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Abstract We present a formulation for coupled solu-
tions of fluid and body dynamics in problems of bi-
olocomotion. This formulation unifies the treatment
at moderate to high Reynolds number with the cor-
responding inviscid problem. By a viscous splitting of
the Navier–Stokes equations, inertial forces from the
fluid are distinguished from the viscous forces, and
the former are further decomposed into contributions
from body motion in irrotational fluid and ambient fluid
vorticity about an equivalent stationary body. In partic-
ular, the added mass of the fluid is combined with the
intrinsic inertia of the body to allow for simulations of
bodies of arbitrary mass, including massless or neutrally
buoyant bodies. The resulting dynamical equations can
potentially illuminate the role of vorticity in locomo-
tion, and the fundamental differences of locomotion in
real and perfect fluids.

Keywords Biolocomotion · Fluid-structure
interaction · Computational fluid dynamics

Introduction

There has been a recent surge in computational in-
vestigations of biological and biologically-inspired lo-
comotion in fluids. Such studies, whether focused on
aerial or aquatic applications, have been motivated not
only by scientific and technological curiosity, but also
by the inherent challenge they present to numerical
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methods. This paper is particularly concerned with
studies of locomotion either at finite Reynolds number
or in inviscid fluids. By the latter, we refer to locomo-
tion in fluids in which the mechanism for vorticity pro-
duction is either absent or restricted to a finite number
of sharp edges (via the Kutta condition). Regardless of
whether the fluid is viscous or inviscid, there are two
unifying aspects to such problems: (1) The central goal
is to simultaneously solve for the evolution of the body
and the fluid, and (2) inertial forces—arising from both
the body and the fluid—play an important role.

Indeed, much can be learned about the nature of
locomotion by comparing the self-propulsion of the
same system in both settings [1, 2]. However, the com-
putational approaches to studying inviscid and finite
Reynolds number propulsion have evolved separately.
Finite Reynolds number studies, for the most part,
have relied on a grid-based Navier–Stokes solver and
a straightforward coupling between flow and body
dynamical solvers: interface forces from one solver
(usually the fluid solver) are sent to the other, and
kinematical conditions at the interface are returned in
the opposite direction. Stability is ensured by implicit
or semi-implicit time marching, with some iteration
necessary in each step to achieve consistency between
the fluid and the body. There are deficiencies in the
approach, however. Firstly, the algorithm can result
in severe stability restrictions if the body’s own iner-
tial forces are significantly weaker than those of the
fluid. This can occur, for example, in slender bod-
ies or membranous surfaces in water. Secondly, the
corresponding inviscid problem cannot generally be
simulated by the basic grid-based flow solver with-
out vorticity production—even in the absence of its
physical mechanism—at solid-fluid interfaces (e.g. [2]),
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and the resulting numerical dissipation can unnaturally
influence the locomotion.

A number of recent studies have convincingly
demonstrated that locomotion in inviscid flows is best
studied within the framework of geometric mechanics,
with the help of a boundary element solver to compute
the potential flow [3–6]. This approach essentially leads
to a view of locomotion as a natural consequence of
global conservation laws for the fluid–body system, and
produces an attractively clean algorithm for computing
the locomotion, with a global mass matrix consisting
of both intrinsic and added inertia [5]. A distinct ad-
vantage of this form of the equations is that it places
no restrictions on the intrinsic mass of the bodies; in
contrast, many previous formulations are challenged
by special cases of massless [7, 8] or neutrally buoyant
bodies [9, 10]. Unfortunately, the geometric mechanics
framework is not readily extendible to problems of fin-
ite Reynolds number. However, we will show in this pa-
per that the dynamical equations for a body in viscous
flow can be formulated such that, for zero viscosity,
they reduce in a straightforward way to those obtained
from geometric mechanics.

This formulation is based on the viscous splitting
of the Navier–Stokes equations, argued rigorously by
Chorin et al. [11]. The core idea of this concept is that
each time step can be divided into substeps: one de-
voted to inviscid convection of existing vorticity, an-
other devoted to viscous diffusion in a stationary fluid,
and a final one in which new vorticity is produced to
enforce the no-slip condition. Our extension inserts the
dynamical/kinematical update of the body configura-
tion in this sequence, and recognizes that an inherently
inviscid locomotion problem exists within the ‘cracks’
of the full viscous problem. It should be noted that this
paper condenses and refines an earlier version of the
coupling algorithm presented in Eldredge [12].

Methodology

This paper will focus on two-dimensional problems, but
the ideas can be readily extended to three-dimensional
configurations. We take the density of the fluid to be
unity and the generated flows to be incompressible.
Multiple bodies may be present, and surface integrals
in the following should be interpreted as summations
over all bodies’ surfaces.

Regardless of whether the flow is inviscid or viscous,
the total vorticity of the global system of bodies and

fluid is constrained by Kelvin’s circulation theorem
[13],

d
dt

(
�ω + �γ + �b

) = 0, (1)

where the total vorticities are defined, respectively, as

�ω =
∫

A f

ω dA, �γ =
∮

S
γ ds �b =

∮

S
n × ub ds.

(2)

The first integral accounts for the total vorticity in the
fluid region A f , the second represents the total strength
of a vortex sheet on the body surface S, and the third is
the total vorticity associated with the surface velocity,
ub , where n is the surface normal directed into the
fluid. It is noted that the strength of the vortex sheet
on the body surface is equal to the discontinuous differ-
ence between tangential fluid and body velocities, γ =
n × (u f − ub ), where u f is the velocity on the surface
when approached from the fluid side. Collectively, the
last two terms in equation (1) account for the total
‘bound circulation’ of the bodies (the net cyclic constant
associated with tight counter-clockwise loops around
the bodies) in an inviscid problem.

The force exerted by the fluid on a body (or set of
bodies) in viscous or inviscid flow can be written in
terms of rates of change of linear impulse [13, 14],

F f = − d
dt

(
Pω + Pγ + Pb

)
, (3)

where the impulses are defined, respectively, as

Pω =
∫

A f

x × ω dA, Pγ =
∮

S
x × γ ds,

Pb =
∮

S
x × (n × ub ) ds. (4)

The torque exerted on the body (about the origin) has
a similar form,

τ f = − d
dt

(
�ω + �γ + �b

)
, (5)

where

�ω = 1
2

∫

A f

x×(x × ω) dA, �γ = 1
2

∮

S
x×(x × γ ) ds,

�b = 1
2

∮

S
x × [x × (n × ub )] ds. (6)

These equations (3) and (5) form the basis for our
derivation. We will address the inviscid and viscous
problems separately, but will arrive at a common form.
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Inviscid problems The persistent presence of the vor-
tex sheet on the body surface is consistent with the
enforcement of the no-flow-through condition, which is
the only appropriate kinematic constraint in an inviscid
problem; the strength of the sheet can be determined by
solving an integral equation arising from this condition,
subject to the additional constraint of Kelvin’s circula-
tion theorem [15]. This sheet strength can be linearly
decomposed into contributions from fluid vorticity and
body motion, γ = γ ω + γ b . In other words, γ ω is the
strength of the surface vortex sheet in reaction to ambi-
ent fluid vorticity surrounding a stationary body, and
γ b is the sheet associated with a body in motion in
an irrotational fluid. The individual integral equations
for γ b and γ ω are each subject to Kelvin’s circula-
tion theorem, e.g.

∮
S γ ω ds = − ∫

A f
ω dA and

∮
S γ b ds =

− ∮
S n × ub ds if the global circulation is initially zero.

This decomposition leads to natural splittings of
the sheet impulses, Pγ = Pγω + Pγ b and �γ = �γω +
�γ b . We then note that the sum of the impulses as-
sociated strictly with body motion can be manipulated
further, viz.,

Pγ b + Pb =
∮

S
x × (γ b + n × ub ) ds

=
∮

S
x × (n × ∇ϕb ) ds. (7)

The scalar potential ϕb is that which results from solv-
ing the potential flow problem in A f due to body
motion in an irrotational fluid. Provided that there is
no bound circulation associated with any constituent
body—so that cyclic constants vanish—the last integral
can be written in the familiar form − ∮

nϕb ds. The
angular impulses can be similarly manipulated into
− ∮

x × nϕb ds. This potential flow problem is linear in
the components of surface velocity—rigid body motion

plus some parametrization of surface shape change—
so the scalar potential can be linearly decomposed
accordingly [6, 16, 17]. From these forms, an added
mass representation can be identified, which we write
generically as

(
Pγ b + Pb

�γ b + �b

)
= M · U. (8)

In these equations, the vector U consists of the rigid
body components of velocity (translational and rota-
tional), as well as the rates of change of the parameters
that describe the body shape. Figure 1 depicts two
examples and their associated time-varying degrees of
freedom. In the first, an articulated system of linked
rigid bodies contains three rigid components (X0, Y0

and α0) and two shape parameters (the angles θ1 and
θ2). That is, U = (Ẋ0, Ẏ0, α̇0, θ̇1, θ̇2)

T . In the second
example, consisting of a deforming fish-like shape with
a time-varying centerline curvature distribution κ , the
same three rigid components are augmented by a single
shape parameter S controlling the phase of the cur-
vature (K and λ are the time-invariant amplitude and
wavelength, respectively). Thus, U = (Ẋ0, Ẏ0, α̇0, Ṡ)T .
Each column of the matrix M requires the solution of a
boundary integral problem and represents the instanta-
neous linear and angular impulse associated with a unit
value of the corresponding entry in U and zeros in the
other entries.

Thus, we arrive at the forms of fluid force and torque
appropriate for inviscid problems,

(
F f

τ f

)
= − d

dt

(
Pω + Pγω

�ω + �γω

)
− d

dt
(M · U) . (9)

α0−θ1

θ 2

X0

x

y X0

x

y

α0
(s,t)=K(s)cos[2π/λ(s-S(t))]

s

Fig. 1 Examples of parameterized shape deformation for biolocomotion studies
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The dynamical equations for the body can be written as

d
dt

[(Mb + M) · U] = − d
dt

(
Pω + Pγω

�ω + �γω

)
+

(
Fext

τ ext

)
,

(10)

where Mb is the intrinsic inertia matrix of the body, and
Fext and τ ext are the external force and torque exerted
on the body. The impulses Pγω and �γω require an
additional boundary integral solution. Equations (10)
are integrated in tandem with those for the body con-
figuration and for the vorticity dynamics (if any).

Viscous problems When viscosity is present, the no-
flow-through kinematic condition is augmented by the
no-slip condition on the body surface. Lighthill [18]
postulated that this extra condition is consistent with
the creation of new vorticity at the surface, by the
flux of the vortex sheet associated with the no-flow-
through condition into the adjacent fluid. This has been
used as the basis for a numerical algorithm with vortex
particle methods (e.g. [12, 19, 20]) and a Cartesian grid
method [21]. For the purposes of the present paper,
we can regard each timestep as split into two subseps:
in the first, fluid vorticity evolves by convection and
the body evolves by its own dynamics, but their in-
dependent evolution leaves a spurious slip velocity on
the body surface; this slip is then annihilated in the
second substep by diffusing the vortex sheet into the
fluid (while the fluid and body remain stationary). The
vortex sheet is introduced into the fluid by solving a
linear diffusion problem with the Neumann boundary
condition ν∂ω/∂n = −γ /�t, where ν is the kinematic
viscosity, γ is the strength of the vortex sheet associated
with spurious slip, and �t is the (vanishingly-small)
time interval over which the sheet is diffused [19].

In lieu of a formal proof, the development of the
governing equations is merely sketched out here; it
is likely that convergence can be rigorously proved
using product formulas similar to those that ground the
viscous vortex particle method in functional analysis
[11]. Let us write equation (3) as a limit of �t → 0,
but explicitly introduce the intermediate stage ()∗ in
this time interval at which the spurious vortex sheet
exists on the surface. Before doing so, we note that
this spurious sheet (and the associated slip velocity) is
eliminated at the end of any time step, so Pn

γ = 0 at any
time level tn. Thus,

F f = − lim
�t→0

1
�t

[(
Pn+1

ω − P∗
ω + P∗

ω − Pn
ω

)

+ (
Pn+1

b − P∗
b + P∗

b − Pn
b

)]
. (11)

The intermediate body impulse P∗
b is identical to its

final value Pn+1
b , since the body remains stationary

during the second substep. On the other hand, the
splitting of the fluid vorticity impulse allows us to distin-
guish an essentially inviscid contribution to its change
in the first substep from a viscous contribution in the
second substep. In fact, the first of these contributions
is identical to the corresponding term in the invis-
cid problem; we label this as −dPω/dt|i. The second
(viscous) contribution can be manipulated into a sur-
face integral form by bringing the time derivative into
the integral, and making use of the diffusion equation
and the divergence theorem,

− dPω

dt

∣
∣
∣∣
v

=
∮

S
x × ν

∂ω

∂n
ds − ν

∮

S
n × ω ds. (12)

The last of these two integrals is the force due to
viscous shear stress, which we label as F f

v . The first
integral can be re-written in terms of the impulse of
the spurious vortex sheet by virtue of the Neumann
boundary condition on vorticity, which leads to

− dPω

dt

∣∣
∣
∣
v

= − 1
�t

P∗
γ + F f

v . (13)

However, as in the inviscid case, the strength of this
vortex sheet can be decomposed into parts contributed
by fluid vorticity and body motion, γ = γ ω + γ b (again,
with each subject to Kelvin’s circulation theorem).
Furthermore, since the spurious slip is absent at the
beginning and end of the full time interval, then Pn

γω =
−Pn

γ b . Thus, the term with the impulse of the inter-
mediate vortex sheet can be written, in the limit of
vanishing time interval, as

− lim
�t→0

1
�t

P∗
γ = − lim

�t→0

1
�t

(
P∗

γω − Pn
γω

)

− 1
�t

(
P∗

γ b − Pn
γ b

)

= − d
dt

(
Pγω + Pγ b

)
. (14)

A similar process can be carried out for the fluid torque.
Thus, bringing all terms together, we arrive at a form
for the fluid force and torque in a viscous problem that
is structurally analogous to the inviscid problem,

(
F f

τ f

)
= − d

dt

∣∣
∣
∣
i

(
Pω + Pγω

�ω + �γω

)
− d

dt
(M · U) +

(
F f

v

τ
f
v

)

,

(15)
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where the viscous shear stress contributions are

F f
v = −ν

∮

S
n × ω ds,

τ f
v = −ν

∮

S
[x × (n × ω) + 2n × ub ] ds. (16)

The added mass contributions have now been explicitly
drawn out of the overall force. As in the inviscid case,
these can be grouped together with the intrinsic body
inertia to form the left-hand side of the dynamical
equations for the body, leading to our final result,

d
dt

[(Mb + M) · U]

= − d
dt

∣
∣
∣∣
i

(
Pω + Pγω

�ω + �γω

)
+

(
Fext + F f

v

τ ext + τ
f
v

)

. (17)

This formulation shows clearly that the finite Reynolds
number locomotion problem differs from the invis-
cid problem both directly—through the shear stress
contributions—and indirectly—through the continuous
creation of vorticity.

Conclusions

This paper has presented dynamical equations for loco-
motion that unifies the inviscid and viscous approaches
to the problem. These equations allow simulations of
bodies with arbitrary mass—including massless and
neutrally buoyant bodies—which has been impossible
in previous formulations, and can potentially shed light
on the role of vorticity in locomotion. It should be
noted that, though the development of the viscous
dynamical equations has been motivated by the vortex
particle method, the equations can also be used with
other numerical fluid schemes, provided that additional
consideration is given for computing the added inertia
coefficients and the inviscid rates of change of impulse.
The latter can be re-written in forms more conducive to
a specific solver. It is also possible to develop analogous
dynamical equations for systems with elasticity; this will
be the subject of a forthcoming paper.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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