
A Recognition and Verification Strategy for Handwritten Word Recognition

M. Morita1,2, R. Sabourin1−3, F. Bortolozzi3 and C. Y. Suen2

1École de Technologie Supérieure, Montreal, Canada
2Centre for Pattern Recognition and Machine Intelligence, Montreal, Canada

3Pontifı́cia Universidade Católica do Paraná, Curitiba, Brazil
e-mail: marisa@cenparmi.concordia.ca

Abstract

In this paper a word recognition and verification scheme
based on HMMs is presented. However, the main contri-
bution of the current work lies in the validation of such
a strategy. In order to perform this task, we carried out
some experiments on word recognition using a legal amount
database and then we compared the results reached with
other study which makes use of the same database. The
experiments demonstrate the efficiency of the strategy we
developed for word recognition and verification.

1 Introduction

Machine simulation of human functions has been a very
challenging research field since the advent of digital com-
puters. In some areas which require a certain amount of
intelligence, such as chess playing, tremendous improve-
ments are achieved. On the other hand, humans still outper-
form even the most powerful computers in relatively rou-
tine functions such as vision. Machine simulation of hu-
man reading is one of these areas. It has been the subject
of intensive research especially in unconstrained handwrit-
ing recognition. The interest devoted to this field is not ex-
plained only by the exciting challenges involved, but also
the huge benefits that a system, designed in the context of a
commercial application, could bring.

The literature contains many studies on the recognition
of isolated units of writing such as characters, words or
strings of digits, which are an important subtask of many
applications such as reading texts from pages [4], postal ad-
dresses [8], and processing of dates [5], courtesy [7] and
legal [2] amounts on cheques.

This paper addresses the off-line recognition of iso-
lated handwritten words of legal amounts on Brazilian
bank cheques. Although the lexicon size of legal amount
words is limited (40 words), there are some classes such as
“Sessenta” (Sixty), “Setenta” (Seventy), “Oitenta” (Eighty),
and “Noventa” (Ninety) that contain a common sub-string

(i.e., “enta”) and can affect the performance of the recog-
nizer. The problem is made more difficult once different
styles of handwriting (uppercase, lowercase, and mixed) are
considered. Figure 1 shows some samples of handwritten
words of legal amounts on Brazilian bank cheques.

(Setenta)
(Onze)

(Mil)

(Quinhentos)(Trinta)

(Quatro)

(Dez) (Dezessete)

(Novecentos) (Oitenta)

(Cinco)

(Vinte)

Figure 1. Samples of handwritten words of
legal amounts on Brazilian bank cheques

In order to face the foregoing problem, we propose to use
a word recognition and verification scheme which we have
originally developed for recognizing Brazilian month words
of dates on cheques [5]. However, the main contribution of
the current work lies in the validation of such an approach
since it is very difficult to compare our previous work with
others due to its special application, i.e., date recognition on
Brazilian bank cheques. Besides, comparison in the same
context with other approaches is very delicate when differ-
ent databases and formats are used, different word classes
are involved, and different sizes of databases are considered.
In order to assess the recognition and verification scheme,
we carried out some experiments on word recognition us-
ing a legal amount database and then we compare the re-
sults achieved with an other study which makes use of the
same database. The proposed strategy is based on the Hid-
den Markov Models (HMMs), which have been proven to
be one of the most powerful tools for modeling speech and
later on a wide variety of other real-world signals. Experi-

ments show an increase in the average recognition rate from
70.6% to 88.1%.

2 Description of the Word Recognition and
Verification

Given a discrete HMM-based approach, each word im-
age is transformed as a whole into a sequence of observa-
tions by the successive application of preprocessing, seg-
mentation, and feature extraction. Preprocessing consists
of correcting the average character slant. The segmentation
algorithm uses the upper contour minima and some heuris-
tics to split the date image into a sequence of segments
(graphemes), each of which consists of a correctly seg-
mented, an under-segmented, or an over-segmented char-
acter. A detailed description of the preprocessing and seg-
mentation stages is given in [6]. Then, different feature sets
are extracted from the sequence of graphemes to feed the
word recognizer and verifier. In the following subsections
we describe the feature sets, the word models, and the inter-
action between the word recognizer and verifier.

2.1 Feature Extraction

2.1.1 Word Recognizer

The word recognizer makes use of two feature sets. The
first set is based on global features such as loops, ascenders,
and descenders, while the second one is based on concavity
measurements. Both feature sets are combined with space
primitives.

The ascenders, descenders, and loops are detected
through the local maxima from the upper contour, the lo-
cal minima from the lower contour and the closed contour
respectively. These three primitives can be classified as big
or small primitives depending on their positions with re-
spect to the upper and lower base lines detected in a word
image. The combination of these primitives plus a primi-
tive that determines whether a grapheme does not contain
ascender, descender, and loop produces a 20-symbol alpha-
bet. In such a case, each symbol has been evaluated during
the training stage.

The basic idea of concavity measurements [3] is the fol-
lowing: for each white pixel in the grapheme, we search
in 4-Freeman directions (Figure 2(d)), to find out which di-
rections reach black pixels, as well as which directions do
not reach any black pixels. When black pixels are reached
in all directions (e.g. point x1 in Figure 2(a)), we branch
out in four auxiliary directions (s1 to s4 in Figure 2(c)) in
order to confirm if the current white pixel is really inside a
closed contour. Those pixels that reach just one black pixel
are discarded.

Thereafter, we increment the position in the feature vec-
tor according to the results returned by the search (Figures
2(a) and (b)). In Figure 2(b) we represent the feature vector
where each component has two labels. The superior label
means the number of directions which reached black pixels
during the search, while the inferior label means the direc-
tions where black pixels were not reached. For example,
the pixel x2 (Figure 2(a)) reaches the black pixel in direc-
tions 1 and 2. Therefore, the position 3 of the feature vector
is incremented. For the pixel x1, the position 11 is incre-
mented because it reaches the black pixel in all four direc-
tions. However, using the auxiliary direction s3 we confirm
that it is not inside a closed contour. When the pixel is in-
side a closed contour, the position incremented is the 8 th.

1 1
0,1 1,2 2,3 3,0 0 1 2 3 -- s1 s2 s3 s4

 0 1 2 3 4 5 6 7 8 9 10 11 12

2 2 2 2 3 3 3 3 4 4 4 4 4

x2

x1

s1 s2

s3 s4

0

2

3 1

(b)

(a)

(c) (d)

Figure 2. Concavity measurements: (a) Con-
cavities, (b) Feature vector, (c) Auxiliary di-
rections, and (d) 4-Freeman directions

Since we are dividing each grapheme into two zones, we
consider two feature vectors of 13 components each. There-
fore, in the example presented above, the pixel x2 will up-
date the first vector while the pixel x1 will update the second
one. Finally, the overall concavity feature vector is com-
posed of (13×2) 26 components normalized between 0 and
1.

The spaces between two connected components have
been extracted from a word image and then they are com-
bined with the global and concavity features. The space
values and the concavity vectors are clustered into symbols
by a vector quantization algorithm. In the former case, the
codebook size we have adopted was 8 and in the latter case
it was 100. These numbers were chosen after several tests
on the validation set.

2.1.2 Word Verifier

The word verifier is also fed by two feature sets. The first
set is based on global features and the second one is a mix-
ture of concavity and contour features. Both feature sets
are combined with segmentation primitives. The global and
concavity features are basically the same as we have used
in word recognition. However, here the concavity features
differ in the size of concavity vector.

Since we are dividing a grapheme into two zones, we
have two concavity feature vectors of 9 components each.
For each vector, we have introduced 8 more components re-
lated to the information about the contour image in order
to increase the discrimination between some pairs of letters
(e.g. “s” (“sete”) and “o” (“oito”)). The contour informa-
tion is extracted from a histogram of contour directions. For
each zone, the contour line segments between neighboring
pixels are grouped into 8-Freeman directions. The number
of line segments of each orientation is counted. In this man-
ner, the final feature vector has (2×(9+8)) 34 components.
The feature vectors are clustered into symbols by a vector
quantization algorithm. We have used a codebook with the
size of 100 chosen after carrying out several tests on the
validation set.

The segmentation features have been used to reduce con-
fusions such as “u” (duzentos) and “r” (trezentos) since they
try to reflect the way that the graphemes are linked together.
For connected graphemes, we encode the nature of segmen-
tation points in two ways depending on whether its vertical
position is closer to the upper or lower base lines. We have
also defined a primitive to indicate no segmentation point
between two graphemes.

2.2 Markoving Modeling of Words

Basically, the word models are formed by the concate-
nation of appropriate elementary HMMs, which are built at
letter and space levels.

The topology of space model shown in Figure 3(a) con-
sists of 2 states linked by two transitions that encode a space
(transition t01) or no space (transition t01 = Φ).

t03=

t03

t01
t12

t23=
t23

t01
t12 t23 t34

t06

t07=

t45

t57

t47=

t670 3

1 2 1 2 53 4

0 76

t01=

t01

0 1

(b)(a) (c)

Figure 3. Topologies of (a) space, (b) and (c)
letter models

Two topologies of letter models were chosen based on
the output of our grapheme-based segmentation algorithm
which may produce a correct segmentation of a letter, a
letter under-segmentation or a letter over-segmentation into
two, three, or four graphemes depending on each letter. In
order to cope with these configurations of segmentations,
we have designed topologies with three different paths lead-
ing from the initial state to the final state. Figures 3(b) and
3(c) show examples of both topologies.

The model in Figure 3(b) is employed in word recogni-
tion. In such a topology, the transition t03 either (a) mod-
els under-segmentation and emits the null symbol Φ, or (b)
models a character correctly and emits a symbol. The tran-
sitions t01, t12 and t23 model character segmentation into
two or three graphemes. The model in Figure 3(c) is used
in word verification and it is based on the previous one, but
in this case the model has transitions (t12, t34, t57 and t67 of
Figure 3(c)) that encode the nature of segmentation points.
Considering uppercase and lowercase letters, we need 42
models since the legal amount alphabet is reduced to 21
letter classes and we are not considering the unused ones.
Thus, regarding the two topologies, we have 84 HMMs
which are trained using the Baum-Welch algorithm with the
Cross-Validation procedure.

Since no information on recognition is available on
the writing style (uppercase, lowercase), the word model
shown in Figure 4(a) consists of two letter HMMs in par-
allel and four space HMMs linked by four transitions:
two uppercase-letters (UU), two lowercase-letters (LL), one
uppercase letter followed by one lowercase-letter (UL),
and one lowercase letter followed by one uppercase-letter
(LU). The probabilities of these transitions are estimated
by their frequency of occurrence in the training set. In the
same manner, the probabilities of beginning a word by an
uppercase-letter (0U) or a lowercase letter (0L) are also esti-
mated in the training set. This architecture handles the prob-
lem related to the mixed handwritten words detecting im-
plicitly the writing style during recognition using the Back-
tracking of the Viterbi algorithm.

Figure 4(a) shows the architecture of the word models
adopted on word recognition, while Figure 4(b) illustrates
the architecture used for word verification. We can observe
that the architecture shown in Figure 4(b) diverges only in
two aspects: it does not consider the space models and its
character HMMs contain transitions that encode the nature
of segmentation points.

2.3 How the Word Verifier Interacts with the
Word Recognizer

As pointed out earlier, the word recognizer receives as
input two sequences of observations extracted from the
word image. Then, the word recognizer computes the word
probabilities for the word models using the Forward proce-

S

0 4

1 2 3

S

I

0 1

0 1

space

space

0 4

1 2 3

s

0 1

0 1
space

space

UU

UL

LU

LL

OU

OL

0 3

1 2

E

0 3

1 2
e

UU

UL

LU

LL

0 3

1 2

E

0 3

1 2
e

... F

0 9

1 2 73 4 5 6

8

IOU

OL 0 9

1 2 73 4 5 6

8

s

UU

UL

LU

LL

1 2 53 4

1 2 53 4

e

0

E

76

0 76

UU

LU

1 2 53 4

1 2 53 4

e

0

E

76

0 76

UL

LL
... F

(a)

(b)

Figure 4. Word models of class “Sete” (Seven): (a) Recognition and (b) Verification

dure. Then, only the two best hypotheses generated by the
word recognizer are confirmed by the word verifier. The
objective of the word verifier is to re-rank the output of the
word recognizer in order to improve the recognition rate and
reliability of the system. This verifier deals with the loss in
terms of recognition performance brought by the word rec-
ognizer.

Thus, the word verifier computes the probabilities for
two word models that correspond to the two best hypothe-
ses (Top1 and Top2) generated by the word recognizer using
the Forward procedure. Then, we multiply the probabilities
produced by the word recognizer and verifier. In Figure 5,
we present an example of how the word verifier interacts
with the word recognizer. We can see in this Figure that
the word recognizer generates the list of hypotheses which
contain the correct one (“Oitenta”), but it is not in the top
of the list. On the other hand, the word verifier succeeds in
re-ranking the correct hypothesis to the top of the list (0.48
× 0.90 > 0.50 × 0.10). In such an example, we have used
fictitious probabilities in order to better illustrate the prob-
lem. In Section 3 we will see the improvements produced
by this scheme of verification.

3 Experimental Results

This section is devoted to the experiments conducted on
the legal amount database which contains 11,000 isolated

images of handwritten words. It was divided into three sets:
6,600, 2,200, and 2,200 images for training, validation, and
testing respectively.

Table 1 reports the two best recognition rates (Top1 and
Top2) on the test set using our word recognizer without con-
sidering the word verifier. In this case, the objective is to
compare the performance of our recognizer with the one
developed by Freitas et al in [1]. This was possible since
we have used the same database. Their work considers one
global Markov model for each class of words and makes use
of global, concavity, and convexity features. However, in
this case modeling characters is better than modeling words
due to the small number of images for training some classes
of words which do not have a uniform distribution. Thus,
by considering character models we can increase the train-
ing set and improve the performance on word recognition.
We can observe from Table 1 the improvements on word
recognition using our approach. The recognition rates for
Top1 and Top2 were increased by 15.2% and 9.9% respec-
tively.

Table 1. The two best recognition rates on
word recognition on the test set

Word Recognizer Top1 Top2
Current 85.8% 92.3%

[1] 70.6% 82.4%

Feature
Extraction

HMM Word
Verifier

HMM Word
Recognizer

Top 1: Setenta (0.50)

Top 2: Oitenta (0.48)
max [Oitenta]

P(Setenta)=0.10

P(Oitenta)=0.90

x

x

Preprocessing
and

Segmentation

Figure 5. Example of how the word verifier interacts with the word recognizer

(b)

(a)
(Setecentos) (Setenta) (Oitenta) (Dezessete)

Oito (Sete) Oitenta (Setenta) Trinta (Vinte) Dezesseis (Dezessete)

Figure 6. (a) Examples of well-classified images and (b) Examples of misclassified images (the correct
string is the one in parentheses)

In the top of it, the word verifier brings an improvement
of the recognition rate on word recognition on the test set
from 85.8% to 88.1% (Top1). The results show the effi-
ciency of the strategy we have developed for word recogni-
tion and verification.

Figure 6(a) illustrates examples of well-classified im-
ages. Figure 6(b) shows some recognition errors. As we
expected, the main confusions of the classifiers are the pres-
ence of a common sub-string among some classes of words
(e.g., “Setenta”,“Oitenta”, and “Noventa”) or similarities
among them (e.g., “Seis”, “Sete”, and “Oito”).

4 Conclusion

In this paper an HMM-based recognition and verifica-
tion scheme for word recognition has been presented. It was
originally developed for recognizing Brazilian month words
of dates on cheques [5]. However, since it is very difficult to
compare our previous work with others due to its special ap-
plication, i.e., date recognition on Brazilian bank cheques,
in this study we propose to assess such an approach. In or-
der to perform this task, we carried out some experiments
on word recognition using a legal amount database and then
we compared the results reached by other researchers which
makes use of the same database. The experiments demon-
strate the efficiency of the strategy we developed for word
recognition and verification since the average recognition
rate was increased from 70.6% to 88.1%.

References

[1] C. Freitas, F. Bortolozzi, and R. Sabourin. Handwritten iso-
lated word recognition: An approach based on mutual infor-
mation for feature set validation. In Proc. 6th ICDAR, pages
665–669, 2001.

[2] N. Gorski, V. Anisimov, E. Augustin, O. Baret, and S. Max-
imov. Industrial bank chech processing: the A2iA check-
reader. IJDAR, 3:196–206, 2001.

[3] L. Heutte, J. Moreau, B. Plessis, J. Plagmaud, and
Y. Lecourtier. Handwritten numeral recognition based on
multiple feature extractors. In Proc. 2nd ICDAR, pages 167–
170, 1993.

[4] U. Marti and H. Bunke. Text line segmentation and word
recognition in a system for general writer independent hand-
writing recognition. In Proc. 6th ICDAR, pages 159–163,
2001.

[5] M. Morita, R. Sabourin, F. Bortolozzi, and C. Suen. Seg-
mentation and recognition of handwritten dates. In Proc. 8th

IWFHR, pages 105–110, 2002.
[6] M. Morita, A. E. Yacoubi, R. Sabourin, F. Bortolozzi, and

C. Y. Suen. Handwritten month word recognition on Brazilian
bank cheques. In Proc. 6th ICDAR, pages 972–976, 2001.

[7] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y.
Suen. Automatic recognition of handwritten numerical
strings: A recognition and verification strategy. IEEE PAMI,
24(11):1438–1454, November 2002.

[8] A. E. Yacoubi, M. Gilloux, and J. Bertille. A statistical
approach for phrase location an recognition within a text
line: An application to street name recognition. IEEE PAMI,
24(2):172–188, February 2002.

