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It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa

dispersal 50–100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromo-

some sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal
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most recent common ancestor (MRCA) in Africa at 254 (95% CI 192–307) kya and detect a cluster of major non-African

founder haplogroups in a narrow time interval at 47–52 kya, consistent with a rapid initial colonizationmodel of Eurasia and

Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based onmtDNA, we infer a second

strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cul-

tural changes affecting variance of reproductive success among males.

[Supplemental material is available for this article.]

Despite the higher per-base-mutation rate of mtDNA, the much

greater length of the Y chromosome (Chr Y) offers the highest ge-

nealogical resolution of all non-recombining loci in the humange-

nome. Previous studies have established a standard Y chromosome

haplogroup nomenclature based on resequencing of limited tracts

of the locus in small numbers of geographically diverse samples

(The Y Chromosome Consortium 2002; Karafet et al. 2008; van

Oven et al. 2013). As a result, the precise order and timing of the

phylogenetic splits has only recently started to emerge fromwhole

Y chromosome sequences (Francalacci et al. 2013; Mendez et al.

2013; Poznik et al. 2013; Wei et al. 2013; Lippold et al. 2014;

Scozzari et al. 2014; Yan et al. 2014; Hallast et al. 2015). While

themale to female effective population size ratio has been estimat-

ed as being below one throughout much of human evolutionary

history (Lippold et al. 2014), the factors affecting its dynamics

are still poorly understood. Here, we combine 299 new whole Y

chromosome high-coverage sequences from 110 populations

with similar publicly available data (Fig. 1; Supplemental Table

S1; Methods). We use these 456 sequences to estimate the coales-

cent times and order of haplogroup splits (Supplemental Informa-

tion 3,4), and we use simulations (Supplemental Information

5) to test the scenarios that can explain the observed patterns

in the mtDNA and Y chromosome data for a subset of 320

individuals.

In labeling Y chromosome haplogroups, we follow the princi-

ples and rules set out by the Y Chromosome Consortium (YCC)

(The Y Chromosome Consortium 2002). As we introduce a large

number of new whole Chr Y sequences that substantially increase

the resolution of the internal branches of the Chr Y tree, we try

to both incorporate the new information and to maintain the

integrity and historical coherence of the initial YCC haplogroup

nomenclature as introduced in 2002 and its updates (Jobling

and Tyler-Smith 2003; Karafet et al. 2008). We use an approach

similar to the concise reference phylogeny proposed by van

Oven et al. (2014) with minor modifications that are aimed to

make the haplogroup nomenclature more amenable to the in-

corporation of novel haplotypes than it is now (Supplemental

Information 6).
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Figure 1. The phylogenetic tree of 456 whole Y chromosome sequences and a map of sampling locations. The phylogenetic tree is reconstructed using
BEAST. Clades coalescing within 10% of the overall depth of the tree have been collapsed. Only main haplogroup labels are shown (details are provided in
Supplemental Information 6). Colors indicate geographic origin of samples (Supplemental Table S1), and fill proportions of the collapsed clades represent
the proportion of samples from a given region. Asterisk (∗) marks the inclusion of samples from Caucasus area. Personal Genomes Project (http://www.
personalgenomes.org) samples of unknown and mixed geographic/ethnic origin are shown in black. The proposed structure of Y chromosome hap-
logroup naming (Supplemental Table S5) is given in Roman numbers on the y-axis.
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Results

Using standard and custom filters (Supplemental Information 2;

Supplemental Table S2), we first identified reliable regions on

the Chr Y and retained 8.8 Mb of sequence per individual. A total

of 35,700 SNPs had a call rate higher than 95% and were sub-

sequently used in phylogenetic analyses and for estimation of

coalescence times. Data quality assessment by evaluating SNP

differences between father-son pairs resulted in an average of ap-

proximately one mutation per pair, indicating a low false-positive

rate, and only 588 recurrent sites (1.6%) observed in the filtered

data. Combining independent evidence from two ancient DNA se-

quences, we estimated the mutation rate of Y chromosome binary

SNPs in the filtered regions at 0.74 × 10−9 (95% CI 0.63–0.95 ×

10−9) per base pair (bp) per yr (Supplemental Information 3). It

should be noted that this estimate is based on only two ancient

DNA samples from a relatively recent time horizon and the same

Y chromosome haplogroup. However, a very similar mutation

rate estimate of 0.76 × 10−9 per bp per yr was determined indepen-

dently from a different ancient DNA specimen of much older age

by a recent study (Fu et al. 2014).

We uncovered new phylogenetic structure and reappraised

haplogroup definitions and their branch lengths in the global

phylogeny (Fig. 1; Supplemental Fig. S3). We also generated two

Illumina high-coverage sequences of African haplogroup A00

(Mendez et al. 2013) to root the phylogeny and to determine the

ancestral versus derived states of the variable sites (Supplemental

Table S8). We estimated the age of the split between A00 and the

rest at 254 thousand yr ago (kya) (95% CI 192–307 kya; Supple-

mental Table S7). Comparing chimpanzee and A00 outgroup in-

formation across the 652 positions separating haplogroups A2′5

and BT (Supplemental Fig. S13) revealed inconsistency at 4.6%

sites. The observed number of discordant calls was significantly

higher than the 1%–2% discordance rate predicted from phyloge-

netic divergence between human and chimpanzee genomes (The

Chimpanzee Sequencing and Analysis Consortium2005) and like-

ly reflects the uncertainties in mapping cross-species reads to the

same reference sequence.

In anticipation of ever larger numbers of whole sequences, we

simplified the Y chromosome haplogroup nomenclature (Supple-

mental Information 6) for all clades by using the “join” rule (The

Y Chromosome Consortium 2002) and classified them relative

to four coalescent horizons (Fig. 1; Supplemental Table S5). We

used high-coverage whole-genome sequence data from this and

previous studies to define the layout of the basic A and B subclades

(Supplemental Figs. S14, S15).We found 236markers that separate

haplogroups restricted to African populations (A and B) from the

rest of the phylogeny (Supplemental Fig. S13). Notably, we detect-

ed a >15-ky gap between the separation of African andnon-African

lineages at 68–72 (95% CI 52–87) kya and the short interval at 47–

52 (95% CI 36–62) kya when non-African lineages differentiate

into higher level haplogroups common in Eurasian, American,

and Oceanian populations (Supplemental Table S7; Supplemental

Fig. S9). This gap would be even more pronounced (52–121 kya) if

extant Asian D and African E distributions could be explained by

an early back-migration of ancestral DE lineages to Africa (Hammer

et al. 1998).

In the non-African haplogroupsC and F, we identified a num-

ber of novel features. We report that C now bifurcates into C3

(Supplemental Fig. S20) and another clade containing all the other

C lineages including two new highly divergent subclades detected

in our Island Southeast Asian samples that we call C7 and C9

(Supplemental Fig. S21). We show that only the F1329 SNP

(Supplemental Fig. S13) first separates the deep F and GT branches

and corroborate the succeeding swift split of G fromHT by the sin-

gle M578 SNP (Poznik et al. 2013). Similarly, all other subsequent

inner branches (IT, K, NR, MR, P), common throughout non-

African populations, are short and consistent with a rapid diversi-

fication of the basic Eurasian and Oceanian founder lineages at

around 50 kya (Supplemental Fig. S9; Bowler et al. 2003; Higham

et al. 2014). Within the Y chromosome haplogroups common in

Eurasian populations, we noticed that many coalesce within the

last 15 ky (Fig. 1), i.e., corresponding to climate improvement after

the Last Glacial Maximum, and a cluster (Supplemental Table S7;

Supplemental Fig. S11) of novel region-specific clades (Supple-

mental Information 6) with coalescence times within the last

4–8 ky. Regional representations of pairwise divergence times of

Y chromosomes also revealed clustering of coalescence events

consistent with the peopling of the Americas at around 15 kya

(Supplemental Fig. S12).

We used Bayesian skyline plots (BSP) to infer temporal chang-

es of regional male and female effective population sizes (Ne)

(Supplemental Fig. S4A). The cumulative global BSP of 320 Y chro-

mosomes with known geographic affiliation and the plot inferred

from mtDNA sequences from the same individuals both showed

increases in the Ne at ∼40–60 kya (Fig. 2). However, the two

plots differed in a number of important features. Firstly, the Ne es-

timates based on mtDNA are consistently more than twice as

high as those based on the Y chromosome (Supplemental Fig.

S6). Secondly, both mtDNA and Y plots (Supplemental Fig. S4)

showed an increase of Ne in the Holocene, which has been docu-

mented before for the female Ne (Gignoux et al. 2011). However,

the Y chromosome plot suggested a reduction at around 8–4 kya

(Supplemental Fig. S4B; Supplemental Table S4) when the female

Ne is up to 17-fold higher than the maleNe (Supplemental Fig. S5).

Discussion

The estimated time line of the Y chromosome coalescent events in

non-African populations (Supplemental Fig. S9) fits well with ar-

chaeological evidence for the dates of colonization of Eurasia

and Australia by anatomically modern humans as a single wave

∼50 kya (Bowler et al. 2003; Mellars et al. 2013; Higham et al.

2014; Lippold et al. 2014). However, considering the fact that

the Y chromosome is essentially a single genetic locus with an

extremely low Ne, estimated <100 at the time of the out-of-Africa

dispersal (Lippold et al. 2014), these results cannot refute the alter-

native models suggesting earlier Middle Pleistocene dispersals

(100–130 kya) from Africa along the southern route (Armitage

et al. 2011; Reyes-Centeno et al. 2014). The evidence for these early

dispersals could potentially be embedded only in the autosomal

genome.

The surprisingly low estimates of the male Ne might be ex-

plained either by natural selection affecting the Y chromosome

or by culturally driven sex-specific changes in variance in offspring

number. As the drop of male to femaleNe does not seem to be lim-

ited to a single or a few haplotypes (Supplemental Fig. S3), selec-

tion is not a likely explanation. However, the drop of the male

Ne during the mid-Holocene corresponds to a change in the ar-

chaeological record characterized by the spread of Neolithic cul-

tures, demographic changes, as well as shifts in social behavior

(Barker 2006). The temporal sequence of the male Ne decline

patterns among continental regions (Supplemental Fig. S4B) is

consistent with the archaeological evidence for the earlier spread
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of farming in the Near East, East Asia, and South Asia than in

Europe (Fuller 2003; Bellwood 2005). A change in social structures

that increased male variance in offspring number may explain the

results, especially if male reproductive success was at least partially

culturally inherited (Heyer et al. 2005).

Changes in population structure can also drastically affect the

Ne. In simplemodels of population structure, with no competition

among demes, structure will always increase the Ne. However,

structure combined with an unbalanced sampling strategy can

lead BSP to infer false signals of population decline under a cons-

tant population size model (Heller et al. 2013). An increase in

male migration rate might reduce the male Ne but is unlikely to

cause a brief drastic reduction in Ne as observed in our empirical

data. Similarly, simple models of increased or decreased popula-

tion structure are not sufficient to explain the observed patterns

(Supplemental Information 5; Supplemental Fig. S7). However,

in models with competition among demes, an increased level

of variance in expected offspring number among demes can dras-

tically decrease theNe (Whitlock and Barton 1997). The effect may

be male-specific, for example, if competition is through a male-

driven conquest. A historical example might be the Mongol

expansions (Zerjal et al. 2003). Innovations in transportation tech-

nology (e.g., the invention of the wheel, horse and camel domes-

tication, and open water sailing) might have contributed to this

pattern. Likely, the effect we observe is due to a combination of

culturally driven increased male variance in offspring number

within demes and an increased male-specific variance among

demes, perhaps enhanced by increased sex-biased migration pat-

terns (Destro-Bisol et al. 2004; Skoglund et al. 2014) andmale-spe-

cific cultural inheritance of fitness.

We note that any nonselective explanation for the reduction

in Ne would also predict a reduction of the Ne at autosomal loci in

this short time interval (Supplemental Fig. S6). In fact, when the

sex difference in Ne is large, the autosomal effective population

size should be dominated by the sex with the lowest effective pop-

ulation size. However,most existingmethods are underpowered to

detectNe changeswithin the past few thousand years (i.e., relative-

ly short-lived demographic events) from recombining genome-
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wide sequence data, resulting in limited evidence either for or

against such patterns in autosomal data. A recent study using a

newly developed approach reported variable growth patterns in

the window of 2–10 ky among global populations and some evi-

dence of a reduction in the Ne in local populations (Schiffels

and Durbin 2014). Finally, the inferred mid-Holocene Ne dips

may represent a genuine population collapse following the intro-

duction of farming, as has been recently shown for Western

Europe using summed radiocarbon date density through time

(Shennan et al. 2013).

The male-specific effective population size changes reported

here highlight the potential of whole Y chromosome sequencing

to improve our understanding of the demographic history of

populations. Further insights into the causes of such sex-specific

patterns will benefit from population-scale Y chromosome data

from ancient DNA studies and their interpretation in an interdisci-

plinary framework including also archaeological and paleoclimatic

evidence and integrative spatially explicit simulations.

Methods

Samples and sequencing

Following informed consent donor permission and authorization

by local ethics committees, saliva or blood samples were collected

from 299 unrelated male individuals from 110 populations, of

which 16 are released under the accession number PRJEB7258

(Fig. 1; Supplemental Table S1; Clemente et al. 2014). For quality

checks, we used additional data from 10 Estonian first-degree rela-

tives, 24 Dutch father-son pairs, and four duplicate samples.

Sequencing of the whole genome was performed at Complete

Genomics (Mountain View, California) at standard (>40×) cover-

age for blood- and high coverage (>80×) for saliva-based DNA sam-

ples; the Dutch father-son pairs were blood samples sequenced at

>80× coverage. Y chromosome (Chr Y) data from X-degenerate

nonrecombining regions was extracted using cgatools and ana-

lyzed in combination with publicly available data (Drmanac

et al. 2010; Lachance et al. 2012) and the Personal Genomes

Project.

Independently, for the purpose of rooting the Chr Y tree with

the oldest known clade, we sequenced the whole genomes from

the buccal swabs of two individuals from the Mbo population,

with the prior knowledge of their haplogroup being A00. This in-

formationwas based on STR profiles and SNP genotyping (Mendez

et al. 2013). Sequencing was performed on the Illumina HiSeq

2000 machines at the Genomic Research Center, Gene by Gene,

Houston, Texas, at 30× aimed coverage. We used BWA 0.5.9 (Li

and Durbin 2009) to map the paired-end reads to the GRCh37 hu-

man reference sequence, removing PCR duplicates with SAMtools

0.1.19 rmdup command (Li et al. 2009), and then calling Chr Y ge-

notypes with SAMtools mpileup and BCFtools (Li et al. 2009), re-

sulting in the average coverage for Chr Y of the two individuals

12.7× and 17.2×, respectively.

Filtering the sequence data

We filtered the variant sites by the quality scores provided by

Complete Genomics and kept only high-quality biallelic SNPs.

We developed several additional filters to improve the quality

of the resulting data set. Altogether, we tested four filters (Supple-

mental Table S2): (1) >5× unique sequence coverage filter, where

regions with <5× unique coverage on Chr Y were removed; (2) X

chromosome normalized coverage filter, where we tracked the

fluctuations of relative unique coverage (UC) normalized to that

of the X chromosome (Chr X) to highlight the deviation of local

sequence coverage from the expectedmean; (3) regional exclusion

mask, where we exclude all of Chr Y outside 10.8-Mb sequence

mostly overlapping with X-degenerate regions shown to yield reli-

able next generation sequencing (NGS) data; and (4) re-mapping

filter, where we modeled poorly mapping regions on Chr Y

and identified those that also map to sequence data derived

from female individuals (Supplemental Table S2; Supplemental

Information 2).

Y chromosome mutation rate and haplogroup age estimation

In order to minimize the effects of NGS differences and autoso-

mal versus sex chromosome specifics on mutation rate calibra-

tion, and to avoid the need to make assumptions about the

extent of genetic variation in relation to archaeological evidence,

we calibrated the Chr Y mutation rate in our CG data by using

inferences of the coalescent times of two Chr Y haplogroups, Q1

and Q2b, from ancient DNA data. We used Chr Y data of

the 12.6-ky-old Anzick (Q1b) and 4-ky-old Saqqaq (Q2b) speci-

mens (Rasmussen et al. 2010, 2014). In both cases, we used only

transversion polymorphisms and the approach described in

Rasmussen et al. (2014). For the calculations of Chr Y haplogroup

coalescent times and BSP analyses, we combined the two ancient

DNA-based mutation rate estimates using weights proportional

to the product of age and coverage of both ancient DNA samples,

yielding the final estimate of 0.74 × 10−9 (95% CI 0.63–0.95 ×

10−9) per bp per yr (Supplemental Information 3). The coalescent

ages of Chr Y haplogroups were estimated using two method-

ologies: Bayesian inference applied on sequence data (SI4) and

using short tandem repeat (STR) data. The STR base age estimates

were drawn using the method developed by Zhivotovsky et al.

(2004) and modified by Sengupta et al. (2006) (Supplemental

Information 3).

Phylogenetic analyses

Summary statistics, such as nucleotide diversity, mean pairwise

differences, and AMOVA, were computed in Arlequin v3.5.1.3

(Excoffier and Lischer 2010). We used software package BEAST

v1.8.0 (Drummond et al. 2012) to reconstruct phylogenetic trees,

estimate coalescent ages of haplogroups, and sex-specific effective

population sizes. The general time reversible (GTR) substitution

model was selected by jModelTest (Darriba et al. 2012) as the

best fit for the Chr Y data and the HKY + I + G for themitochondri-

al genomes. In order to reduce the computational load, the Chr Y

BEAST analysis only contained the variable positions. However,

the BEAST input XML file was modified by adding a parameter

under the “patterns” section that specifies the nucleotide com-

position at invariable sites. For the eight geographically explicit

regions (Supplemental Table S1), we generated BSPs for both Chr

Y and mtDNA data (Supplemental Fig. S4A). The BSPs for Chr

Y andmtDNAwere plotted together in R (R Core Team 2012) using

the package ggplot2 (Wickham 2009). To test for significant devi-

ations in diversification rates along the branches of the Y chromo-

some tree, we used SymmeTree 1.1 (Supplemental Information 4;

Chan and Moore 2005).

Simulations

FastSimCoal2 simulations of 500,000 sites of Chr Y and 16,569

sites of mtDNA were performed using mutation rates specified in

SI3 and starting population size 10,000. Coalescent times of all

nodes in the resulting trees were estimated under a constant size

and exponential growthmodels. The growthmodel assumed cons-

tant size until 400 generations, followed by exponential growth
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(Keinan and Clark 2012). For each model, we plotted the histo-

gram of coalescent times of all the nodes of the simulated trees

by six different deme formation scenarios: 1: no deme structure;

2: formation of 10 demes 400 generations ago; 3–6: formation of

25, 50, 75, and 100 demes 400 generations ago, respectively (Sup-

plemental Information 5).

Nomenclature

In labeling Chr Y haplogroups, we follow the principles and rules

set out by The Y Chromosome Consortium (2002). We try to both

incorporate our new information and to maintain the integrity

and historical coherence of the initial YCC haplogroup nomen-

clature as introduced in 2002 and its updates (Jobling and Tyler-

Smith 2003; Karafet et al. 2008). We use an approach similar to

the concise reference phylogeny proposed by van Oven et al.

(2014) with minor modifications that are aimed at making the

Chr Y haplogroup nomenclature more amenable to the incorpora-

tion of novel haplotypes than it is now.Wepropose to simplify the

Chr Y haplogroup nomenclature by defining a limited number of

levels of alphanumeric depth to be used in the haplogroup names,

using the apostrophe symbol (’) to denote the “joined” names of

related haplogroups at depths greater than Level I (Supplemental

Table S5; Supplemental Information 6).

Data access
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under accession number PRJEB8108. The data are also available

at the data repository of the Estonian Biocentre (http://www.ebc.

ee/free_data/chrY).
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