be
used to solve the functional minimization problem posed in
(49). Although there is no general way to find the global min-
imum of a nonlinear functional, it is possible to find extremal
points (local minima, maxima, or saddle points) by imposing
the requirement that the first variation of )(a) about the
estimate â(x) be 0 [Courant and Hilbert, 1953]. This usually
leads to a set of nonlinear integral or differential equations
which have multiple solutions. The global minimum is defined
by the solution which gives the smallest value of )(a). If the
inverse problem is well-posed this global minimum should be
unique and relatively insensitive to small fluctuations in the
measured data [Chavent, 1991].
We begin by deriving an expression for the first variation of

)(a) about a nominal parameter function a0(x). This expression
may be obtained by taking the variation of each term in (49):
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d)~a0! 5
­)~a0!

­a
da 5 22@z 2 ^̂ ~a0!#

TCv
21

­^̂ ~a0!

­a
da

1 2 E
D

E
D

Ca
21~x, j!@a0~j! 2 #a~j!#da~x! dj dx

(54)

where ­)(a0)/­a and ­^̂(a0)/­a are the functional (or
Frechet) derivatives of )(a) and ^̂(a), evaluated at a0(x), and
the d prefix indicates the first variation. These Frechet deriv-
atives are linear operators which map da(x) to the scalar d)
and the vector d^̂, respectively. Note that the nominal function
a0(x) and the variation da(x) are constrained to lie in the
parameter space Aad. Since the Frechet derivatives are linear
functionals they may be expressed as integrals over the kernel
functions g) and g^ (which remain to be determined):

­)~a0!

­a
da 5 E

D

g)~j ua0!da~j! dj (55)

­^̂ ~a0!

­a
da 5 E

D

g^~j ua0!da~j! dj (56)

By analogy with discrete optimization theory, we call the scalar
function g) the ‘‘performance index gradient,’’ and the M-
dimensional vector function g^ the ‘‘measurement Jacobian.’’
Appendix B shows that the log conductivity and head com-

ponents of the measurement Jacobian for the groundwater
problem may be written as (see (B2) and (B6)):

g^ai~x ua0! 5 d~x 2 x i! (57)

g^hi~x ua0! 5 2
­Kef f ~a0!~x!

­a E
0

T

=z i0~x, t! ? =h0~x, t! dt

(58)

where h0(x, t) is the large-scale head solution derived from
a0(x) and the variable z i0(x, t) 5 G(xi, x, t i, t ua0) is the flow
equation Green’s function written as a function of only x and
t for measurement i (see (36)). This ‘‘adjoint’’ variable is the
solution to the adjoint flow equation given in (B7).
The performance index gradient is obtained by substituting

(56) into (54) and applying the definition of (55):

g)~x ua0! 5 22g^
T ~x ua0!Cv

21@z 2 ^̂ ~a0!#

1 2 E
D

Ca
21~x, j!]a0~j! 2 #a~j!] dj (59)

It is shown in Appendix B (see B17) that this expression may
also be written as

g)~x ua0! 5 2
­Kef f ~a0!~x!

­a E
0

T

¹h0~x, t! ? ¹h0~x, t! dt

2 2 O
i5Mh11

Mh1Ma O
j5Mh11

Mh1Ma

@ zai 2 a0~x i!#@Cva

21# ijd~x 2 x j!

1 2 E
D

Ca
21~x, j!@a0~j! 2 #a~j!# dj (60)

where h0 is another adjoint variable (a linear function of the
Mh z i0’s) which may be obtained by solving (B15). Note that
the Jacobian and gradient both depend on the nominal param-
eter function a0.
Equations (54) and (55) imply that d)(â) 5 0 only if the

gradient function at â(x) is 0:

g)~x uâ! 5 22g^
T ~x uâ!Cv

21@z 2 ^̂ ~â!#

1 2 E
D

Ca
21~x, j!@â~j! 2 #a~j!# dj 5 0 (61)

This integral equation (the Euler-Lagrange equation for our
functional minimization problem) is very difficult to solve ex-
plicitly if ^̂(a) depends nonlinearly on a, as it does in the
groundwater inverse problem of interest here. It is, however,
possible to solve (61) with an iterative algorithm which approx-
imates the nonlinear problem by a sequence of linear prob-
lems. On iteration k 1 1 this algorithm approximates the
forward operator by a first-order expansion about âk, the
estimate obtained from the previous iteration:

^̂ ~a! < ^̂ ~âk! 1
­^̂ ~âk!

­a
~a 2 âk! (62)

k 5 0, · · · , kmax 2 1

where it is understood that the k subscript refers to iteration
number. If this linearized expression is substituted for ^̂(â) in
(61) and the value of â in g^(xuâ) is held fixed at âk the
extremal solution after iteration k 1 1 can be written as (see
equation (4.108a) of Tarantola [1987, p. 244])

âk11~x! 5 âk~x! 1 E
D

@g^
T ~x uâk!Cv

21g^~m uâk!

1 Ca
21~x, m!#21$g^

T ~x uâk!Cv
21@z 2 ^̂ ~âk!#

2 E
D

Ca
21~m , j!@âk~j! 2 #a~j!# dj% dm (63)

k 5 0, · · · , kmax 2 1

The inverse of the square-bracketed function which appears in
this equation is defined in a manner analogous to (50).
Equation (63) can be put in an alternative but mathemati-

cally equivalent form with the aid of the two operator inversion
identities given by Tarantola [1987, problem 1.19, p. 158]:

âk11~x! 5 #a~x! 1 FE
D

Ca~x, m!g^
T ~muâk! dmG

z FE
D

E
D

g^~juâk!Ca~j, m!g^
T ~muâk! dj dm 1 CvG21

z H@z2 ^̂~âk!# 1E
D

g^~juâk!@âk~j! 2 #a~j!# djJ (64)

k 5 0, · · · , kmax 2 1

This form has the advantage of replacing the functional inver-
sion of (63) by a more computationally convenient matrix in-
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version. It is a functional implementation of the widely used
Gauss-Newton search algorithm. Although (64) is complex, all
of its terms can be readily computed once the flow equation
Green’s function (or a suitable approximation) is specified.
The primary alternatives to the Gauss-Newton approach for

solving the maximum a posteriori estimation problem are gra-
dient-based searches, which include quasi-Newton and conju-
gate gradient methods [Gill et al., 1981; Tarantola, 1987]. The
functional versions of these iterative algorithms rely on an
estimation equation having the following general form:

âk11~x! 5 âk~x! 1 Dâk@x, g)~x uâk!, · · · , g)~x uâ0!# (65)

k 5 0, · · · , kmax 2 1

where the update Dâk depends on the performance index gradi-
ent g)(xuâk) evaluated at iteration k (and possibly on gradients
from previous iterations) but not on the measurement Jacobian.
A simple example is the functional steepest descent algorithm:

Dâk~x! 5 2mg)~x uâk! (66)

where g)(xuâk) is obtained from (60) and m is a scalar constant
that is obtained from a one-dimensional line search [Tarantola,
1987, pp. 230–231]. In this case the change in the parameter
function is directly proportional to the gradient function.
The similarity between functional estimation algorithms

such as (64) and (65) and more familiar discrete estimation
algorithms becomes apparent if we replace âk(x) by the finite-
dimensional parameterization fT(x)âk and invoke the identity
given in (A4). When this is done, (64) yields the following
discrete Gauss-Newton estimation algorithm for the estimate
of the basis function coefficient vector a:

âk11 5 #a 1 Ca
­^̂T~fTâk!

­a

z F ­^̂ ~fTâk!
­a

Ca
­^̂T~fTâk!

­a
1 CvG 21

z H @z 2 ^̂ ~fTâk!# 1
­^̂T~fTâk!

­a
@âk 2 #a#J (67)

k 5 0, · · · , kmax 2 1

where Ca is the covariance matrix of a and ­^̂(fTā)/­a is a
discrete M by N-dimensional measurement Jacobian matrix
which is related to the Jacobian function by the following
expression:

­^̂ ~fTa!

­a
5

­^̂ ~fTa!

­a

­a

­a
5

­^̂ ~fTa!

­a
fT

5 E
D

g^~j ua!fT~j! dj (68)

In a similar way, we can derive a discrete gradient-based search
algorithm by substituting the basis function expansion for â
into (65):

âk11 5 âk~x! 1 DâkF ­)~fTâk!
­a

, · · · ,
­)~fTâ0!

­a G (69)

k 5 0, · · · , kmax 2 1

where ­)/­a is a discrete one- by N-dimensional performance
index gradient vector which is related to the gradient function
as follows:

­)~fTa!

­a
5

­)~fTa!

­a

­a

­a
5

­)~fTa!

­a
fT

5 E
D

g)~j ua!fT~j! dj (70)

The function Dâk( ) can be identified directly from a dis-
cretized version of (65). Note that functional estimates can be
obtained from either of the discrete â estimation algorithms by
applying the relationship âk(x) 5 fT(x)âk.
Appendix B discusses two numerical methods for evaluating

the discrete Jacobian and performance index gradient: the
adjoint sensitivity approach and the finite difference approach.
If an adjoint approach is used,Mh 1 1 flow equation solutions
are required to compute the discrete Jacobian on each itera-
tion, while only two solutions are required to compute the
discrete performance index gradient. If a finite difference ap-
proach is used, N 1 1 flow equation solutions are required to
evaluate either the Jacobian or the performance function gra-
dient. At first glance an adjoint-based gradient search would
also seem to be much more efficient than the Gauss-Newton
alternative. Unfortunately, gradient-based search algorithms
tend to converge less rapidly and less reliably than Gauss-
Newton algorithms, and they are highly dependent on the
efficiency and accuracy of the line search needed to derive the
step length along the search direction. So, although each iter-
ative update in a gradient search may be less expensive to
compute, the overall effort required to obtain an acceptable
solution may be greater. The choice between the gradient and
Gauss-Newton approaches remains a topic of some contro-
versy since different applications appear to favor different
methods. A recent performance comparison provided by Zou
et al. [1993] shows that the Gauss-Newton approach is probably
the best choice if either N or Mh is sufficiently small to make
the method computationally feasible. Otherwise, an adjoint-
based gradient search algorithm is the best option.
The finite-dimensional discrete forms of the Gauss-Newton

and gradient-based maximum a posteriori estimation equa-
tions are more convenient than the functional forms for prac-
tical numerical computation. The functional forms are,
however, more general since they apply for both finite and
infinite-dimensional expansions of a(x). Moreover, the dis-
crete algorithms can always be derived from their functional
counterparts by substituting a basis function expansion into the
appropriate functional update equation. We believe that func-
tional estimation equations play a role in inverse theory similar
to the role played by partial differential equations in mathe-
matical modeling. In both cases, it is useful to pose the prob-
lem in a continuum form before discretizing. This clearly dis-
tinguishes fundamental assumptions about the nature of
spatial variability from more pragmatic discretization assump-
tions introduced for computational reasons.

4. Representative Groundwater Inverse
Algorithms
In this section we review a number of inverse algorithms

which have been developed from different perspectives but
which fit into the maximum a posteriori estimation framework.
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The parameterizations adopted in these algorithms can all be
expressed probabilistically, either in terms of functional statis-
tics or in terms of basis function expansions and associated
discrete statistics. The forward equations all have the form
given in (42). The estimation criteria can all be put in the
functional form given in (49). Finally, the solution techniques
can all be viewed as special cases of the iterative search algo-
rithms described in section 3.4. In the subsections that follow
we distinguish linear methods (which provide a solution after
one iteration) from nonlinear methods (which search for a
solution over many iterations). Our primary objective is to
reveal the common origins and assumptions of different meth-
ods. We believe that this can help us to develop new inverse
techniques as well as to make better use of the ones we have.

4.1. Linear Methods

Bayesian parameter estimates generally depend nonlinearly
on measurements when the forward equation is nonlinear in
a(x), as in the groundwater flow application of interest here.
For example, the Gauss-Newton estimate obtained after the
first iteration of (64) is nonlinear because the terms which
multiply the measurement residual depend on the measure-
ment vector z. We can obtain an estimator which is linear in z
if we introduce certain approximations in the maximum a pos-
teriori problem formulation. Linear estimators have the merit
of being simple to use and reasonably robust, and there is an
extensive literature on their properties. For these reasons they
deserve serious consideration in applications where their as-
sumptions can be justified.
There are many different ways to derive a linear Bayesian

estimator, all giving essentially the same result. One alternative
is to replace the forward operator in the original performance
index by the following linear approximation:

^̂ ~a! < ^̂ ~ #a! 1
­^̂ ~ #a!

­a
~a 2 #a! (71)

If the derivation of section 3 is repeated with this substitution
the resulting estimate is identical to the one obtained after one
iteration of the Gauss-Newton algorithm of (64), with â0(x) set
equal to ā(x) [Carrera and Glorioso, 1991]. When the forward
operator is truly linear in a the Gauss-Newton search con-
verges to the exact solution in one iteration. When the forward
operator is nonlinear, the first iteration solution is an approx-
imation which can be refined by taking additional iterations. In
either case, if we stop after the first iteration the resulting
linear estimate may be written as

â~x! 5 #a~x! 1 F E
D

Ca~x, m!g^
T ~m u #a! dmG

z F E
D

E
D

g^~j u #a!Ca~j, m!g^
T ~m u #a! dj dm 1 CvG 21

z @z 2 ^̂ ~ #a!# (72)

The discrete version of (72) follows from (67):

â 5 ā 1 Ca
­^̂T~fTā!

­a F ­^̂ ~fTā!

­a
Ca

­^̂T~fTā!

­a
1 CvG 21

z @z 2 ^̂ ~fTā!# (73)

Note that both the functional and discrete versions of this first
iteration estimate are linear in z since the coefficients of the
measurement residual term do not depend on z.
The linear estimation equations of (72) and (73) may be

expressed more concisely if we adopt the following approxi-
mation for z:

z 5 z̄ 1 z* < z̄ 1
­^̂ ~ #a!

­a
a9 1 v

5 z̄ 1
­^̂ ~fTā!

­a
a* 1 v (74)

where a9 5 a 2 #a, a* 5 a 2 ā, and z* 5 z 2 z̄ are the
fluctuations of a, a, and z about their respective means. The
expressions to the right of the first and second equalities are
the functional and discrete versions of the approximation, re-
spectively. The validity of (74) depends both on the structure of
^(a) and on the magnitude of a9, as measured by the variance
of a. The approximation breaks down for large-scale log con-
ductivity variances much greater than 1.
Equation (74) enables us to write the measurement covari-

ance matrix Cz and the parameter measurement covariance
vector Caz(x) as follows:

C z 5 z*z*T 5 E
D

E
D

g^~j u #a!Ca~j , m!g^
T ~m u #a! dj dm 1 Cv

(75)

Caz~x! 5 a9~x!z*T 5 E
D

Ca~x, m!g^
T ~m u #a! dm (76)

Or, if a finite-dimensional parameterization is introduced, we
can use an equivalent discrete representation:

C z 5 z*z*T 5
­^̂ ~fTā!

­a
Ca

­^̂T~fTā!

­a
1 Cv (77)

Caz~x! 5 a9~x!z*T 5 f~x!Ca
­^̂T~fTā!

­a
(78)

When the appropriate covariance expressions are substituted
into either (72) or (73) the resulting expression for the linear
estimate of a(x) is

â~x! 5 #a~x! 1 Caz~x!C z
21@z 2 ^̂ ~ #a!# (79)

where it is understood that #a(x) 5 fT(x)ā in the discrete case.
Equation (79) is equivalent to the expression presented in (46)
for the Gaussian conditional mean. This is as expected since
the maximum a posteriori estimate (or conditional mode) is
equal to the conditional mean in the linear Gaussian case
(recall Figure 4). Equation (79) and closely related variants
form the basis for all of the linear inverse methods described in
the groundwater literature.
The functional covariance expressions given in (75) and (76)

are most useful when the large-scale log conductivity is treated
as a random field with a specified mean #a(x) and covariance
function Ca(x, j). This approach is typically associated with
geostatistical descriptions of spatial variability. If we adopt a
functional approach we can derive a closed form expression for
the head portion of the functional Jacobian if we assume that
(1) steady state conditions apply (i.e., ­h/­t 5 0), (2) the
effective conductivity is given by the geometric mean of the
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large-scale conductivity so that [Kef f(a0)] ij 5 ea0d ij, (3) #a is
a constant (i.e., ¹ā 5 0), and (4) the effects of boundary
conditions are accounted for by the mean hydraulic gradient,
which is assumed to be known. Appendix B shows that
g^hi

(xuā) has the following form in this special case:

g^hi~x u #a! 5 2=G¹2~x, x i! ? = #h~x! (80)

where G¹2 is the infinite domain Green’s function associated
with the Laplacian (¹2) operator. When (80) is substituted into
(75) and (76) the estimate obtained from (79) is the same as
the Gaussian conditional mean estimator given in (2e–2h) and
(3h–3i) of Dagan [1985, pp. 66–67]. This simplified maximum
a posteriori estimator is also the same as the cokriging estima-
tor proposed by Gutjahr and Wilson [1985]. The linear estima-
tion approach has been extended by Rubin and Dagan [1987a,
b], who use a maximum likelihood technique to estimate a
constant random recharge value as well as the mean log con-
ductivity, the components of the mean head gradient, and
several statistical parameters associated with the prior covari-
ance Ca(x, j). Note that a closed form linear estimator based
on (80) and (79) provides a true functional solution to the
groundwater inverse problem since it yields a distinct estimate
at every point in the computational domain.
Although Dagan’s linear inverse algorithm does not require

discretization of the log conductivity function, it is instructive
to note that the estimate it produces can be obtained by adopt-
ing the following M-dimensional basis function expansion for
a(x) 2 #a(x):

a~x! 2 #a~x! 5 O
i51

M

aif i~x! 5 O
i51

M

aiCazi~x! 5 Caz
T ~x!a

(81)

where a is a zero meanM-dimensional vector of unknown basis
function coefficients and the basis function f i(x) is the covari-
ance Cazi

(x) between a(x) and zi. If this expansion and the
linear approximation of (71) are substituted into (49) and the
performance index is minimized with respect to a, the result is

â 5 C z
21@z 2 ^̂ ~ #a!# (82)

When this expression is substituted into (81) the estimate ob-
tained for a(x) is identical to the one given in (79). This
suggests that the effective number of unknowns in the linear
estimation algorithm of Dagan is equal to M, the number of
measurements. However, we know from the discussion follow-
ing (32) that the Karhunen-Loeve expansion of a stationary
random field generally has an infinite number of basis function
coefficients. This difference can be explained by noting that the
estimate provided in (79) is actually a projection of the infinite-
dimensional function a(x) onto the M-dimensional space
spanned by the Cazi

(x) functions [Wahba, 1990]. As mentioned
in section 3.3, this finite-dimensional projection will always be
smoother than the actual infinite-dimensional parameter func-
tion.
If the simplifying assumptions used to derive (80) are not

appropriate we can derive Cz and Caz from the discrete ex-
pressions given in (77) and (78).Hoeksema and Kitanidis [1984]
take this approach in their linear geostatistically oriented
steady state inverse algorithm. For the purpose of deriving
covariances they assume that the log conductivity (or transmis-
sivity) is an intrinsic random field which can be adequately
approximated by a discrete block-oriented parameterization:

a~x! 5 O
i51

Nb

abifbi~x! (83)

where abi is the block-averaged log conductivity in block i and
the basis functions are defined as follows:

fbi~x! 5 1 if x [ parameter block i
(84)

fbi~x! 5 0 otherwise

where i 5 1, z z z , Nb and Nb is the number of grid blocks
included in the computational domain. The Hoeksema and
Kitanidis algorithm does not need to evaluate all of the dis-
crete block coefficients (the abi’s) since the required covari-
ances can be derived from the basis functions, the discrete
Jacobian, and Ca (which is obtained by integrating Ca(x, j)
over each grid block). Once Cz and Caz are evaluated, esti-
mates of a(x) can be computed from (79) at as many or as few
points as desired. Hoeksema and Kitanidis [1984] derived the
discrete Jacobian by inverting the coefficient matrix of a dis-
cretized version of the linearized steady state flow equation
(see (B8)). This operation requires Nb solutions of the discrete
flow equation (the same amount of effort as a direct finite
difference derivation of the Jacobian). When the domain is
large the computational effort required by the algorithm can be
reduced significantly if the discrete Jacobian is derived with an
adjoint procedure (see Appendix B).
The original Hoeksema and Kitanidis estimation algorithm

is expressed in terms of generalized covariances rather than the
conventional means and covariances used here (see work by
Marsily [1986, pp. 312–318] for a discussion of generalized
covariance functions). The generalized covariance formulation
constrains the estimator to insure that polynomial trends of a
given order are always removed from the data. This is useful if
the prior mean of the large-scale log conductivity can be rep-
resented as a polynomial with unknown coefficients. If polyno-
mial filtering constraints are added to the maximum a poste-
riori performance index (e.g., by using a Lagrange multiplier
approach) it is possible to make (79) look exactly like the
Hoeksema and Kitanidis [1984] estimation equation. Carrera
and Glorioso [1991] have demonstrated this for the steady state
case. The complete Hoeksema and Kitanidis algorithm also
includes a maximum likelihood procedure for estimating the
functional form of the generalized covariance. This is an im-
portant capability which increases the practical usefulness of
the algorithm when there are enough data to justify covariance
estimation (see section 5.1).
The Hoeksema and Kitanidis approach to the steady state

inverse problem has been extended to the dynamic case by Sun
and Yeh [1992]. The Sun and Yeh algorithm is also based on
(79), with the measurement Jacobian derived from a discrete
adjoint technique. Carrera and Medina [1994] describe a simi-
lar application of the adjoint approach which includes a way to
significantly increase computational efficiency when multiple
head measurements are taken over time at each sampling
location. Nevertheless, Caz and Cz can become very large in
dynamic problems, particularly if a high-resolution parameter-
ization is used for the large-scale log conductivity. The con-
ceptual and computational issues which affect parameteriza-
tion decisions are discussed further in section 5.3.

4.2. Nonlinear Methods

Nonlinear inverse methods have been used by hydrologists,
chemical engineers, and petroleum engineers since the mid-
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1960s. These methods have been popular in part because they
mimic the iterative process carried out in manual ‘‘model cal-
ibration’’ or ‘‘history-matching’’ exercises. The basic philoso-
phy is to progressively refine an initial or ‘‘prior’’ estimate until
the fit between measurements and predictions can no longer be
improved. Although nonlinear inversion techniques do not in-
volve as many assumptions as linear methods, they are less
likely to provide unique solutions and they can be more diffi-
cult to apply in practice. All of the nonlinear inverse algorithms
reviewed here minimize some version of the maximum a pos-
teriori performance index given in (49) (functional form) or
(48) (discrete form). Since the algorithms we consider all share
the same performance index, they differ primarily in the search
techniques they use for finding a minimum and in the basis
function expansions they use to parameterize a(x).
While there are many ways to find the minimum of a non-

linear performance index, the alternatives most commonly
used in groundwater applications are the Gauss-Newton and
gradient-based methods discussed in section 3.3. The choice of
search technique can have a significant impact on the results
obtained in any particular application. Nevertheless, it is dif-
ficult to generalize about the performance of different alterna-
tives. Most of the nonlinear inverse methods reviewed here
have been tested with different search algorithms and some are
even designed to change algorithms as the search proceeds.
Generally speaking, standard nonlinear search techniques will
converge when the underlying problem is well-posed and will
have difficulties when it is not (this statement could, in fact, be
viewed as an informal operational definition of well-
posedness).
We begin our discussion by considering methods that rely

explicitly on Bayesian estimation concepts and then consider,
in turn, least squares, maximum likelihood, and pilot point
methods. We show that the latter three methods are equivalent
to the maximum a posteriori approach when prior information
is included. We conclude with a discussion of the extended
Kalman filter, which minimizes (48) with a suboptimal recur-
sive algorithm.
4.2.1. Maximum a posteriori methods. A number of in-

vestigators have proposed inverse algorithms which are direct
applications of the Gaussian maximum a posteriori approach.
The basic concepts are described by Gavalas et al. [1976] and
Shah et al. [1978], who use the discrete performance index of
(48), and Reid and McLaughlin [1994], who use the functional
performance index of (49). The parameterizations adopted in
all of these studies can be readily written as basis function
expansions having the form given in (29). It is instructive to
consider the parameterization alternatives in detail since they
illustrate some of the computational issues which arise when
the maximum a posteriori approach is implemented.
The original version of the Gavalas et al. [1976] algorithm

approximated the random function a(x) with a blocked param-
eterization similar to the one used by Hoeksema and Kitanidis
[1984] (see (83) and (84)). As in the Hoeksema and Kitanidis
application, the blocks were chosen to be small ‘‘pixels,’’ or
grid blocks, rather than regional geological features. This ap-
proach provides a high-resolution characterization of parame-
ter variability over the computational domain (see Figure 3).
However, there is a price to be paid for such high resolution,
especially in the nonlinear case. The nonlinear Gavalas et al.
algorithm estimates all of the block parameter values simulta-
neously (i.e., it must solve a system of Nb nonlinear equations
in Nb unknowns, where Nb is the number of blocks in the

computational domain). The computational cost of this high-
dimensional parameterization becomes prohibitive in three-
dimensional applications, where Nb can easily exceed 10

5 [Ab-
abou et al., 1989]. Furthermore, such a parameterization is
inefficient since most of the estimated block values (those more
than few correlation distances away from measurements) are
very close to the prior mean.
Gavalas et al. [1976] dealt with the computational disadvan-

tages of a high-resolution blocked parameterization by intro-
ducing an alternative parameterization based on an eigenvalue
decomposition. This approach expresses the unknown block
parameters in (83) as expansions over the eigenvectors of the
prior covariance matrix Ca of the blocked parameter vector ab:

abi 5 O
j51

Ne

aejL ij i 5 1, · · · , Nb (85)

where abi is the value of the log conductivity in block i, L ij is
component i of the jth eigenvector of Ca, aej is the unknown
coefficient of eigenvector j , and Ne is the number of eigenvec-
tors retained in the expansion. Generally speaking, it is possi-
ble to capture most of the variability in a(x) by keeping only a
small fraction of the Nb eigenvectors of Ca. The eigenvector
expansion can be put in the functional form used in our anal-
ysis if (83) and (85) are combined:

a~x! 5 O
j51

Ne

aejF O
i51

Nb

L ijfbi~x!G 5 O
i51

Ne

aejfej~x! (86)

where fbi(x) is defined in (84) and the basis function fej(x) is
the known expression in brackets. The eigenvector approach
provides a more efficient description of geological variability
than the blocked alternative, and it generally yields a better-
posed problem since the number of unknowns is much smaller.
Gavalas et al. [1976] solved the maximum a posteriori prob-

lem with discrete Gauss-Newton and conjugate gradient algo-
rithms which rely on derivatives derived from an adjoint tech-
nique. They provide a detailed comparison of the
computational effort and accuracy achieved with their block
and eigenvector-based parameterizations. Generally speaking,
their results favor an eigenvector parameterization imple-
mented with a Gauss-Newton search. It should be mentioned
that a possible alternative to the Gavalas et al. [1976] approach
is to derive the basis functions fej(x) directly from the a(x)
covariance function. This could be accomplished by solving the
Karhunen-Loeve eigenvalue equation with a Fourier trans-
form technique (see the discussion accompanying (32)). Al-
though the Gavalas et al. [1976] conclusions are based on a
simple one-dimensional example, they merit review by anyone
interested in applying maximum a posteriori estimation tech-
niques to the groundwater inverse problem.
Reid and McLaughlin [1994] introduced an alternative low-

dimensionality parameterization in their functional version of
the maximum a posteriori estimation algorithm. This parame-
terization is suggested by the M-dimensional basis function
expansion that can be used to derive the linear Dagan [1985]
algorithm (see (81)):

â~x! 2 #a~x! 5 O
i51

M

âif i~x! 5 O
i51

M

âiCazi~x! (87)

Reid and McLaughlin [1994] substitute this expansion into the
functional Gauss-Newton algorithm of (64). This yields the
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discrete iterative estimation algorithm of (67) for the M-
dimensional coefficient vector a. The Reid and McLaughlin
basis/covariance functions (the Cazi

(x)’s) are derived from the
same functional equation as Dagan’s [1985] covariances. The
first iteration of their nonlinear search for the optimum gives
an estimate â1 identical to the closed form solution obtained by
Dagan [1985]. On subsequent iterations the discrete M-by-M
Jacobian matrix is recomputed with a finite difference approx-
imation and the coefficient estimate âk is modified, although
the basis function vector Caz(x) is not changed. This nonlinear
maximum a posteriori approach is very efficient since it esti-
mates only M unknown coefficients (the same as the Dagan
[1985] linear approach). In fact, the number of coefficients can
be reduced still further if an eigenvalue decomposition similar
to the one proposed by Gavalas et al. [1976] is included in the
estimation algorithm. A similar parameterization has been
proposed by Bennett [1992] for oceanographic applications.
Maximum a posteriori and related regularization techniques

have not been applied as extensively in hydrology as in other
fields, although the Bayesian philosophy that forms the basis
for the maximum a posteriori approach has had a significant
impact through the use of geostatistics. In the next subsection
we see how Bayesian ideas have influenced nonlinear inverse
techniques that rely on non-Bayesian estimation concepts.
4.2.2. Nonlinear least squares and maximum likelihood

methods. Nonlinear least squares methods and related re-
gression techniques are widely used to fit experimental models
to data [Bard, 1974] and have been incorporated into practical
groundwater inverse algorithms [Hill, 1991]. They differ from
the Bayesian methods discussed so far in this paper in that they
treat the unknown parameters as deterministic quantities with-
out any particular statistical (or spatial) structure. Least
squares estimates minimize the following version of (48):

J~a! 5 @z 2 ^̂ ~fTa!#TCv
21@z 2 ^̂ ~fTa!# (88)

Note that the least squares performance index includes only
the first (goodness-of-fit) term in (48). The prior term is omit-
ted, at least in the standard version of nonlinear least squares.
The performance index is not derived from probabilistic argu-
ments (as in maximum a posteriori theory) but is simply pre-
sented as a reasonable basis for estimation [Jazwinski, 1970; pp.
150–159]. The measurement vector z is assumed to be gener-
ated by a forward equation such as (42), with an additive
random measurement error v. The measurement error is often
assumed to be Gaussian in order to facilitate statistical analysis
of results [Bard, 1974]. Numerical solutions of the least squares
problem are generally found with iterative search algorithms
such as the Gauss-Newton or gradient methods discussed ear-
lier.
Nonlinear least squares algorithms were first applied to dis-

tributed parameter groundwater problems when numerical
models became widely available in the 1960s and 1970s [Jac-
quard and Jain, 1965; Jahns, 1966; McLaughlin, 1975; Cooley,
1977, 1979]. These early algorithms generally provided only for
head measurements. Neuman and Yakowitz [1979], Neuman et
al. [1980], and Neuman [1980] added log conductivity measure-
ments in the late 1970s. The role of head and log conductivity
measurements can be clearly distinguished if the correspond-
ing measurement errors are assumed to be uncorrelated and
(88) is expanded as follows:

J~a! 5 @zh 2 ^̂ h~fTa!#TChv
21@zh 2 ^̂ h~fTa!#

1 @za 2 ^̂ a~fTa!#TCav
21@za 2 ^̂ a~fTa!# (89)

where the h and a subscripts refer to the head and log con-
ductivity components of the indicated variables.
Neuman and Yakowitz [1979] observed that the least squares

estimator of (88) is equivalent to a Gaussian maximum likeli-
hood estimator with known statistical properties. This connec-
tion is made more explicit in the subsequent work of Carrera
and Neuman [1986a, b, c] and Samper and Neuman [1989]. The
discrete maximum likelihood estimate is the mode of the con-
ditional density pz ua(zua), which is commonly called the likeli-
hood function when treated as a function of a for fixed z. It
follows from (42) that the likelihood function is

pzua~z ua! 5 pv@z 2 ^̂ ~fTa!# (90)

where pv( ) is the probability density of the measurement
error v. It is often convenient to derive the maximum likeli-
hood estimate by minimizing 22 ln pz ua(zua), which is a mono-
tonic function of the likelihood. If pv( ) is Gaussian, this
transformed likelihood function is identical to the least squares
performance index of (88) and the maximum likelihood esti-
mate is, consequently, the same as the nonlinear least squares
estimate.
Since maximum likelihood estimation, like least squares es-

timation, assumes that a is an unknown deterministic param-
eter, the only source of randomness in the formulation is mea-
surement error [Schweppe, 1973, pp. 100–104]. This sometimes
creates confusion about the implications of certain statistical
assumptions made in the maximum likelihood approach. For
example, the assumption that the head and log conductivity
measurement errors are uncorrelated does not imply that the
actual head and log conductivity are uncorrelated. In fact, the
concept of correlation does not apply to these variables since
they are not random quantities in the maximum likelihood
formalism. Only the measurement errors are random. In prac-
tice, errors in the measurement process (e.g., errors in reading
the depth-to-water in a well) are not large enough to explain
observed deviations between measured and predicted heads.
In order to be useful, the concept of measurement error must
be extended to include such things as scale discrepancies (e.g.,
differences between model discretization and well scales) or
modeling errors (e.g., improperly specified recharge rates) (see
the discussion accompanying (24)). This generalization of the
measurement error concept is particularly important in least
squares and maximum likelihood methods since there is no
other way to account for uncertainty.
We can gain some insight about least squares and maximum

likelihood solutions to the groundwater inverse problem by
noting that they are equivalent to the discrete Gaussian max-
imum a posteriori solution obtained when the prior covariance
Ca is arbitrarily large [Schweppe, 1973, pp. 103, 339]. From the
perspective of maximum a posteriori theory an arbitrarily large
covariance implies that the prior density for a is uninformative
(i.e., it implies that we know nothing about a). This is unreal-
istically pessimistic since we can usually put upper and lower
bounds on the range of ‘‘reasonable’’ values for parameters
such as the large-scale log hydraulic conductivity. In fact, most
practical nonlinear regression and maximum likelihood algo-
rithms provide for such constraints in their search algorithms.
It is easy to show that a bounded least squares algorithm is

equivalent to a maximum a posteriori estimator which assumes
that the measurement error probability density is Gaussian and
the prior probability density is uniform between the specified
bounds. In this case the maximum a posteriori performance
index becomes
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J~a! 5 @z 2 ^̂ ~fTa!#TCv
21@z 2 ^̂ ~fTa!# 2 ln pa~a! (91)

where the prior density pa(a) is a positive constant when a lies
within the bounds, and 0 when it lies outside. Since this per-
formance index imposes an infinite penalty on estimates lying
outside the permitted interval, it will enforce the constraints
perfectly.
In practice, strict bounds may not be the best way to intro-

duce prior information into a least squares or maximum like-
lihood inverse algorithm. Advocates of the least squares ap-
proach have recognized the value of prior geologic information
in groundwater applications and have developed a number of
ways to accommodate it in their inverse procedures. Examples
may be found in work by Neuman and Yakowitz [1979], Clifton
and Neuman [1982], Cooley [1982, 1983], and Carrera and Neu-
man [1986a, b, c]. When these investigators use the term ‘‘prior
information’’ they are generally referring to either direct or
surrogate measurements of log conductivity rather than to
Bayesian prior statistics associated with a random parameter.
Nevertheless, the maximum likelihood and Bayesian interpre-
tations of prior information often give the same results.
This is most clearly demonstrated in the work of Clifton and

Neuman [1982], who use a block kriging algorithm to estimate
log conductivity values in the cells of a model computational
grid. The kriged log conductivity estimates are derived from
scattered log conductivity measurements and a set of prior
statistics (i.e., a variogram or a mean and covariance function).
These estimates are incorporated into the least squares/
maximum likelihood performance index as if they were actual
measurements of log conductivity. It is shown in Appendix C
that this two-step operation is equivalent to a discrete maxi-
mum a posteriori estimator based on the same prior statistics
as the kriging algorithm. Once Bayesian concepts are intro-
duced via kriging (which is itself a maximum a posteriori esti-
mation technique), the nonlinear maximum likelihood estima-
tor acts just like a Bayesian estimator, displaying similar
regularization properties and a similar tendency to produce
estimates close to the prior mean.
4.2.3. The pilot point method. The pilot point method

incorporates prior information in a different way than the
methods described above, although it retains many of the traits
of maximum a posteriori estimation. The basic idea is to ap-
proximate the effective log conductivity by a smooth function
which reproduces available log conductivity measurements
while giving an acceptable fit to head data. Details are dis-
cussed in work by Marsily [1984], Marsily et al. [1984], and
Certes and Marsily [1991]. These papers adopt a variogram-
based description of spatial variability. In order to maintain
consistency with the notation used in preceding sections, we
use a covariance-based (but nonstationary) description. Oth-
erwise, the analysis given here is consistent with published
explanations of the method.
The log conductivity estimate used in the pilot point method

is obtained from a kriging algorithm which interpolates point
measurements. Two distinct types of ‘‘measurements’’ are in-
cluded in this procedure: (1) actual log conductivity measure-
ments zai inferred from pump tests, soil samples, etc., collected
at the locations xi, where i 5 Mh 1 1, z z z , Mh 1 Ma, and
(2) estimated log conductivity values api at a carefully selected
set of ‘‘pilot points’’ located at xpi, where i 5 1, z z z , N. Recall
that Ma and Mh are, respectively, the number of log conduc-
tivity and head measurements used for estimation. If we as-
sume for the moment that the pilot point values are known, the

kriging (or minimum variance linear unbiased) estimator of
a(x) is given by (79), written here as a scalar sum in order to
more clearly distinguish the role of the pilot points:

â~x! 5 #a~x! 1 O
i5Mh11

Mh1Ma O
j5Mh11

Mh1Ma

@Caza~x!# j@C za
21# ji@ zai 2 #a~x i!#

1 O
i51

N O
j51

N

@Caap~x!# j@Cap
21# ji@api 2 āpi# (92)

where Caza
(x) is the covariance between a(x) and the Ma-

dimensional vector za of log conductivity measurements,
Caap

(x) is the corresponding covariance between a(x) and the
N-dimensional vector ap of pilot point values, Cza

is the co-
variance matrix of za, and āp and Cap are the specified mean
and covariance of ap.
Equation (92) can be simplified if we assume both that the

log conductivity measurements are noise-free and that the pilot
point values are drawn from the same population (have the
same statistics) as the true log conductivities. In this case the
terms of (92) can be regrouped to conform more closely to the
basis function expansion of (29):

â~x! 2 a0~x, za! 5 O
j51

N

f i~x!~api 2 āpi! 5 fT~ap 2 āp!

(93)

where āpi 5 #a( xpi) and a0(x, za) and f i(x) are given by

a0~x, za! 5 #a~x! 1 O
i5Mh11

Mh1Ma O
j5Mh11

Mh1Ma

@Ca~x!# j@Ca
21# ji@ zai 2 #a~x i!#

(94)

f i~x! 5 O
j51

N

@Ca~x!# j@Ca
21# ji (95)

Here [Ca(x)] j is the prior covariance between a(x) and a(xj)
and [Ca] ji is the prior covariance between a(xj) and a(xi).
These discrete covariances can be obtained by evaluating the
prior covariance function Ca(x, j) at the appropriate locations.
The function a0(x, za) is the estimate of a(x) that would be
obtained from a kriging algorithm that uses only actual log
conductivity measurements (i.e., which does not use pilot
points).
The basis function expansion of (93) demonstrates that the

pilot point method uses a log conductivity parameterization
which is consistent with (29). The only difference is that the
pilot point version is based on an expansion of the function
a(x) 2 a0(x, za) rather than of a(x) itself. Note that a0(x, za)
depends only on the prior log conductivity mean and covari-
ance functions and the log conductivity measurements. Since
these quantities are all known, a0(x, za) can be computed
before ap is estimated from head measurements.
The pilot point method uses a classical nonlinear least

squares approach for estimating the unknown pilot point val-
ues. The estimation algorithm minimizes the following version
of the least squares performance index given in (89):

J~ap! 5 $zh 2 ^̂ h@a0 1 fT~ap 2 āp!#%T

? Chv
21$zh 2 ^̂ h@a0 1 fT~ap 2 āp!#% (96)
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Note that only head measurements are included in this index.
The minimum can be found with any of the search algorithms
discussed earlier. Although the pilot point basis function ex-
pansion depends on the prior covariance of a(x), the perfor-
mance index in (96) does not include a regularization term.
The pilot point estimates are determined solely by their ability
to fit head measurements and can deviate arbitrarily far from
the log conductivity prior means without any penalty. It might
be suspected that this could cause stability problems in some
applications. Nevertheless, the method appears to have per-
formed well in several field tests based on reasonably long
records of transient head data [Marsily et al., 1984; Certes and
Marsily, 1991; LaVenue and Pickens, 1992]. In these applica-
tions the number of pilot points was kept much less than the
total number of measurements, a condition which helps to
make the inverse problem better posed.
A variation on the original pilot point approach has been

proposed by Keidser et al. [1990] and Keidser and Rosbjerg
[1991], who introduced a regionalization technique that helps
stabilize the estimation algorithm in both synthetic and field
tests. Regionalization changes the definitions of a0(x, za) and
f(x) but has no effect on the form of the estimation perfor-
mance index. LaVenue and Pickens [1992] have used adjoint
sensitivity techniques to identify the pilot point locations that
will provide the greatest improvement in the performance in-
dex. An adjoint-based location rule can be applied sequentially
if new pilot points are added one-by-one until an acceptable
solution is achieved. Marsily [1984], Certes and Marsily [1991],
and Keidser and Rosbjerg [1991] all mention the benefits of
including prior information and/or parameter constraints in
the pilot point approach, but they do not appear to have done
this in any of their applications. LaVenue and Pickens [1992]
include prior information by constraining the pilot point esti-
mates to lie within three error standard deviations of the
kriged estimates (the a0(x, za)’s). This is similar to the maxi-
mum a posteriori procedure described in (91).
The strength of the pilot point method lies in its ability to

produce smooth log effective conductivity fields which are
physically reasonable. The subjectivity involved in the original
version of the method can be viewed as an asset, since it
provides a flexible way to incorporate qualitative geological
information. For example, a pilot point introduced in an area
thought to have an anomalously high conductivity can convey
quite a bit of information if the corresponding estimate is
constrained to lie within a range of high values. We believe that
the method’s flexibility can be exploited most fully if prior
information on the pilot point values is included explicitly,
through the use of a Gaussian regularization term. This helps
to stabilize the algorithm and makes it easier to control the
influence of the pilot points. When prior information is in-
cluded in this way, the pilot point method is essentially the
same as the Gaussian maximum a posteriori estimator dis-
cussed earlier.
4.2.4. Extended Kalman filtering. The inverse techniques

we have discussed up to this point are ‘‘batch’’ estimation
algorithms that combine all available measurements in a single
large measurement vector z. Nonlinear batch algorithms up-
date the parameter estimates with the entire measurement
vector on each iteration. When measurements are collected at
various times, it is possible to develop an iterative inverse
algorithm which recursively updates estimates with only the
most recent measurements. The most commonly used recur-
sive nonlinear estimator is the extended Kalman filter, a gen-

eralization of the ordinary linear Kalman filter [Jazwinski,
1970].
In order to see how the extended Kalman filter is structured

suppose that theM measurements used to estimate a(x) can be
grouped into Mt sets taken at the discrete times t1, z z z , tMt

.
We assume, for simplicity, that each set contains Mx samples
so that M 5 MtMx. If all of the measurements collected at
time tn are assembled in the Mx-dimensional measurement
vector zn, the composite measurement vector z may be written
as follows:

z 5 3
z1
z2
· · ·

zMt
4 (97)

The Kalman filter processes each of the zn separately.
Kalman filters are based on a state equation, which describes

how the parameter of interest evolves from one measurement
time to another, and a measurement equation, which relates
parameters to measurements. Since the large-scale log conduc-
tivity is a time-invariant parameter, the unknown parameter
value at any given measurement time (say, tn) is the same as
the one at the previous time (tn21). If we focus on estimation
of the discrete parameter vector a the state equation is simply

an 5 an21 (98)

where an is the value of a at time tn. This recursion is propa-
gated from n 5 1, z z z , Mt. The statistics of the uncertain
initial condition a0 are the prior mean and covariance of a, ā,
and Ca. The Kalman filter measurement equation at time tn is
constructed from the portion of the forward equation (42)
which applies at this time:

zn 5 ^̂ n~fTa! 1 vn

< ^̂ n~fTā! 1
­^̂ n~fTā!

­a
~an 2 ā! 1 vn (99)

where the Mx-dimensional vectors ^̂n and vn are the portions
of ^̂ and v associated with zn, and the Mx by N-dimensional
Jacobian matrix ­^̂n/­a is the portion of ­^̂/­a associated with
zn. The final equality in (99) is a linear approximation which is
obtained by introducing a first-order expansion for the forward
operator.
The estimate produced by the extended Kalman filter at tn is

an approximation to the conditional mean of a given all pre-
vious measurements, written as ân 5 E[anuz1, z z z , zn]. This
estimate changes over time, even though the actual parameter
value does not, because new information becomes available at
each measurement time. Anderson and Moore [1979, pp. 39–
40] and Bryson and Ho [1975, pp. 382–385] both show that the
conditional mean can be computed with the following recur-
sion when the state and (linearized) measurement equations of
(98) and (99) apply and the initial state and measurement error
are independent Gaussian variables:

ân 5 ân21 1 Ĉa,n21

­^̂ n
T~fTân21!

­a

z F ­^̂ n~fTân21!

­a
Ĉa,n21

­^̂ n
T~fTân21!

­a
1 Cv nG 21

z @zn 2 ^̂ n~fTân21!# (100)
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The conditional covariance matrix which appears in this recur-
sive estimation equation is also obtained from a recursion:

Ĉan 5 Ĉa,n21 2 Ĉa,n21

­^̂ n
T~fTân21!

­a

z F ­^̂ n~fTân21!

­a
Ĉa,n21

­^̂ n
T~fTân21!

­a
1 Cv nG 21

z
­^̂ n~fTân21!

­a
Ĉa,n21 (101)

The conditional mean and covariance are initialized at time t0
at the values of the corresponding unconditional (prior) sta-
tistics.
When the forward operator and measurement equation are

truly linear in a, the estimate produced by the extended Kal-
man filtering algorithm after the final measurement update at
tMt
is the true conditional mean E[auz1, z z z , zMt

]. In this case
the extended Kalman filter estimate is identical to the maxi-
mum a posteriori estimate since the a posteriori density is
Gaussian with a mode which is equal to the mean (recall the
discussion accompanying Figure 4). When the forward opera-
tor is nonlinear the extended Kalman filter estimate does not
necessarily converge to either the conditional mean or the
conditional mode. Of course, the hope is that the linearization
is sufficiently accurate to insure that the estimate will be
‘‘close’’ to the conditional mean. It is possible to view the
temporal sequence of extended Kalman filter updates as an
iterative series of reduced-dimensionality linear batch solu-
tions, with the prior mean and covariance for each new solu-
tion set equal to the conditional mean and covariance obtained
from the previous solution. This can be seen by comparing
(100) to (73).
Since the extended Kalman filter uses less information on

each iteration than the batch maximum a posteriori algorithm,
it is less likely to converge to an acceptable solution. Ljung
[1979] discusses the convergence problems of the extended
Kalman filter and proposes a modified ‘‘innovations form’’ of
the algorithm which addresses some of these problems. The
innovations form does not appear to have been applied to
distributed parameter inverse problems, but it deserves con-
sideration when the total number of states is sufficiently small
to make it computationally feasible. Graham and McLaughlin
[1991] applied a conventional version of the extended Kalman
filter to a groundwater transport problem with a few thousand
unknowns and a small number of measurements collected at
three times. The number of time steps used in this case study
is too small to provide an assessment of the filter’s convergence
properties. We are unaware of other applications of the ex-
tended Kalman filter to field problems with a significant num-
ber of unknowns.
The extended Kalman filter is most useful in applications

where the number of unknowns is relatively small (e.g., where
a relatively coarse block parameterization is used to describe
spatial variability) and measurements are taken at many times.
Wilson et al. [1978] and Townley [1983] describe successful
synthetic experiments with small problems of this type. Al-
though it has some attractive features, we believe that the
extended Kalman filter should not be considered a practical
inverse method until its convergence properties are better un-
derstood and it has been tested more extensively.

4.3. Discussion

We have seen in this section that the linear inverse tech-
niques introduced to the groundwater community by Dagan
[1985], Gutjahr and Wilson [1985], Hoeksema and Kitanidis
[1984], and Sun and Yeh [1992] are all special cases of the
Gaussian maximum a posteriori algorithm developed in sec-
tion 3. The linear estimation approach has the important ad-
vantage of providing a unique solution to an approximate ver-
sion of the maximum a posteriori problem. This uniqueness
suggests that the linearized inverse problem should be well-
posed. However, even a problem with a unique solution can be
ill-posed if the solution is overly sensitive to small changes in
the measured data. Such sensitivity can arise in the algorithm
of (79) if the matrix Cz is ill-conditioned (near singular)
[Dietrich and Newsam, 1989]. Near-singular behavior most of-
ten occurs when closely spaced measurements are used to
estimate distant log conductivity values or when the problem
structure desensitizes the measurements to log conductivity
variations in certain portions of the domain. Algorithmic sin-
gularity can be avoided, or at least mitigated, if the inverse
problem is designed to maximize the sensitivity of measure-
ments to parameters. Whenever possible, the groundwater sys-
tem should be stressed, more measurements and/or new kinds
of measurements should be added, and measurement noise
should be properly accounted for (see section 5.3 for further
discussion of these points).
The various nonlinear inverse methods used for groundwa-

ter problems have gradually evolved beyond the classical least
squares perspective to include prior information. This infor-
mation may enter as an explicit Bayesian probability density, in
the form of parameter bounds, or through the use of kriging as
an interpolation algorithm. In all of these cases the net result
is to stabilize (or regularize) the inverse problem by restricting
the set of admissible estimates. Most of the available methods
for including prior information are either equivalent to or
minor variants on the Gaussian maximum a posteriori ap-
proach.
The primary difficulty encountered with nonlinear inverse

methods is failure to converge to a reasonable solution. When
the forward operator is nonlinear the estimation performance
index may have many local minima or may be very flat in the
vicinity of a minimum. Iterative search procedures have trou-
ble finding such minima and those that work well in one prob-
lem may not work well in others. Such convergence problems
are usually caused by an ill-posed problem formulation and can
ultimately only be resolved by changing this formulation. As in
the case of linear inverse algorithms, convergence can be im-
proved by introducing problem modifications that increase the
sensitivity of measurements to parameters.
It is easy to imagine a number of new finite-dimensional

parameterizations which could be incorporated into the
nonlinear estimation approach. Methods which have not yet
been applied to practical groundwater problems include ex-
pansions in covariance operator eigenfunctions [Braud et al.,
1993], splines [Wahba, 1990], or wavelets [Liu, 1993]. Other
alternatives which merit consideration are variants on the
pilot point approach and on the ‘‘two-scale’’ approach to
prior information proposed by Cooley [1982, 1983]. There is
no reason why the basis functions used in a nonlinear in-
verse method need to be the same on every iteration. For
example, the basis functions used in the pilot point method
could be updated on each iteration of the pilot point algo-
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rithm to account for the effect of head conditioning. Al-
though such enhancements are worth investigating, the ul-
timate success of a parameterization technique can be
expected to depend more on its geological credibility than
its conceptual elegance. Simple methods may work best if
they are able to capture the key features of a site.

5. Related Issues
In this section we briefly discuss a number of topics which

are closely related to inverse estimation and are of consider-
able interest in applications. These topics are all concerned in
some way with the evaluation and improvement of estimates
obtained from inverse algorithms. Our primary objective is to
state the relevant issues and questions. More detailed discus-
sions may be found in the cited references.

5.1. Model Error and Prior Statistics

The Bayesian formulation of the inverse problem presented
in section 3 assumes that the prior statistics, measurement
error statistics, and forward operator are all known perfectly.
These idealized assumptions can be questioned in practical
applications, where models can be misapplied and initial con-
ditions, boundary conditions, and forcing terms are usually
uncertain. Incorrectly specified model equations and statistics
can have an adverse impact on inverse procedures because the
parameter estimates are forced to compensate for unacknowl-
edged errors. A frequently encountered example is the ten-
dency of inverse algorithms to generate unrealistic log conduc-
tivity estimates when recharge is neglected in the forward
model. This happens because the conductivities are adjusted to
reproduce head variations which are, in fact, a response to
recharge. Although the adjusted conductivities may give a
good match to observed heads, they have little value for pre-
dictive modeling.
It is difficult to develop a general way to account for funda-

mental errors in model structure, such as those that might arise
when key processes are ignored or when model boundaries are
incorrectly specified [McLaughlin and Wood, 1988a, b]. In
some cases it may be possible to use hypothesis tests to check
the structural validity of a model designed to reproduce field
observations [Bard, 1974; Luis and McLaughlin, 1992]. But
these model testing procedures typically depend on statistical
assumptions that are difficult to verify in practice. Most inves-
tigations of model error consider only errors in specifying the
parameters and auxiliary conditions of structurally correct
model equations [Townley and Wilson, 1985; Carrera and Neu-
man, 1986a, b, c]. As mentioned in section 2, time-invariant
sources of uncertainty can be included in an expanded vector
of parameter functions. When the uncertain inputs are time-
dependent, it may be necessary to use other approaches. For
example, McLaughlin [1979] and te Stroet [1995] have ac-
counted for recharge uncertainty by including ‘‘system noise’’
in recursive inverse algorithms.
Non-Bayesian methods that deal with model error by in-

creasing the number of unknowns risk the danger of making
the inverse problem less well-posed by requiring that more
information be extracted from a limited number of measure-
ments. Bayesian methods that take the same approach demand
greater amounts of prior information. In either case there is a
tradeoff between the benefits to be gained by accounting for
more sources of model error and the costs imposed by increas-
ing the difficulty of the inverse problem [McLaughlin and

Wood, 1988a, b]. There are few, if any, studies of this tradeoff
in the literature. It should be noted that as more and more
sources of model error are included, an inverse algorithm will
be less inclined to believe its forward equation. In the extreme
case when model errors are thought to be very large, there is
no reason to solve the inverse problem at all since the algo-
rithm’s only option is to return measured values of the param-
eter where they are available and prior means elsewhere. Al-
though everyone agrees that model error is an important issue,
there is still no general way to deal with it or even to assess its
importance.
Since Bayesian prior information is based on a probabilistic

model of parameter variability, deficiencies in specified prior
statistics can be viewed as a form of model error. Even the
modest single-parameter Bayesian inverse problem posed in
this paper requires a significant amount of prior statistical
information. If we assume (1) that the measurement errors are
zero mean and uncorrelated with one another and the log
conductivity and (2) that the log conductivity function has the
two-scale correlation structure discussed in section 2, we must
specify, at a minimum, the measurement error variance, the
small-scale log conductivity variance and correlation distance,
and the large-scale log conductivity mean, variance, and cor-
relation distance. The small-scale log conductivity statistics are
needed to derive the effective conductivity function Kef f(a)
while the large-scale statistics are needed to define #a and Ca.
The two basic alternatives for obtaining these measurement
and prior statistics are to infer them from available field mea-
surements, using methods such as maximum likelihood
[Schweppe, 1973] or cross validation [Wahba, 1990], and to
specify them independently in order to achieve certain smooth-
ing objectives.
The statistical inference approach has been applied to the

groundwater inverse problem by Kitanidis and Vomvoris [1983],
Hoeksema and Kitanidis [1984], Rubin and Dagan [1987a, b]
and Samper and Neuman [1989]. These authors assume that
the structure of the log conductivity covariance (or variogram)
function is known so that the inference procedure can focus on
the estimation of the variance and possibly a few variogram
coefficients. There are relatively few discussions in the litera-
ture of the relationship between the accuracy of estimated
sample statistics and the number of measurements used for
estimation. Russo and Jury [1987a, b] and Gelhar [1993] both
suggest that large sample sizes (e.g., hundreds) are required to
give ‘‘acceptable’’ sample estimates of covariance properties.
An alternative to the inference approach is to treat prior

statistics as regularization parameters that control the smooth-
ness of the inverse solution. This interpretation is supported by
our earlier (section 3.3) discussion of the regularization term in
the performance index and by the analysis presented byWahba
[1990]. It is clear that we can force a Bayesian inverse algo-
rithm to estimate larger- or smaller-scale trends by adjusting its
regularization parameters, much as we might adjust the win-
dow size in a moving window average. One might argue that it
is not essential, or even desirable, to estimate regularization
parameters from field data. Instead, they should be viewed as
inputs that can be used to explicitly define what we mean by
‘‘large’’ and ‘‘small’’ scale. This interpretation is likely to be
applied by default whenever field data are too limited to sup-
port estimation of the complete suite of sample statistics
needed to solve a Bayesian inverse problem.
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5.2. Estimation and Prediction Accuracy

Much of the mathematical inverse literature treats parame-
ter estimation as an end in itself and says relatively little about
how parameter estimates might be used. By contrast, ground-
water hydrologists are often most interested in the prediction
of dependent variables such as head or concentration. Param-
eter estimation is really only a means to that end. In such cases,
prediction accuracy may be the most appropriate measure of
estimation performance.
Equation (36) suggests that the head prediction at (x, t)

should be computed from ĥ(x, t) 5 ^h(â)(x, t) (this is, in
fact, the maximum a posteriori estimate of h(x, t) when the
prediction operator ^h(x) is invertible and there is no model
error). The accuracy of this prediction is related to the head
prediction error h̃ 5 h 2 ĥ which is, in turn, related to the
parameter estimation error ã5 a 2 â. The ‘‘size’’ of these
errors can be measured in terms of their variances or, more
generally, their covariance functions. This variance-based ap-
proach to accuracy evaluation has certain limitations, espe-
cially for risk analysis applications concerned with low-
probability events, but it provides a useful framework for
examining ill-posedness and related experimental design is-
sues.
We consider, for simplicity, the case where the large-scale

log conductivity can be characterized by a finite-dimensional
parameter vector a. Appendix D shows that the covariance
of the discrete parameter estimation error ã 5 a 2 â satis-
fies the following inequality when (1) the parameter and
measurement error vectors are independent and Gaussian
(as we have assumed in earlier discussions), (2) the forward
operator is approximated by a linear expansion about the
known estimate â (see (D7) and (D11)), and (3) the esti-
mate bias is negligible:

C ã 5 Eza$ããT% $ B21 (102)

where B is the ‘‘Bayesian information matrix,’’ defined as fol-
lows:

B 5
­^̂T~fTâ!

­a
Cv

21
­^̂ ~fTâ!

­a
1 Ca

21 (103)

and ­^̂(fTâ)/­a is the measurement Jacobian matrix evalu-
ated at the known estimate â. The inequality in (102) is un-
derstood to indicate that the difference between the matrices
on the left and right sides is positive semidefinite.
Equation (102) is a Bayesian generalization of the Cramer-

Rao bound of maximum likelihood theory. This bound relies
on relatively few assumptions and applies for any estimation
technique. The two terms in the information matrix expression
describe the information provided by measurements and prior
information, respectively. The first term will be small if the
measurements are insensitive to the parameter vector or if the
measurement error is large. The second term will be small if
the prior statistics are uninformative. Anything which increases
parameter sensitivity or reduces measurement or parameter
uncertainty will increase the information gained and reduce
the estimation error.
An approximate expression for the prediction error variance

can be obtained by combining the Cramer-Rao bound with a
linearized version of the head prediction equation. The head
prediction error at (x, t) can be related to the parameter
estimation error if the head prediction operator is expanded to
first-order about the known parameter estimate â:

h̃~x, t! 5 h~x, t! 2 ĥ~x, t! 5 ^h~fTa!~x, t! 2 h~x, t!

<
­^h~fTâ!~x, t!

­a
~a 2 â! (104)

where ­^h(f
Ta(x, t)/­a is a prediction Jacobian vector which

specifies the sensitivity of h(x, t) at (x, t) to each component
of a. The components of this vector, like those of the measure-
ment Jacobian matrix, may be expressed as integrals over the
flow equation Green’s function (see (56) and (58)). In the case
of the prediction Jacobian the Green’s function is evaluated at
the prediction point (x, t) rather than the measurement point
(xi, t i).
A lower bound on the head prediction error variance at (x,

t) is obtained by squaring each side of (104), taking the expec-
tation, and substituting (102) for the estimation error covari-
ance:

s h̃
2~x, t! <

­^h
T~fTâ!~x, t!

­a
C a#

­^h~fTâ!~x, t!
­a

$
­^h

T~fTâ!~x, t!
­a

z F ­^̂T~fTâ!

­a
Cv

21
­^̂ ~fTâ!

­a
1 Ca

21G 21

z
­^h~fTâ!~x, t!

­a
(105)

This expression indicates that the prediction error depends on
both the measurement and prediction Jacobians. All of the
quantities appearing in the prediction error variance bound
can be evaluated once the final estimate â has been computed.
Some of the computational issues involved in deriving the
Jacobians are discussed in Appendix B.
The Cramer-Rao estimation and prediction error bounds

provide convenient measures of the performance of an inverse
procedure since they account for all of the important factors
which influence prediction accuracy. The extra effort required
to derive the bound is usually minimal if a Gauss-Newton or
so-called variable metric search algorithm is used since the
information matrix is evaluated as part of the search procedure
anyway [Tarantola, 1987, pp. 243–248]. For these reasons, we
believe that the lower covariance bound (or information ma-
trix) should be routinely evaluated in groundwater inverse al-
gorithms.

5.3. Identifiability and Experimental Design

Although identifiability is a recurrent theme in both theo-
retical and applied discussions of the groundwater inverse
problem, there is no generally accepted definition of the term.
For present purposes, we can say that a parameter is identifi-
able if it can be estimated with ‘‘reasonable’’ accuracy from
available measurements. In order for a parameter to be iden-
tifiable in this qualitative sense, the underlying inverse problem
should be well-posed. That is why most theoretical studies of
identifiability concentrate on the classical issues of existence,
uniqueness, and stability [Banks and Kunisch, 1989]. These
studies typically take a deterministic perspective which as-
sumes that the measured dependent variable function (e.g.,
head) is known perfectly everywhere and that the identifiable
parameter must be estimated without error. Chavent [1991]
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describes an alternative deterministic approach which accounts
for data limitations and estimation error.
The accuracy bounds discussed in the previous subsection

suggest that parameter identifiability can also be addressed
from a probabilistic perspective. One option is to specify that
a parameter vector is identifiable if the prediction error vari-
ance bound is smaller than some threshold. The value of the
threshold selected is probably less important than a recogni-
tion of the factors that control the bound. These factors are (1)
the parameterization adopted for a(x), as reflected in the basis
function vector f(x) and the prior statistics of a; (2) the sam-
pling times and locations of the measurements used to esti-
mate a, as reflected in the forward operator ^̂(fTa) and the
corresponding measurement Jacobian; (3) measurement un-
certainty, as reflected in the measurement error covariance
matrix Cv; (4) the forcing and boundary conditions applied to
the groundwater system, as reflected in the forward operator;
and (5) the locations and times where predictions are required,
as reflected in the prediction Jacobian. A practical and com-
prehensive theory of identifiability should account for all of
these factors.
Although it is difficult to check inverse problems in advance

to see if a particular set of parameters is identifiable, it is
possible to develop some general guidelines which suggest how
we can improve parameter identifiability in practice. All of
these share the common principle that the inverse problem
should be constructed to maximize the sensitivity of measured
variables to estimated parameters. Sensitivity can be increased
by changing the problem parameterization, by adding or im-
proving measurements, or by stressing the groundwater sys-
tem. These options are discussed further in the following para-
graphs.
One of the most difficult challenges of inverse estimation is

the need to find parameterizations which are simple enough to
yield well-posed problems but complex enough to capture the
spatial heterogeneity found at real field sites. The blocked
parameterization technique mentioned in the beginning of this
paper generally yields a small number of unknown parameters
which are associated with well-defined geological features. If
the heads at measurement points are sensitive to these blocked
parameters and the number of unknowns is much smaller than
the number of measurements, it is likely that the resulting
inverse problem will be well-posed. A classic example is esti-
mation of effective hydraulic conductivities in a system com-
posed of a few distinct geological layers, using transient pump
test data [Carrera and Neuman, 1986c]. If the layers are prop-
erly delineated, the prior values for the layer conductivities are
reasonably accurate, and the forcing applied during the pump
test is significant most inverse algorithms will give reasonable
results.
The primary problem with the blocked approach is its de-

pendence on block geometry, which usually is assumed to be
known perfectly. If the actual spatial distribution of hydraulic
conductivity is not blocked or if the block boundaries are
incorrectly specified, the inverse algorithm may be forced to
generate unrealistic estimates in order to provide a good fit to
head measurements. So, although the inverse problem may be
well-posed in the sense that it yields a stable solution, the
estimates it provides may not properly characterize the sub-
surface environment.
The geostatistical approach to parameterization avoids the

problem of specifying block geometry by treating the effective
log conductivity as a random field which can take on a different

value at every point in the domain of interest. This does not
imply that the geostatistical approach is actually able to esti-
mate an infinite number of independent parameters from a
finite number of measurements. The correlation properties of
the random field impose spatial structure (or smoothness) on
the estimates. Generally speaking, prior correlation scales that
are small compared to the sample spacing yield inverse esti-
mates that are close to the prior mean except in the immediate
vicinity of measurements. Conversely, correlation scales that
are large compared to the sample spacing yield smooth esti-
mates which vary gradually over the region of interest.
This discussion suggests that the blocked and geostatistical

approaches are appropriate in different situations. The choice
between the two alternatives depends both on the geological
setting and on the configuration of the measurements available
for estimation. The maximum a posteriori formulation of the
inverse problem summarized earlier in this paper is sufficiently
general to permit the use of hybrid parameterizations which
combine the blocked and geostatistical approaches. A simple
way to accomplish this is to allow the prior mean of the random
log conductivity function to take on different (unknown) values
in different blocks. Since the mean values in the specified
blocks appear linearly in the basis function expansion, their
values may be estimated as additional parameters.
It is sometimes useful to view the acquisition of measure-

ments for inverse estimation as an experiment. This is partic-
ularly true when there is an opportunity to specify sampling
locations or to carry out hydraulic tests. The discussion of
parameter accuracy presented in section 5.2 suggests that ex-
perimental designs which increase the sensitivity of measure-
ments to parameters will have a beneficial effect on inverse
estimation. The sensitivity of measurements to the discrete
parameter vector a is described by the measurement Jacobian
­^̂T(fTâ)/­a. When the forward operator is linear this Jaco-
bian depends on the sampling times and locations but not on
the actual values of the samples. Consequently, we can identify
an ‘‘optimal’’ sampling strategy before any measurements are
actually collected [Delhomme, 1978]. This can be done by com-
paring, for example, the prediction error variance obtained
with a number of different candidate strategies and selecting
the strategy which gives the best accuracy for a given cost.
Similar comments apply to the identification of optimal pump
test strategies.
When the forward operator is nonlinear, the situation be-

comes more complicated since the measurement Jacobian de-
pends on the actual measured values. In this case we cannot
identify an ‘‘optimal’’ experimental design a priori but must
construct it gradually, over a number of sequential sampling
rounds (or iterations). On the first iteration the Jacobian can
be evaluated about the prior mean and a few sampling times
and locations selected. After the samples are collected and the
inverse estimate is computed the Jacobian can be reevaluated
about the new estimate and then used to design the next
sampling round. This process continues until either the pre-
diction error is reduced to an acceptable level or experimental
resources are exhausted. The advantage of an iterative ap-
proach is that it allows the experimental design to evolve in
response to new information. The disadvantage is that it re-
quires more time and is more difficult to implement than a
‘‘one-shot’’ design. There are a number of variants on the
iterative (or sequential) approach to experimental design. Ex-
amples of two applications to groundwater solute transport
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modeling are provided by Graham and McLaughlin [1989,
1991].
It may be that the major contribution of a statistically based

approach to experimental design is the emphasis it puts on the
role of measurement sensitivity. In many situations where pa-
rameters are difficult to identify it is easier to improve sensi-
tivity by introducing new kinds of information than by simply
adding more measurements of the same variable. This is par-
ticularly true in the groundwater flow inverse problem. Since
steady state heads are relatively insensitive to spatial variations
in hydraulic conductivity, estimation performance may not im-
prove dramatically when more head measurements are in-
cluded. A smaller number of measurements of other variables
such as groundwater solute concentration may prove to be
more valuable [McLaughlin et al., 1993; Reid, 1996]. Another
attractive option is to supplement traditional borehole data
with synoptic geophysical measurements. Although geophysi-
cal data cannot generally be used to measure log conductivity
directly, ground-penetrating radar, seismic, and electrical re-
sistivity observations can, in some cases, identify the bound-
aries of lithologic features that have hydrologic significance
[Han et al., 1986; Hyndman et al., 1994]. Such information can
be incorporated into either blocked or geostatistical inverse
parameterizations. There is considerable benefit to be gained
by including many different types of information in the inverse
estimation process. The information matrix approach provides
a quantitative way to evaluate this benefit.

5.4. Discussion

Our survey of ‘‘related issues’’ suggests that the practical
problems of inverse estimation extend well beyond the task of
selecting an appropriate estimation algorithm. Any field appli-
cation requires a number of different design decisions that can
have a dramatic effect on the success of an inverse estimation
effort. These include (1) selection of the parameters to be
estimated, (2) selection of a parameterization technique, (3)
specification of prior statistics or regularization parameters,
(4) selection of the kinds of measurements to be used for
estimation, and (5) design of sampling strategies and hydraulic
tests. When we consider the mathematical similarity of the
inverse methods in current use, these site-specific design fac-
tors appear even more important. We are convinced that the
most beneficial advances in inverse estimation will be those
which provide better ways to account for the special hydrogeo-
logic characteristics of individual sites, either through more
flexible methods for describing spatial variability or through
the ability to incorporate a wider range of field information.

6. Summary and Conclusions
The inverse problem considered in this paper is concerned

with the estimation of physical properties (such as the log
hydraulic conductivity) which vary over space. If such proper-
ties are treated as random functions it is possible to develop a
general inverse theory which can accommodate many different
descriptions of hydrogeologic variability. These include
blocked descriptions which divide the region of interest into
distinct geological units, geostatistical descriptions which treat
physical properties as random fields, and hybrid approaches
which combine aspects of each.
Functional approaches to the groundwater inverse problem

seek ‘‘optimum’’ estimates which are spatial functions rather
than vectors of discrete parameters. Recent developments in

probability theory establish the mathematical basis for a func-
tional definition of optimality [Larkin, 1972; Fitzpatrick, 1991].
In particular, it is possible to define a ‘‘most probable’’ or
maximum a posteriori estimate if the unknown random func-
tion is Gaussian. This estimate can be obtained by minimizing
a ‘‘regularized’’ version of a classical least squares performance
index. The regularization term in the performance index is
generally a spatial integral which weights derivatives of the
estimated parameter function. The minimization procedure
favors estimates which give reasonable fits to measurements
while remaining smooth enough to keep the derivative terms
small. Although it is possible to apply a regularized least
squares approach to the inverse problem without relying on
probabilistic arguments, the maximum a posteriori viewpoint
provides a convenient basis for relating regularization param-
eters to observable hydrogeological properties such as the vari-
ance and correlation scale of the log hydraulic conductivity.
When any inverse approach, including the maximum a pos-

teriori approach, is applied to field problems, care must be
taken to insure that the estimation objectives are consistent
with the information available. One way to do this is to adopt
a two-scale description of variability which clearly distinguishes
large-scale trends that can be estimated from available mea-
surements from small-scale fluctuations. In this case, point
observations are assumed to be the sum of the large-scale
trend, the small-scale fluctuation, and a random noise term
which accounts for instrument and recording errors. In
groundwater applications the large-scale piezometric head is
the solution to an ‘‘upscaled’’ groundwater equation which
depends on an effective hydraulic conductivity tensor. No at-
tempt is made to predict smaller-scale head fluctuations. The
effective conductivity is a function of the large-scale log con-
ductivity and the variance and correlation scale of the small-
scale log conductivity. When the small-scale log conductivity
statistics are given, the only remaining unknown is the large-
scale log conductivity, which is the parameter estimated in the
inverse procedure. This two-scale approach to the groundwa-
ter inverse problem permits the scale of estimation to be de-
fined explicitly, through specification of the prior log conduc-
tivity statistics.
The solution of the functional least squares problem is for-

mally equivalent to the solution of the classical discrete param-
eter least squares problem. Consequently, most of the solution
algorithms and analytical tools described in texts such as those
by Schweppe [1973], Bard [1974], and Gill et al. [1981] apply
directly to the functional case. This idea is developed in detail
by Tarantola [1987]. The functional alternative is attractive
primarily because it clearly distinguishes assumptions about
natural variability from discretization assumptions introduced
to obtain numerical solutions. The functional estimation equa-
tions and related solution algorithms can be clearly stated in an
integral or differential form which applies for a wide range
of different discretization schemes. Any particular discreti-
zation can be introduced by replacing the log conductivity
function by a finite-dimensional expansion over a set of
specified basis functions. Classical numerical methods can
then be used to solve for the unknown basis function
coefficients.
When this perspective is taken it becomes apparent that

most common groundwater inverse algorithms are special
cases of the functional maximum a posteriori estimator. The
primary factors distinguishing these algorithms are the partic-
ular parameterization adopted (e.g., blocked versus geostatis-
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tical) and the type of search procedure used to find the least
squares solution (e.g., single versus multiple iteration). All of
the alternatives have merit, and it is not possible to say that any
single option is ‘‘best.’’ Particular inverse methods are, how-
ever, more appropriate in some situations than in others.
When geological structure is apparent and formation bound-
aries are distinct, a blocked approach to parameterization is
probably the best choice. When hydrogeologic properties ap-
pear to vary in a more or less random fashion and there is no
clearly defined structure, a geostatistical parameterization may
be preferable. Single-iteration linear methods may be more
appropriate when time is limited and convenient analytical
approximations can be used to simplify the inverse solution.
Multi-iteration nonlinear methods may be more appropriate in
complex problems, especially those that require estimation of
several different parameters (e.g., log conductivity, recharge
rates, and boundary conditions).
In any case, we should recognize that inverse estimation is

rarely the final step in a groundwater flow analysis. It is im-
portant to know how good the inverse estimates are and to
evaluate the effect of estimation uncertainty on model predic-
tions. A Bayesian approach to the inverse problem provides a
convenient way to account for multiple sources of uncertainty
and to consider the many different factors that affect prediction
accuracy. These include (1) the parameterization adopted; (2)
the sampling times, locations, and accuracy of the measure-
ments used for estimation; (3) the forcing and boundary con-
ditions applied to the groundwater system; and (4) the loca-
tions and times where predictions are required. An integrated
approach to the inverse problem should consider all of these
factors and should design the inverse experiment so as to
maximize the sensitivity of measurements to estimated param-
eters. Although theoretical insights can help us understand
how to analyze and improve inverse algorithms, the best way to
insure success is to incorporate as much information as possi-
ble about the specific application of interest into the problem
formulation. If we take care in formulating the problem and
have realistic expectations, inverse procedures can yield useful
estimates which are geologically meaningful and consistent
with observed data.

Appendix A: Alternative Forms for the Prior
Term of the Gaussian Maximum a Posteriori
Performance Index
The inverse covariance Ca

21(x, j) of a is defined by the
following identity (see (50)):

E
D

E
D

Ca~x, m!Ca
21~m, j!a~j! dm dj 5 a~x! (A1)

where Ca(x, j) is the covariance between a(x) and a(j). When
the dimension N of the parameter space A is finite, (29) may
be substituted into (A1) to give

E
D

E
D

fT~x!Caf~m!Ca
21~m, j!fT~j!a dm dj 2 fT~x!a

5 fT~x!FCa E
D

E
D

f~m!Ca
21~m, j!

? fT~j! dm dj 2 IG a 5 0 (A2)

where I is the N-dimensional identity matrix and (31) has been
used to relate the covariance function Ca(x, m) to the covari-
ance matrix Ca. Since the basis functions are linearly indepen-
dent, this identity can hold only if the matrix expression in
brackets is 0. It follows that the integral is equal to the inverse
of the discrete covariance matrix:

E
D

E
D

f~m!Ca
21~m , j!fT~j! dm dj 5 Ca

21 (A3)

If we postmultiply each side of this matrix identity by the
mean-removed parameter vector [a 2 ā] and premultiply by
[a 2 ā]T the result is

E
D

E
D

@a 2 ā#Tf~m!Ca
21~m , j!fT~j!@a 2 ā# dm dj

5 E
D

E
D

@a~m! 2 #a~m!#Ca
21~m , j!@a~j! 2 #a~j!#

z dm dj 5 @a 2 #a#TCa
21@a 2 #a# (A4)

In the first equality, (29) is used to replace fT(x)a and its
mean with a(x) and its mean, respectively. Equation (A4)
establishes a correspondence between the quadratic forms
which appear in the prior terms of the functional and discrete
versions of the Gaussian maximum a posteriori performance
index.
Although (A4) holds only for finite N it is possible to derive

a similar identity for the infinite-dimensional case by using the
Karhunen-Loeve expansion for a(x) and replacing matrix op-
erations with infinite summations (see (30) and (31)). In this
case, (A4) may be written as

E
D

E
D

@a~m! 2 #a~m!#Ca
21~m , j!@a~j! 2 #a~j!# dm dj

5 O
i51

` 1
l i

@a i 2 ā i#2 (A5)

where l i is the eigenvalue associated with the ith Karhunen-
Loeve basis function.

Appendix B: Computation of the Measurement
Jacobian and Performance Index Gradient
This appendix describes how the measurement Jacobian

used in the Gauss-Newton search and the performance index
gradient used in gradient-based searches can be derived for
groundwater flow applications. Computational details are dis-
cussed in the cited references.
The functional measurement Jacobian g^ provides informa-

tion about the sensitivity of predictions to changes in the large-
scale log conductivity function. This Jacobian may be derived
from the forward equation which forms the basis for the
groundwater inverse problem. It is useful to consider the log
conductivity and head components of the Jacobian separately
since they are treated rather differently. Component i of the
log conductivity portion of g^ is associated with a point log
conductivity measurement taken at location xi. It can be iden-
tified by noting that the first variation of (39) at xi is
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da~x i! 5
­^ai

­a
da 5 E

D

d~x i 2 j!da~j! dj (B1)

It follows from the definition of (56) that

g^ai~j ua! 5 g^ai~j! 5 d~x i 2 j! (B2)

The head components of the Jacobian are more difficult to
obtain since they must be derived from the groundwater equa-
tion given in (35).
Component i of the head component of g^ is defined in (56).

If we take the first variation of (37) about some nominal pa-
rameter function a0(x) and apply this definition, the result is

dh~x i, t i! 5
­^hi~a0!

­a
da 5 E

D

g^hi~j ua0!da~j! dj (B3)

Our goal is to find an explicit integral expression for dh(xi, t i)
which can be used to identify g^hi

(xua0). A differential expres-
sion for dh at any x and t can be obtained by taking the first
variation of (35) about a0(x):

S
­dh
­t 2 ¹ ? Kef f ~a0!¹dh 5 ¹ ?

­Kef f ~a0!

­a
da¹h0 (B4)

x [ D, 0 , t # T

dh~x, t! 5 0 x [ D, t 5 0

dh~x, t! 5 0 x [ ­Dd, 0 # t # T

2Kef f ~a0!~x!¹dh~x, t! ? n 5 2
­Kef f ~a0!~x!

­a
da~x!¹h0~x, t!

x [ ­Dn, 0 # t # T

where h0(x, t) is the solution to (35) when a(x) 5 a0(x) and
­Kef f(a0)/­a is the derivative of the effective conductivity ten-
sor taken with respect to a and evaluated at a0. Equation (B4)
may be confirmed from a first-order perturbation analysis of
(35).
The solution to (B4) may be expressed in terms of the flow

equation Green’s function evaluated at a0(x):

dh~x, t! 5 E
0

T E
D

G~x, j, t, t ua0!

z F¹ ? da~j!
­Kef f ~a0!~j!

­a
¹h0~j, t!G dj dt

5 2E
D

­Kef f ~a0!~j!

­a E
0

T

¹G~x, j, t, t ua0!

z ¹h0~j, t!da~j! dt dj (B5)

The final equality in (B5) is obtained by applying Green’s
theorem and neglecting the effect of a(x) fluctuations on the
specified flux boundary. This approximation simplifies our pre-
sentation but is not essential.
If we compare (B5) with (B3) it is apparent that component

i of the head portion of the measurement Jacobian vector is
given by

g^hi~x ua0! 5 2
­Kef f ~a0!~x!

­a E
0

T

¹z i0~x, t! ? ¹h0~x, t! dt

(B6)

where the adjoint variable z i0(x, t) 5 G(xi, x, t i, t ua0) is the
flow equation Green’s function written as a function of only x
and t for measurement i. The Green’s function/adjoint vari-
able is defined to be the function which satisfies the following
‘‘adjoint flow equation’’ [Courant and Hilbert, 1953; Greenberg,
1971]:

2S
­zi0~x, t!

­t 2 ¹ ?Kef f~a0!¹zi0~x, t! 5 d~x2 xi, t2 ti! (B7)

x [ D, 0 , t # T

with homogeneous terminal and boundary conditions:

z i0~x, t! 5 0 x [ D, t 5 T

z i0~x, t! 5 0 x [ ­Dd, 0 # t # T

2Kef f ~a0!~x!¹z i0~x, t! ? n 5 0 x [ ­Dn, 0 # t # T

where d(x 2 xi, t 2 t i) is a space-time Dirac delta function.
In some specialized situations it is possible to derive the

measurement Jacobian in closed form. For example, if we
assume that (1) steady state conditions apply (i.e., ­h/­t 5 0),
(2) the effective conductivity is given by the geometric mean of
the large-scale conductivity so that [Kef f(a0)] ij 5 ea0d ij, (3)
a0 is a constant, and (4) the effect of boundary conditions is
accounted for by the known head gradient ¹h0(x), then (B4)
simplifies to

2¹2dh 5 ¹ ? da¹h0 x [ D, 0 , t # T (B8)

Consequently, (B5) becomes

dh~x, t! 5 2E
D

¹G¹2~x, j! ? ¹h0~j!da~j! dj (B9)

where G¹2(x, j) is the well-known infinite domain (or ‘‘free
space’’) Green’s function associated with the Laplacian oper-
ator ¹2 (see (3g) of Dagan [1985]). The adjoint variable may be
identified by comparing (B5) and (B9):

z i0~x! 5 G~x i, x ua0! 5 exp ~2a0!G¹2~x i, j! (B10)

So g^hi
is given by

g^hi~j ua0! 5 2¹G¹2~x i, j! ? ¹h0~j! (B11)

This Jacobian function is used in the linear inverse procedure
proposed by Dagan [1985] (see section 4). Unfortunately,
(B11) cannot be used in a nonlinear Gauss-Newton search
because the nominal function a0(x) is not constant after the
first iteration of the search. In nonlinear applications the Ja-
cobian must be evaluated numerically (see below).
The functional gradient g) provides information about the

sensitivity of the performance index to changes in the large-
scale conductivity. It is related to the measurement Jacobian
through (59):

g)~x ua0! 5 22g^
T ~x ua0!Cv

21@z 2 ^̂ ~a0!#

1 2 E
D

Ca
21~x, j!@a0~j! 2 #a~j!# dj (B12)
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If we distinguish the head and log conductivity parts of the
measurement residual term, substitute (B2) and (B6) in this
expression, and assume that the measurement errors vh and va

are independent (in order to simplify notation), the result is

g)~x ua0! 5 2 O
i51

Mh O
j51

Mh

@ zhi 2 h0~x i, t i!#@Cvh
21# ij

­Kef f ~a0!~x!
­a

z E
0

T

@¹z j0~x, t! ? ¹h0~x, t!# dt

2 2 O
i5Mh11

Mh1Ma O
j5Mh11

Mh1Ma

@ zai 2 a0~x i!#@Cva

21# ijd~x 2 x j!

1 2 E
D

Ca
21~x, j!@a0~j! 2 #a~j!# dj (B13)

This equation expresses g) in terms of a weighted sum of
Green’s function gradients (the ¹z j0’s) evaluated at all the
head measurement points. But the individual Green’s func-
tions do not need to be evaluated in order to compute g).
Suppose that we define a new adjoint variable h0(x, t) which is
a weighted sum of the z j0’s:

h0~x, t! 5 O
i51

Mh O
j51

Mh

@ zhi 2 h0~x i, t i!#@Cvh
21# ijz j0~x, t! (B14)

Since the adjoint flow equation (B7) is linear in z j0, the su-
perposition principle applies, and h0(x, t) satisfies a related
adjoint equation which is identical to (B7) except for the right-
hand side. This h0 adjoint equation is

2S
­h0
­t 2 ¹ ? Kef f ~a0!¹h0 5 O

i51

Mh O
j51

Mh

@ zhi 2 h0~x i, t i!#

z @Cv h
21# ijd~x 2 x j, t 2 t j! (B15)

x [ D, 0 , t # T

with homogeneous terminal and boundary conditions:

h0~x, t! 5 0 x [ D, t 5 T

h0~x, t! 5 0 x [ ­Dd, 0 # t # T

2Kef f ~a0!¹h0~x, t! ? n 5 0 x [ ­Dn, 0 # t # T

If (B14) is substituted into (B13) the performance function
gradient may be written as

g)~x ua0! 5 2
­Kef f ~a0!~x!

­a E
0

T

@¹h0~x, t! ? ¹h0~x, t!# dt

2 2 O
i5Mh11

Mh1Ma O
j5Mh11

Mh1Ma

@ zai 2 a0~x i!#@Cva

21# ijd~x 2 x j!

1 2 E
D

Ca
21~x, j!@a0~j! 2 #a~j!# dj (B16)

This expression shows that we need only know h0, rather than
all Mh z j0’s, in order to find the performance index gradient.
The gradient may be derived from one solution of the nominal

flow equation (to give h0(x, t)) and one solution of the adjoint
equation (B15) (to give h0(x, t)).
Both (B7), the z i0 adjoint equation, and (B15), the h0 ad-

joint equation, have the same general form as the original
groundwater flow equation, except that they must be inte-
grated backward, rather than forward, in time, and the right-
hand side (forcing) terms are different. Consequently, the nu-
merical solution algorithm used to solve the flow equation can
also be used, with minor modification, to solve either of the
adjoint equations. When the adjoint computation of the mea-
surement Jacobian (B6) or performance index gradient (B16)
is carried out, care must be taken to insure that the spatial
gradients and integrations required are performed in a manner
consistent with the numerical discretization used in the for-
ward/adjoint solution algorithm [Chavent, 1991].
This point can be illustrated if we suppose, for example, that

the forward and Jacobian adjoint equations are discretized
over space with a finite element technique based on the fol-
lowing basis function expansion applied over a common com-
putational grid:

h0~x, t! 5 O
m

cm~x!hm0~t!

(B17)

z i0~x, t! 5 O
n

cn~x!z in0~t!

where hm0(t) and z in0(t) are the values of the head and
adjoint functions at grid nodes m and n, respectively, and
cm(x) and cn(x) are the corresponding nodal finite element
basis functions. The m and n summations are taken over all
nodes in the computational grid. The discrete flow and adjoint
solvers compute the hm0(t)’s and the z in0(t)’s for a given set
of finite element basis functions. Component (i, j) of the head
portion of the discrete measurement Jacobian can then be
computed by substituting (B6) and (B17) into (68):

­^hi~fTa!

­aj
5 E

D

g^hi~j ua!f j~j! dj

5 2E
D

­Kef f ~a0!~x!
­a

f j~j!

z F E
0

T

¹z i0~x, t! ? ¹h0~x, t! dtG dj

5 2O
m

O
n
FE

D

­Kef f ~a0!~x!
­a

f j~j!¹cm~j!

? ¹cn~j! djG F E
0

T

z in0~t!hm0~t! dtG (B18)

where i 5 1, z z z , Mh, j 5 1, z z z , N. Note that the spatial
discretization permits the time and space integrals in (B18) to
be separated. The space integral depends only on the effective
conductivity function, the parameter basis functions (the f j’s),
and the finite element basis functions (the cm’s and cn’s). If
the spatial integration is carried out numerically the gradients
of the finite element basis functions are unambiguously defined
at the internal Gauss points used in the quadrature scheme,
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even if the finite element basis functions are discontinuous at
the element boundaries. Equation (B18) defines a consistent
procedure for computing the discrete Jacobian from a dis-
cretized solution of the z i0 functional adjoint equation. Similar
methods may be used to derive the discrete performance func-
tion gradient from a discretized solution of the h0 functional
adjoint equation.
It should be noted that a set of discrete adjoint and Jacobian

or gradient equations can be derived by starting with the dis-
crete maximum a posteriori performance index and a dis-
cretized version of the groundwater flow equation [Sun, 1994].
In this case the derivation is based on algebraic rather than
variational principles. Sun and Yeh [1992] show that the alge-
braic adjoint approach produces exactly the same results as the
discretized variational approach outlined in (B18). We prefer
the variational alternative because it clearly demonstrates the
connection between the Green’s function and the adjoint vari-
able and because it yields functional estimation algorithms
which apply for a wide range of different parameterization
techniques. Chavent [1991] provides a useful discussion of
some of the computational issues which arise in practical ap-
plications of adjoint methods. Adjoint-based Gauss-Newton
and gradient search algorithms are popular in optimal control,
meteorology, and oceanography (see the bibliography by
Courtier et al. [1993]). Applications in groundwater hydrology
are discussed by Neuman [1980], Townley and Wilson [1985],
Carrera and Neuman [1986b], and Sun [1994], among others.
It is also possible to derive the discrete Jacobian and per-

formance index gradient with straightforward finite difference
approximations. In this case element (i, j) of the discrete
Jacobian is approximated by

­^hi~fTa0!
­aj

<
^hi@fT~a0 1 u jDaj!# 2 ^hi@fT~a0!#

Daj
(B19)

where i 5 1, z z z , Mh, j 5 1, z z z , N , and uj is a vector with
a 1 in element j and zeros elsewhere. Here it is understood that
the forward operator represents a numerical solution of the
original flow equation, evaluated at (xi, t i). Finite difference
computation of all N columns of ­^̂h/­a requires N 1 1 flow
solutions, as compared toMh 1 1 flow solutions if the adjoint-
based approach is used. Clearly, the finite difference approach
for computing the discrete measurement Jacobian is more
efficient when N , Mh while the adjoint method is more
efficient when N . Mh.
In a similar way, element j of the discrete performance index

gradient can be derived from the following finite difference
approximation:

­)~fTa0!
­aj

<
)@fT~a0 1 u jDaj!# 2 )@fT~a0!#

Daj
(B20)

where j 5 1, z z z , N and it is understood that the performance
index )(a) is evaluated from a numerical solution of the orig-
inal flow equation. The adjoint approach for computing the
performance index gradient is much more efficient than the
finite difference approach since it requires only two flow solu-
tions, as compared to N 1 1 for the finite difference tech-
nique.

Appendix C: Maximum Likelihood Estimation
with Surrogate Log Conductivity
Measurements
Clifton and Neuman [1982] describe a generalized least

squares/maximum likelihood inverse procedure which derives

surrogate log effective conductivity measurements from a block
kriging algorithm. Here we consider a version of the Clifton
and Neuman procedure which uses kriging with a known mean
and covariance (rather than kriging with a variogram). Our
analysis assumes that a(x) is a random function which can be
approximated by the finite-dimensional expansion presented in
(29). Although Clifton and Neuman adopted the blocked dis-
cretization described in (84) the results derived in this appen-
dix apply for any finite-dimensional parameterization.
We assume that theMa log conductivity measurements used

for kriging are point observations located at x1, z z z , xMa
. If

the definition of (39) is invoked the log conductivity forward
equation for the kriging problem may be written as

za 5 ^̂ a~fTa! 1 va 5 Fa 1 va (C1)

whereF is anMa-by-N matrix with row i equal to fT(xi). The
elements of this matrix identify the components of a associated
with each measurement location.
Since the log conductivity portion of the forward operator is

linear an optimal (maximum a posteriori or best linear unbi-
ased) estimate of a may be obtained from the following ex-
pression:

zKa 5 âK 5 ā 1 CaFT@FCaFT 1 Cva#
21@za 2 Fā# (C2)

where the K subscript indicates that the variables in question
are produced by a kriging algorithm. Equation (C2) may be
obtained by inserting the definition of ^̂a from (C1) into (73).
The prior mean ā and covariance matrix Ca of the discrete
parameter vector are assumed to be known.
The maximum likelihood portion of the Clifton and Neuman

[1982] algorithm assembles the N kriged estimates in a vector
of uncertain surrogate measurements with its own forward
equation (compare to (C1)):

zKa 5 ^̂Ka~fTa! 1 vKa 5 a 1 vKa (C3)

where vKa is the kriging estimation error. Note that a is treated
as an unknown deterministic parameter in the maximum like-
lihood approach. Equations (C2) and (C3) may be used to
show that vKa is zero mean (i.e., the estimate is unbiased) with
a covariance equal to [Schweppe, 1973, p. 96]

CKa 5 @Ca
21 1 FTCva

21F#21 (C4)

If the surrogate measurements and measurement error covari-
ance obtained from the kriging algorithm are inserted into the
second term of the maximum likelihood performance index of
(89), the result is

Jmle~a! 5 @zh 2 ^̂ h~fTa!#TChv
21@zh 2 ^̂ h~fTa!#

1 @zKa 2 ^̂Ka~fTa!#TCKa
21@zKa 2 ^̂Ka~fTa!#

5 @zh 2 ^̂ h~fTa!#TChv
21@zh 2 ^̂ h~fTa!#

1 @zKa 2 a#TCKa
21@zKa 2 a# (C5)

where (C3) is used to write the forward operator in the kriging
error term as ^̂Ka(f

Ta) 5 a.
Now consider an alternative maximum a posteriori perfor-

mance index which includes both the log conductivity measure-
ment za and prior information about a, where a is now treated
as a random vector with known prior statistics:
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Jmap~a! 5 @zh 2 ^̂ h~fTa!#TChv
21@zh 2 ^̂ h~fTa!#

1 @za 2 ^̂ a~fTa!#TCva
21@za 2 ^̂ a~fTa!#

1 @a 2 ā#TCa
21@a 2 ā# 5 @zh 2 ^̂ h~fTa!#TChv

21

z @zh 2 ^̂ h~fTa!# 1 @za 2 Fa#TCva
21@za 2 Fa#

1 @a 2 ā#TCa
21@a 2 ā# (C6)

Here (C1) is used to write the forward operator in the log
conductivity error term as ^̂a(f

Ta) 5 Fa. This performance
index is equal to (C5) to within a additive constant.
The equivalence of (C5) and (C6) may be demonstrated by

expanding and regrouping the last two terms in (C6). We begin
by noting that these terms constitute a quadratic form in a
which may be written as

@za 2 Fa#TCva
21@za 2 Fa# 1 @a 2 ā#TCa

21@a 2 ā#

5 @a 2 b#TB21@a 2 b# 1 d

5 aTB21a 2 2bTB21a 1 bTB21b 1 d (C7)

where b, B, and d are unknown coefficients which do not
depend on a and which can be identified by comparing like
terms in (C7). In particular, the quadratic coefficient B21 and
the linear coefficient bTB21 can be identified after expanding
the left side of (C7):

B21 5 Ca
21 1 FTCva

21F 5 CKa
21 (C8)

bTB21 5 āTCa
21 1 za

TCva
21F (C9)

Equation (C8) may be inverted to give an expression for B.
Equation (C9) can then be postmultiplied by B and transposed
to give

b 5 @Ca
21 1 FTCva

21F#21@Ca
21ā 1 FTCva

21za#

5 ā 1 CaFT@FCaFT 1 Cva#
21@za 2 Fā#

5 zKa (C10)

where the second equality follows from the matrix inversion
lemma given by Schweppe [1973, p. 496]. If we substitute (C8)
and (C10) into (C7) and then substitute the result into (C6) we
can write the maximum a posteriori performance index as

Jmap~a! 5 @zh 2 ^̂ h~fTa!#TChv
21@zh 2 ^̂ h~fTa!#

1 @zKa 2 ^̂Ka~fTa!#TCKa
21@zKa 2 ^̂Ka~fTa!# 1 d

(C11)

This equation is the same as (C5) except for presence of the
constant d, which does not affect the minimization operation
since it does not depend on a.
The equivalence of (C5) and (C6) indicates that a maximum

likelihood estimation algorithm which uses kriging to produce
surrogate measurements of the unknown parameter a is equiv-
alent to a maximum a posteriori algorithm which provides for
prior information in a Bayesian fashion. The surrogate mea-
surements can be viewed as ‘‘sufficient statistics’’ which contain
all the information conveyed by the actual point measurements
and the prior statistics of a [Sorenson, 1980, pp. 79–86].

Appendix D: Bayesian Generalization
of the Cramer-Rao Bound on the
Estimation Error Covariance
A Bayesian generalization of the discrete parameter Cra-

mer-Rao bound may be derived by following the general pro-

cedure outlined by Schweppe [1973, pp. 372–375], but allowing
the parameter a to be random. We begin by defining the
estimator bias b(a) for a given a:

b~a! 5 a 2 Ezua@â~z!# 5 E
2`

1`

@a 2 â# pzua~z ua! dz (D1)

where â(z) is the estimate, written as a function of z only,
Ez ua[ ] and pz ua(zua) are the conditional expectation and
probability density of z given a, and the integral is understood
to be taken over each of the N components of z. If both sides
of (D1) are differentiated with respect to a and the terms are
rearranged the result may be written as

E
2`

1`

@a 2 â#F ­ ln pzua~z ua!

­a G Tpzua~z ua! dz 5 2I 1
­b~a!

a

(D2)

where I is the N-dimensional identity matrix.
We can use Bayes’ rule to replace pz ua(zua) by pza(z, a)/

pa(a) in the ln pz ua(zua) derivative and then multiply both sides
of (D2) by pa(a) to obtain

E
2`

1`

@a 2 â#F ­ ln pza~z, a!

­a G Tpza~z, a! dz

5 2pa~a!I 1 pa~a!
­b~a!

­a
1 E

2`

1`

@a 2 â#

z F ­ ln pa~a!

­a G Tpzua~z ua! pa~a! dz (D3)

The integral on the right side of this equation can be simplified
by writing it as an expectation and invoking the bias definition
of (D1):

E
2`

1`

@a 2 â#F ­ ln pa~a!

­a G Tpzua~z ua! pa~a! dz

5 $a 2 Ezua@â~z!#%F ­ ln pa~a!

­a G Tpa~a!

5 b~a!F ­pa~a!

­a G T (D4)

When (D4) is substituted into (D3) and the two derivative terms
on the right side containing b(a) are combined the result is

E
2`

1`

@a 2 â#F ­ ln pza~z, a!

­a G Tpza~z, a! dz

5 2pa~a!I 1
­

­a
@b~a! pa~a!# (D5)

If we integrate both sides of (D5) over a, the last (derivative) term
on the right side vanishes, provided that b(a) is finite when any of
the components of a is infinite. The result is a Bayesian general-
ization of Schweppe’s equation (12.3.5) [1973, p. 374]:

E
2`

1` E
2`

1`

@a 2 â#F ­ ln pza~z, a!

­a G Tpza~z, a! dz da 5 2I

(D6)
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Schweppe [1973, pp. 374–375] shows how Schwartz’s inequality
can be applied to (D6) to give the following lower bound on
the mean-squared estimation error:

Eza$ããT% 5 Ez$Eauz@ããT#% $ B21 (D7)

where ã 5 a 2 â and the ‘‘information matrix’’ B is defined as

B 5 2E
2`

1` E
2`

1` F ­

­a
­

­a
ln pza~z, a!G pza~z, a! dz da

5 2EzaH ­

­a
­

­a
ln pza~z, a!J (D8)

The inequality in (D7) is interpreted as specifying that the
difference between the matrices on the left and right sides is
positive semidefinite. If the bias is sufficiently small, the mean-
squared error is equal to the estimation error covariance and
the bound of (D7) can be written:

Eza$ããT% < Eza$@ã2 Eza~ã!#@ã2 Eza~ã!#T% 5 Cã $ B21 (D9)

This approximation improves as the number of measurements
(M) increases if the maximum a posteriori estimator is used
since the bias of this estimator asymptotically approaches 0
[Bard, 1974, p. 73]. Equation (D9) is the Bayesian version of
the Cramer-Rao bound on the estimation error covariance.
If the parameter and measurement error are independent

Gaussian vectors, the log of pza(z, a) becomes

ln pza~z, a! 5 ln @ pzua~z ua! pa~a!#

5 ln pv @z 2 ^̂ ~FTa!# 1 ln pa@a#

5 g 2
1
2

@z 2 ^̂ ~FTa!#TCv
21@z 2 ^̂ ~FTa!#

2
1
2

@a 2 ā#TCa
21@a 2 ā# (D10)

where g is a constant and we have used Bayes’ rule and the
forward equation (42) to express ln pza(z, a) in terms of the
known probability densities of v and a. If we approximate the
nonlinear forward operator ^̂(FTa) by a first-order Taylor
series about a specified nominal parameter value a0 (see (62))
the second derivative of (D10) becomes

­

­a
­

­a
ln pza~z, a! <

­^̂T~a0!
­a

Cv
21

­^̂ ~a0!
­a

1 Ca
21 (D11)

Note that the second derivative of ln pza(z, a) is deterministic
(does not depend on either a or z) when a linearized Gaussian
approximation is adopted. In this case the lower bound on the
estimation error covariance becomes

C ã $ B21 5 F ­^̂T~a0!
­a

Cv
21

­^̂ ~a0!
­a

1 Ca
21G 21

(D12)

In practice, the nominal parameter value a0 is usually set equal
to the best available estimate.
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