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ABSTRACT Resistive random access memory (ReRAM)-based computing in-memory (CIM) is a promis-

ing solution to overcome the von-Neumann bottleneck in conventional computing architectures. We propose

a reconfigurable ReRAM architecture using a novel 4T2R bit-cell that supports non-volatile storage and

two types of CIM operations: i) ternary content addressable memory (TCAM) and ii) in-memory dot

product (IM-DP) for neural networks. The proposed 4T2R cell occupies a smaller area than prior SRAM-

based CIM bit-cells. A 128 × 128 ReRAM macro is designed in 40nm CMOS technology. For TCAM

operations, it allows a search word-length of 128 bits. For IM-DP operations, it can compute parallel

dot products using binary inputs and ternary weights. The simulated search delay for TCAM operation

is 0.92 ns at VDD = 0.9 V and the simulated energy efficiency for IM-DP operation is 223.6 TOPS/W

at VDD = 0.7 V. Monte-Carlo simulations show a standard deviation of 4.9% in accumulate operation

for IM-DP which corresponds to a classification accuracy of 95.7% on the MNIST dataset and 81.7% on

the CIFAR-10 dataset.

INDEX TERMS Resistive random access memory (ReRAM), ternary content addressable

memory (TCAM), computing in-memory (CIM), reconfigurable architecture.

I. INTRODUCTION

THE TREMENDOUS demand for data-intensive applica-

tions such as machine learning and big-data processing

in our daily life has motivated the development of efficient

edge computing which has limited delay and energy budgets.

Conventional von-Neumann architectures suffer from long

latency and high power consumption due to data movements

between off-chip memory and arithmetic-logic units (ALUs).

As shown in Fig. 1, a typical ALU operation (e.g., 32-bit

integer addition) takes less than 1ns and consumes less than

1pJ while a data movement from off-chip memory can cost

tens of nanoseconds and a few nanojoules [1], [2].

In recent years, alternative solutions for more effi-

cient computing such as beyond CMOS technologies and

beyond von-Neumann architectures have received much

attention. Among those, ReRAM [3] is a potential non-

volatile memory (NVM) candidate for the next-generation

storage system with fast read/write speed, low programming

voltage, and good scalability. Computing in-memory (CIM)

[4]–[13] is an attractive solution to reduce the energy and

latency cost of memory access by performing specific com-

putations directly inside the memory macro without reading

out operands and sending to ALUs. For example, ternary

content addressable memory (TCAM) [4]–[8] is a critical

component to achieve fast searches. Rather than reading

out data row-by-row and sending to ALUs for compari-

son, TCAM performs bit-wise XOR/XNOR between the

search key and all stored data to get the match result in

one cycle. Besides TCAM, deep neural networks (DNNs)

also cost considerable delay and power using traditional

computing paradigms due to frequent memory fetch to per-

form the dot product (also called multiply-and-accumulate,

or MAC) operation. CIM solutions for DNNs [9]–[13] can

improve the throughput and energy efficiency by performing
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massively parallel MAC operations inside the memory array,

eliminating costly data transfer.

Given the benefits of ReRAM and CIM, it brings sig-

nificant value to implement reliable ReRAM-based CIM

(R-CIM) systems that can accelerate versatile functions.

However, many prior CIM works [5]–[12] only focus on

one specific CIM function. Moreover, most ReRAM-based

TCAM [6]–[8] cannot support row-wise memory access due

to the conflicts between shared horizontal match-lines in

TCAM and shared vertical bit-lines in conventional memory

architectures. Although conventional 6T SRAM can support

TCAM operations by adding additional access transistors,

the large cell area overhead (e.g., two 10T cells to store

1b TCAM data in [5]) brings a great challenge to high-

capacity TCAM systems. An interesting idea in [4] imple-

ments TCAM using standard push-rule 6T SRAM to save

area and it reuses memory bit-lines as match-lines in TCAM

mode. But it requires data words to be stored row-wise in

SRAM mode and column-wise in TCAM mode, resulting in

complicated word placement and data reorganization when

performing different types of operations.

To tackle these challenges, we propose a reconfigurable

R-CIM macro using a novel 4T2R bit-cell. The key idea is

to add two access transistors to a differential 2T2R ReRAM

bit-cell that has been well studied [7], [14]. The proposed R-

CIM structure can function as a non-volatile storage system

as well as accelerators for TCAM and IM-DP operations.

Moreover, it stores data words row-wise for all types of

operations, eliminating complicated data organization, and

increasing the flexibility. We particularly consider the relia-

bility issue associated with R-CIM due to the pseudo-write

condition during read operations and present a solution to

handle such an issue. As a result, we can use a higher VDD

for CIM operations, improving the performance without dis-

turbing ReRAM devices. The proposed R-CIM structure

is designed in 40nm technology. Simulation results of a

128×128 array show that the TCAM search delay is 0.92 ns

at VDD = 0.9 V. The energy efficiency of IM-DP operations

is 223.6 TOPS/W at VDD = 0.7 V. Monte-Carlo simulation

is performed for the accumulate operation in IM-DP mode

and shows a standard deviation of 4.91% which corresponds

to 95.7% accuracy for the MNIST dataset [15].

The rest of this article is organized as follows: Section II

provides a background of ReRAM technology and existing

CIM works. Section III describes the proposed reconfig-

urable 4T2R R-CIM architecture and explains its operations

in different modes. In Section IV, we propose some opti-

mizations at circuit and device levels to the proposed R-CIM

architecture. In Section V, comprehensive simulation results

are presented based on a 128 x 128 array. Finally, we

conclude this article in Section VI.

II. BACKGROUND

A. RERAM TECHNOLOGY AND SIMULATION MODEL

A ReRAM device is typically a 3-layer device formed by

a metal-insulator-metal stack as shown in Fig. 2(a). It can

FIGURE 1. Traditional von-Neumann architectures: (a) block diagram, (b) latency

and (c) energy cost of a 32-bit integer ALU addition and data movements.

FIGURE 2. (a) 3-layer ReRAM device; (b) schematic and biasing conditions for

different operations of the 1T1R bipolar ReRAM bit-cell; (c) bipolar resistance

switching characteristic of an HfOx ReRAM device [16].

switch from a high-resistance state (HRS) to a low-resistance

state (LRS) by the SET operation and LRS to HRS by

the RESET operation. ReRAM has two types of switching

modes: i) unipolar switching where the switching direction

depends on the amplitude of the applied programming volt-

age but not on the voltage polarity; ii) bipolar switching

where the switching direction depends on both the ampli-

tude and the polarity of the programming voltage. This article

will focus on the bipolar ReRAM device. One common way

to realize a ReRAM bit-cell is to integrate a ReRAM device

with one transistor (1T1R). Fig. 2(b) shows the 1T1R bit-cell

schematic and the biasing conditions of the word-line (WL),

the bit-line (BL), and the source-line (SL) for different oper-

ations. Fig. 2(c) shows an example I-V curve for a bipolar

HfOx-based ReRAM device [16].
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TABLE 1. Key ReRAM parameters.

For circuit-level simulation and analysis, we developed

a Verilog-A model for the ReRAM device based on the

conductive filament switching mechanism [17]. The I-V

relationship of the ReRAM model can be expressed as:

I = I0 ∗ exp

(

−
g

g0

)

∗ sinh

(

V

V0

)

(1)

where g is the conductive filament gap distance and V is the

voltage applied to the ReRAM device. I0, g0, and V0 are fit-

ting parameters that can be tuned for a specific ReRAM I-V

characteristic. The ReRAM device parameters used in this

work are adopted from [16] and the ReRAM devices are inte-

grated with transistors in 40nm technology to form a 4T2R

bit-cell. Key parameters for simulation are summarized in

Table 1.

B. RELATED WORKS

Many works have been proposed to implement efficient

CIM systems based on volatile memories such as SRAM

and embedded DRAM (eDRAM). Do et al. [5] use two

10T SRAM cells to implement TCAM and employ an

efficient match-line scheme to reduce power consumption.

Jeloka et al. [4] use standard push-rule 6T SRAM cells as

TCAM to reduce the cell area, For IM-DP, several novel

bit-cells have been proposed. XNOR-SRAM [9] employs

a 12T bit-cell to compute MAC based on the resistive volt-

age divider formed by access transistors. Yu et al. [10] use

an 8T bit-cell to support current-mode accumulation. An

interesting idea in [11] takes advantage of the compact cell

size of eDRAM and uses a small 4T dual eDRAM cell to

implement IM-DP.

Several CIM works based on non-volatile memories such

as ReRAM have also been reported. Huang et al. [6] pro-

pose a 4T2R TCAM cell based on RC-filters to reduce the

ReRAM stress during search operations. Ly et al. [7] exten-

sively characterize a ReRAM-based 2T2R TCAM circuit.

Chang et al. [8] propose a 3T1R TCAM based on multi-

level ReRAM cell to achieve high density. Regarding IM-DP,

Chen et al. [12] use two 1T1R ReRAM bit-cells to store

ternary weights (+1,−1, 0) of neural networks and imple-

ments MAC based on current accumulation. Zha et al. [13]

propose a multi-functional R-CIM system with customized

data mapping to support ReRAM, TCAM and IM-DP

operations.

Most of these prior works only focus on CIM for one

specific function [5]–[12]. For SRAM-based CIM, the large

cell area of SRAM bit-cell (6T to 12T) prevents it from sup-

porting large-capacity CIM systems. Moreover, the volatile

FIGURE 3. Layout (left) and schematic (right) of the proposed 4T2R ReRAM bit-cell.

λ: half feature-size.

nature of SRAM necessitates a constant power supply to

maintain the stored data, resulting in high leakage power

during the standby mode. On the contrary, ReRAM-based

CIM can be completely powered off during standby mode

thanks to the non-volatile feature of ReRAM. However,

prior ReRAM-based TCAM [6]–[8] cannot operate as a con-

ventional memory system due to conflicts between shared

horizontal match-lines in TCAM and shared vertical bit-lines

in normal memory architectures.

III. PROPOSED 4T2R R-CIM ARCHITECTURE

This section presents the detailed structure of the proposed

4T2R R-CIM system. It first describes the structure of the

novel 4T2R bit-cell and then explains how different opera-

tions (NVM, TCAM and IM-DP) of the 4T2R R-CIM system

can be achieved.

A. STRUCTURE OF 4T2R RERAM BIT-CELL

Fig. 3 shows the layout and schematic of the proposed

4T2R bit-cell. In the schematic, two transistors (N1 and N2)

and two ReRAM devices (Q and QB) form a differential

2T2R bit-cell which has been employed in CIM by sev-

eral prior works [7], [14]. The differential 2T2R bit-cell has

two bit-lines (BL and BLB) shared by each column while

the source-line (SL) and the word-line (WL) are shared by

each row. The ReRAM device pair in the bit-cell represents

data ‘1’ with (Q, QB) = (HRS, LRS) and data ‘0’ with (Q,

QB) = (LRS, HRS). Two additional access transistors (N3

and N4) give two horizontal match-lines (MLL and MLR)

and a compute source-line (CSL) shared by each row. To

satisfy the write current requirements for large R-ratio (the

ratio between HRS and LRS of the ReRAM device) and

long retention, N1 and N2 need to exceed the minimum

transistor size. They need to be sized to provide the typical

ReRAM programming current of 50 µA [18]. In this work,

we choose W/L = 3 for N1 and N2 in the employed 40nm

technology. For N3 and N4, we choose W/L = 2 to improve

the performance and prevent CIM operations from being
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FIGURE 4. (a) Read operation of the 4T2R bit-cell using voltage-mode sensing;

(b) two-cycle write operation for writing data ‘1.’

sensitive to local process variations. Nevertheless, the used

transistor sizes still make the proposed 4T2R bit-cell smaller

than other SRAM-based CIM bit-cells because of fewer

transistors. The area of the 4T2R bit-cell is 0.55µm2 (i.e.,

54λ×25.5λ where λ is the half feature-size) using the logic

design rule. Compared with the XNOR-SRAM bit-cell [9],

it is 2.7× smaller (normalized). Besides, the proposed bit-

cell is 1.27x smaller (normalized) when compared with the

8T SRAM bit-cell in [10].

B. READ/WRITE OPERATIONS FOR NVM MODE

Since the 4T2R bit-cell is built on top of the differential

2T2R bit-cell [7], [14] which is formed by two 1T1R bit-

cells that share a common SL, the biasing conditions for read

and write operations in NVM mode are similar to that of the

1T1R bit-cell. N3 and N4 are not used in NVM mode so

they can be turned off by grounding MLL/MLR and CSL.

Fig. 4(a) explains the read operation using voltage-mode

sensing. To read a word, BL and BLB are precharged to

VREAD and then left floating. When WL is turned on, BL

and BLB will discharge at different rates based on the states

of Q and QB. A differential sense amplifier (SA) detects

the voltage difference between BL and BLB and outputs the

data result.

The write operation takes two cycles to program the

ReRAM pair. Fig. 4(b) shows an example where data ‘1’ is

written to the 4T2R bit-cell. The same biasing conditions for

writing the 1T1R bit-cell can be applied. But since two 1T1R

bit-cells share a common SL, writing the second ReRAM

device may disturb the first ReRAM device which has been

programmed in the previous cycle. Therefore, we propose

to erase both ReRAM devices by resetting them in cycle 1.

In cycle 2, depending on the data to be written, either Q is

set to LRS if writing data ‘0’ or QB is set to LRS if writing

TABLE 2. Biasing and mismatch behavior for TCAM search.

data ‘1’. The HRS device in cycle 2 is not disturbed since

the corresponding bit-line and SL are grounded.

C. TCAM OPERATIONS

The proposed 4T2R bit-cell can operate as a TCAM to

achieve fast search. The TCAM words are stored row-wise

as in NVM mode. This offers better flexibility than [4] that

requires row-wise storage in SRAM mode and column-wise

storage in TCAM mode. In addition to states ‘1’ and ‘0’

that can be represented in the same way as in NVM mode,

the “don’t care” state ‘X’ in TCAM mode is represented

by (Q, QB) = (HRS, HRS). To write ‘X’, only the erase

operation (cycle 1 of the write operation in NVM mode) is

performed. This means that the write circuits can be shared

by both NVM and TCAM modes, reducing the hardware

overhead.

Fig. 5 illustrates a search operation where the stored data is

“X-0” and the search data is “0-1”. In standby mode, MLL

and MLR are precharged to VDD while other signals are

grounded. If the search operation is not frequent, CSL can

also be biased to VDD to reduce leakage power of N3 and

N4. During search operations, MLL and MLR are discon-

nected from the precharge circuit. SL and CSL are grounded

while WL is turned on. Then search data and inverted search

data are applied to BL and BLB, respectively as shown in

Table 2. One 1T1R path (Q-N1 or QB-N2) will form a volt-

age divider to bias the gate voltage of N3 or N4 while the

other 1T1R path is off. If stored data and search data are

matched, the 1T1R voltage divider will contain an NMOS

and an HRS device so that the gate voltage of N3 or N4 is

below the threshold voltage of NMOS (VG,N4[0] in Fig. 5).

Therefore, both MLL and MLR maintain at the precharged

voltage. If there is a mismatch, the 1T1R voltage divider

will contain an NMOS and an LRS device so that the gate

voltage of N3 or N4 is above the threshold voltage of NMOS

(VG,N3[1] in Fig. 5). Therefore, either MLL or MLR or both

MLL and MLR will discharge to the ground. Two SAs com-

pare MLL and MLR voltages with a reference voltage VREF

separately and the comparison results are connected to an

AND gate to produce the match result.

The separation of MLL and MLR provides consider-

able benefits to the TCAM performance. In the worst

1-bit mismatch case, only one NMOS device discharges in

a row. In the conventional SRAM-based TCAM (sTCAM)

implementation [5], there is only one match-line (ML) in

each row and each bit-cell has two NMOS transistors con-

nected to the ML, resulting in larger ML capacitance. On the

other hand, the proposed 4T2R TCAM cell separates MLL

and MLR so each bit-cell only has one NMOS connected
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FIGURE 5. TCAM search operations. The left cell is a match while the right cell is a mismatch. MLL discharges below VREF .

to an ML. Since two MLs are sensed separately, the smaller

capacitance on each ML gives faster discharge speed. Of

course, the 1T1R voltage divider makes the gate voltage of

N3 or N4 lower than VDD during a mismatch, and the AND

gate after two SAs brings additional delay. Nevertheless,

given enough R-ratio (e.g., 100), the proposed 4T2R TCAM

can still achieve comparable performance to sTCAM for

a long word-length as shown later in Section V.

D. IM-DP OPERATIONS

Deep neural networks (DNNs) are powerful tools to achieve

state-of-the-art results for many artificial intelligence appli-

cations such as computer vision and natural language

processing. However, traditional DNNs incur a high storage

overhead due to large network sizes and high bit precisions

(e.g., 32-bit floating-point). Recently introduced bitwise

neural networks [19] significantly reduce DNNs’ storage

requirements by restricting the input activation to 0/1 and

the weight to +1/ − 1 with marginal accuracy degradation

compared with original full-precision DNNs [20]. In [21], it

is also reported that extending the binary weight (+1 and

−1) to ternary weight (+1,−1 and 0) demonstrated higher

classification accuracy than full-precision DNNs in MNIST

and CIFAR-10 datasets. The proposed R-CIM system is able

to compute in-memory dot products (IM-DP) for a binary-

input ternary-weighted (BITW) network [12]. The BITW

network combines ternary weights (+1, 0 and −1) and

a modified binary input (1 and 0). Compared with binarized

neural networks [22] that use binary inputs +1 and −1,

the modified binary input only causes 0.17% and 1.49%

accuracy degradation on MNIST and CIFAR-10 datasets,

respectively [20].

Fig. 6 shows the operation principle of the proposed R-

CIM structure in IM-DP mode. SL is grounded and WL is

biased to VDP. A ternary weight ((Q, QB) = (HRS, LRS)

for ‘+1’, (Q, QB) = (LRS, HRS) for ‘−1’, and (Q, QB) =

(HRS, HRS) for ‘0’) is stored in the 4T2R bit-cell. A binary

input is applied through BL and BLB. Fig. 6(a)-(e) shows

six possible states of the proposed 4T2R bit-cell with binary

weight/input combinations. If the input is ‘0’, BL and BLB

are grounded. The gate voltages of N3 and N4 are both ‘0’

so there is no discharge in MLL and MLR as shown in

Fig. 6(a)-(c). If the input is ‘1’, BL and BLB are biased

to VDD. The 1T1R voltage divider that contains an HRS

device will make the gate voltage of N3 or N4 close to

‘0’ so no discharge occurs on MLL or MLR. On the other

hand, the 1T1R voltage divider that contains an LRS device

will make the gate voltage of N3 or N4 higher enough

to discharge MLL or MLR. As a result, when the binary

weight is ‘0’, no discharge occurs on MLL or MLR; when

the binary weight is ‘+1’, N4 will discharge MLR; when

the binary weight is ‘−1’, N3 will discharge MLL. The

voltage difference between MLL and MLR (+�V, −�V,

0) represents the product of input and weight as shown in

Fig. 6(d)-(f). Table 3 summarizes the relationship between

inputs/weights and the resulting outputs in both computed

values and signal representations.

Fig. 7 illustrates the accumulation principle of the

proposed R-CIM structure in IM-DP mode. Fig. 7(a) shows

a row containing 128 bit-cells for a dot product with

128 input-weight pairs. All inputs are applied through BL

and BLB to bias the gate voltages of N3 and N4 simul-

taneously. However, this will cause considerable switching

noise as 128 NMOS may be all turned on at the same time

to discharge MLL/MLR. Therefore, we use CSL to control

the discharge of MLL/MLR since one CSL is shared by

the whole row. Fig. 7(b) shows the principle of the accu-

mulation operation on MLL/MLR. During standby mode,

MLL/MLR and CSL are biased to VDD to turn off N3 and

N4. During the active time, the inputs are applied to BL

and BLB slightly earlier to settle the gate voltages of N3

and N4. Then a negative short pulse is applied to CSL to

bias it to ground to discharge the capacitance of the match-

line (CML). After the pulse, CSL is biased to VDD again

and all BLs and BLBs are grounded. A voltage difference

is developed between MLL and MLR to represent the dot
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FIGURE 6. Operation principles of the R-CIM architecture in IM-DP mode. (a)-(e) Six

possible weight/input combinations. The 4T2R bit-cell stores a ternary weight (+1, −1

and 0) and a binary input (0 or 1) is applied to BL/BLB.

TABLE 3. Relationship between the computaiton outputs and circuit operation

behaviors.

product result, and a binary activation can be performed by

a differential SA in each row to get 1-bit outputs.

It should be noted that the unit current (IUNIT) drawn by

a single NMOS (N3 or N4) is affected by the match-line

voltage. As the match-line voltage drops, the variation in

IUNIT increases. Moreover, N3 and N4 of deactivated cells

also start to push more leakage current. Both unit current

variation and leakage current degrade the accuracy of IM-DP

operations. Therefore, the dynamic range of MLL/MLR is

selected to be ∼200 mV (0.5-to-0.7 V) to reduce the effects

of IUNIT variation and leakage current. Besides, VDD is set to

0.7 V for IM-DP mode to better control the dynamic range of

MLL/MLR. Fig. 8 shows the simulation result for all possible

voltage levels of a match-line with 128 bit-cells connected

in a single row. The pulse width of CSL is τ = 500 ps.

The match-line discharges at a rate proportional to the dot

FIGURE 7. Accumulation principle for IM-DP operations: (a) Structure of one row

with 128 cells to perform IM-DP operations; (f) principle of the current accumulation

on MLL and MLR to represent the dot product result.

FIGURE 8. Simulation results for MLL/MLR discharge showing all possible

128 voltage levels.

product result as mentioned above and finally settles to an

intermediate voltage level.

The differential sensing scheme in IM-DP mode only

supports 1-bit outputs, which can be accurate enough for

simple image classification tasks. For example, the work

in [23] achieves 95.1% classification accuracy on MNIST

using bitwise neural networks with 1-bit outputs. For more

complicated image classification tasks like CIFAR-10, 1-bit

outputs will cause a significant accuracy degradation [20].

The proposed architecture can be extended to support for

a larger or deeper network by employing an accelerator

chip with multiple unit-macros [24] and modifications in

the read-out circuits. Multi-bit partial sums in each array

can be generated through single-ended sensing with differ-

ent reference voltages. To achieve this feature, both MLL and
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FIGURE 9. Schematic of the reconfigurable sense amplifier employed in [4].

MLR are connected to single-ended SAs as in the TCAM

mode. The input is applied to BL, and BLB is always

grounded. The corresponding MLL will therefore generate

an intermediate voltage level as shown in Fig. 8. The multi-

bit output can be obtained by a 1-bit SA with different

VREF in successive sensing cycles [23], and 3-bit outputs

with 8 quantization levels can provide satisfactory accuracy

for the CIFAR-10 dataset [20].

IV. OPTIMIZATIONS OF THE PROPOSED R-CIM

This section presents two optimizations to the proposed

4T2R R-CIM structure. One optimization focuses on the

circuit-level design and another particularly addresses the

reliability issue of ReRAM devices.

A. RECONFIGURABLE SENSE AMPLIFIER

As described in Section III, TCAM search operations require

two single-ended SAs to compare MLL and MLR volt-

ages with a reference voltage VREF separately, while IM-DP

operations require differential SAs or single-ended SAs to

compare MLL, MLR voltages and VREF. This indicates

that three different SAs are needed in each row to support

different CIM operations. However, a naïve implementa-

tion of three SAs introduces significant peripheral circuits

overhead as SAs are usually large-sized to increase the

read speed. Fortunately, Jeloka et al. [4] already proposed

a reconfigurable sense amplifier (RSA) structure that can

support both single-ended sensing and differential sensing,

as shown in Fig. 9. It consists of two small latch-type SAs.

Therefore, the area overhead is negligible compared with

a large SA in conventional memory architectures. Additional

pass transistors control the behavior of the RSA in different

modes. For single-ended sensing. “DIFF” = ‘0’; for dif-

ferential sensing, “DIFF” = ‘1’. However, the two small

latch-type SAs have inputs and outputs directly connected

through PMOS. Thus, a different control signal “SAMPLE”

is required to isolate the RSA’s outputs and inputs to prevent

FIGURE 10. Schematic of the proposed reconfigurable sense amplifier with VREF
generation circuit.

memory bit-lines (BL and BLB) from regeneration to save

power. The “SAMPLE” signal is on before precharge begins

and off before the RSA is enabled. Furthermore, since

VREF is shared by all RSAs, the switching of “SAMPLE”

introduces considerable noise to VREF generator through

connected PMOS. Therefore, VREF must be strong enough

and an off-chip VREF supply is generally required in this

configuration.

Instead of the simple latch-type RSA, we propose a mod-

ified RSA as shown in Fig. 10. Two ML inputs MLL and

MLR are driving high impedance (gates of NMOS transis-

tors) through switches controlled by “DIFF” and “DIFF_B”,

and full discharge of match-lines due to timing mismatch

is not a concern [25]. Therefore, no additional “SAMPLE”

signal is required to isolate MLL/MLR from SA outputs,

simplifying the timing design. Moreover, since digital sig-

nals “DIFF” and “DIFF_B” are not changing during the

sensing period, there is no concern about switching noise

introduced to VREF generator. Thus, an on-chip VREF gener-

ator is possible. The reference generation circuit employed

in this work is adapted from [26], as shown at the top

of Fig. 9.

B. RERAM RELIABILITY CONSIDERATION

One big challenge associated with R-CIM systems is that

the ReRAM device may incur unwanted disturb due to dif-

ferent biasing conditions when performing CIM operations.

Take TCAM as an example, Fig. 11(a) shows the bias-

ing conditions for half of the 4T2R bit-cell containing two

NMOS (N1 and N3) and one ReRAM device (Q) when

search-1 operation is performed. For Q, the biasing polarity

216 VOLUME 2, 2021



FIGURE 11. (a) Biasing conditions for half of the 4T2R bit-cell when performing

search-1 operation in TCAM mode. Traditional ReRAM switching will make HRS

significantly disturbed. (b) Switching directions of traditional and proposed ReRAM

SET and RESET operations.

FIGURE 12. Block diagram of the 128x128 array.

across it is the same as that of a SET operation. Thus,

the proposed TCAM search introduces a pseudo-SET to

ReRAM devices. If search and stored data are mismatched,

which means that Q is in LRS state, the voltage across Q

won’t cause any disturbance. However, if search and stored

data are matched, which means that Q is in HRS state

and the voltage across it approximately equals VDD, the

pseudo-SET may cause significant disturbance to the HRS

device and finally change it to LRS after enough search

cycles. This will degrade the search endurance and should

be carefully addressed to increase the robustness of the R-

CIM system. Similarly, the HRS device in IM-DP mode

will also incur disturbance when BL and BLB are biased to

VDD (i.e., input = ‘1’).

To overcome such an issue, this work proposes to reverse

the directions of ReRAM SET and RESET operations, as

shown in Fig. 11(b). Note that this technique incurs no over-

head at circuit-level. Only magnitudes of VBL and VSL need

to be adjusted depending on different ReRAM device char-

acteristics. Besides, the physical layer arrangement of the

ReRAM device also needs to be reversed during fabrica-

tion. Relevant work has already demonstrated the possibility

FIGURE 13. Simulated distributions of VG,N3 and VG,N4 in TCAM mode, at

different temperatures when (a) VDD = 0.9 V and (b) VDD = 0.6 V.

of reversed SET and RESET directions for HfOx-based

ReRAM devices [27].

By employing reversed switching directions for ReRAM

devices, the biasing conditions in Fig. 11(a) become pseudo-

RESET and the LRS device may be disturbed when search

and stored data are mismatched. However, the biasing is

designed to make the gate voltage of N3/N4 larger than the

threshold voltage of NMOS during a mismatch. In fact, this

gate voltage is close to VDD during a mismatch. Therefore,

the voltage across the LRS device has a magnitude close to

0 so the disturbance due to pseudo-RESET is negligible.

V. SIMULATION RESULTS AND COMPARISON

In this section, we evaluate the proposed R-CIM architecture

based on a 128×128 array (Fig. 12) designed in 40nm CMOS

technology. The ReRAM device is modeled by Verilog-A as

described in Section II-A, and the model can add a Gaussian

distribution to HRS/LRS with different standard deviations

to emulate ReRAM variations in Monte-Carlo simulations.

The ReRAM resistance variations in this work are adopted

from the HfOx ReRAM in [7] with 20% variation in LRS

and 50% variation in HRS.

A. EVALUATION OF TCAM OPERATIONS

For TCAM operations, the search energy and the delay

are directly affected by the match-line voltage swing dur-

ing discharge period. To make a fair comparison with

other ReRAM-based TCAM works [6], [8], we set the same

match-line swing of 150 mV in the following analysis.

Fig. 13 shows the simulated distributions of gate voltages

and threshold voltages of N3/N4 in TCAM mode based on

10K Monte-Carlo runs. Both transistor and ReRAM resis-

tance variations are considered. The simulated conditions

with room temperature and high temperature (27◦C and

90◦C, respectively), and nominal VDD and lower VDD
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FIGURE 14. Simulated TCAM search delay versus search word-length under

different R-ratios with (a) fixed HRS = 1M� and (b) fixed LRS = 10k�.

(0.9 V and 0.6 V, respectively) demonstrate a clear sep-

aration between the match case and the mismatch case,

indicating the robustness of the proposed 4T2R TCAM. Note

that by employing reversed SET and RESET operations

for ReRAM devices, the LRS device during a mismatch

case will incur unwanted disturbance as explained in

Section IV-B. However, Monte-Carlo simulations show that

even under the worst case, the magnitude of the stress volt-

age across LRS is less than 0.3 V. Such a stress voltage

has negligible disturbance on LRS device since it is much

smaller than the magnitude of the reset voltage which is

0.7 V as shown in Table 1.

Fig. 14 shows the simulated search delay versus TCAM

word-length under different R-ratios. Fig. 14(a) is based on

fixed HRS = 1M� and varying LRS while Fig. 14(b) is based

on fixed LRS = 10k� and varying HRS. The proposed 4T2R

TCAM can achieve 0.92 ns search delay for a 128b search

word-length at LRS = 10k� and R-ratio = 100. A longer

search word-length increases the search delay because of

larger load capacitance on eachMLL/MLR. It can be observed

from Fig. 14(a) that LRS value has a larger impact on TCAM

search performance since the discharge of MLL/MLR is

controlled by LRS during the mismatch case. When LRS

value becomes higher, the gate voltages of N3/N4 become

lower during a mismatch due to less current in the voltage

divider path. Therefore, it is desirable to have a low LRS

value to achieve a high-performance search comparable to

FIGURE 15. Simulated TCAM search energy versus search word-length

under (a) 1-bit mismatch case and (b) all-bit mismatch case.

FIGURE 16. Simulated distributions of VG,N3 and VG,N4 in IM-DP mode at room

temperature 27◦C and high temperature 90◦C.

FIGURE 17. Monte-Carlo simulation (1k runs) of accumulation linearity on

match-lines in IM-DP mode.

that of sTCAM [27]. On the other hand, it can be observed

in Fig. 14(b) that HRS value has s small effect on TCAM

search performance since the gate voltages of N3/N4 are

close to ‘0’ during a match case. However, a lower HRS

value still increases the gate voltage of N3/N4 and incurs

more leakage current to discharge MLL/MLR even during

a whole data match. As a result, more time is required for

match-lines to develop enough voltage swing to distinguish

between match and mismatch cases. Thus, it is desirable to

have a high HRS value to reduce leakage current.
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FIGURE 18. (a) Structure of the 4-layer MLP (784-128-128-128-10) for MNIST image classification; (b) simulated classification accuracy of the MNIST dataset versus standard

deviation of match-line accumulation.

FIGURE 19. (a) Mapping of a large convolution layer (3 × 3 × 256 × 256) onto multiple R-CIM arrays; (b) simulated classification accuracy of the CIFAR-10 dataset versus

standard deviation of match-line accumulation.

Fig. 15 shows the simulated search energy versus TCAM

word-length under 1-bit mismatch case and all-bit mismatch

case. It can be observed that the search energy of the

proposed 4T2R TCAM highly depends on the data statistics

given a TCAM word-length since the 4T2R bit-cell has one

ReRAM device that consumes DC current during the search.

The mismatched bit-cell has an LRS device in the voltage

divider path and consumes more DC power than the matched

bit-cell that has an HRS device in the voltage divider path.

The search energy also depends on the TCAM word-length,

especially when a large number of cells are mismatched.

This is because a longer word-length increases the search

delay and thus consumes more DC energy which becomes

dominant when many bits are mismatched.

B. EVALUATION OF IM-DP OPERATIONS

Fig. 16 shows the simulated distributions of the gate volt-

ages and the threshold voltages of N3/N4 in the IM-DP mode

based on 10K Monte-Carlo runs at room temperature (27◦C)

and high temperature (90◦C). During MLL/MLR discharging

in the IM-DP mode, the gate voltage of N3/N4 is designed to

be close to the transistor threshold voltage (by controlling the

gate voltage of N1/N2) for improving the linearity [10], [11].

This is different from the TCAM mode where the gate volt-

age of N3/N4 during the mismatch case is much higher

than the transistor threshold voltage. By employing reversed

SET and RESET operations in the ReRAM devices, the

LRS device during a MLL/MLR discharge case can incur

unwanted disturbance. Worst case simulation shows that the

magnitude of the stress voltage across LRS is less than

0.35 V which is far less than the reset voltage 0.7 V as

shown in Table 1.

Fig. 17 shows the simulated linearity of accumulation

operation on MLs considering both transistor and ReRAM

resistance variations based on 1,000 Monte-Carlo runs. When

the dot-product outputs are (−64, 0, and +64), the standard

deviations of corresponding ML voltage levels are (22.7 mV,

23.6mV, and 23.3mV)while themean values are (−114.4mV,

0 mV, and 113.9 mV). The variations in each bit-cell are aver-

aged out during current accumulation onMLs. The worst-case

standard deviation of 23.6 mV equals to 4.9% of the mean

dynamic range (480 mV, −240 mV to 240 mV) of match-

line voltage in IM-DP mode. Note that DNNs inherently can

tolerant some errors in computation. For example, a BITW

ReRAM-based multilayer perception (MLP) in [29] achieves

a 95% classification accuracy on MNIST even with a 20%

standard deviation in ReRAM resistances. Thus, the amount

of variation in match-line accumulation will not affect too

much on the overall classification accuracy.

To further characterize the impact of variations in the lin-

earity of match-line accumulation, we evaluated the image

classification accuracy using two common datasets: MNIST

and CIFAR-10. For MNIST, a 4-layer BITW MLP (784-

128-128-128-10) is implemented in Keras [30]. The structure
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of the 4-layer MLP is shown in Fig. 18(a). The first hid-

den layer has floating point image pixel inputs. Therefore,

we followed the approach in [9] to start IM-DP from the

second hidden layer. The second and third hidden layers

have a weight matrix with size 128 × 128 and can be fully

mapped to the proposed 128×128 R-CIM array. Specifically,

each row of the 128 × 128 weight matrix is mapped to

a row of the R-CIM array. Therefore, a binary output can

be directly obtained in each row using differential sensing

as explained in Section III-D. To include the variations of

match-line accumulation in Keras, we adopted the approach

in [11] to add a Gaussian-Noise layer (available in Keras)

with different standard deviations at the hidden layer outputs.

Fig. 18(b) shows the MNIST classification accuracy versus

the standard deviation of the match-line accumulation. The

simulated accuracy based on a 4.9% standard deviation is

95.7%, which is 1.6% lower than the baseline with perfect

linearity and no variation.

For CIFAR-10, we used a VGG-like convolutional

network [22] with six convolution layers and three fully

connected (FCN) layers. Due to the limited storage capac-

ity in each R-CIM array, the network size cannot directly

fit into the array. We use a weight-stationary strategy to

map the network weights to multiple 128 × 128 arrays. For

FCN layer mappings, weights are organized row-wise, and

inputs are applied at each column. Mapping a convolution

layer can be considered as mapping multiple FCN layers,

e.g., mapping a 3 × 3 × 256 × 256 kernel from a convo-

lution layer is the same as mapping nine 256 × 256 FCN

layers. As shown in Fig. 19(a), channels are organized in

row orientation while different kernels are assigned to dif-

ferent rows. Fig. 19(b) shows the CIFAR-10 classification

accuracy versus the standard deviation of match-line accu-

mulation using 3-bit partial-sums (i.e., 8 quantization levels).

The simulated accuracy based on a 4.9% standard deviation

in match-line accumulation is 81.7%, which is 4.6% lower

than the baseline with perfect linearity and no variation.

The variation of the match-line accumulation is primar-

ily affected by the variations in LRS since the discharge of

MLL/MLR is controlled by the 1T1R voltage divider con-

taining LRS as explained in Section III-D. Fig. 20 illustrates

the impact of the LRS variation on the match-line accu-

mulation, and the resultant MNIST classification accuracy.

Larger LRS variations increase the variation in the match-

line accumulation and degrades the classification accuracy.

Therefore, it is desirable to keep the LRS variations as

low as possible for reliable CIM operation. Many ReRAM

devices have been reported to have less than 20% variation in

LRS [7], [27].

Fig. 21 shows the impact of temperature on match-line

accumulation in IM-DP mode, and the resultant MNIST

classification accuracy. Under a wide range of tempera-

tures, the variation on match-line accumulation changes only

∼0.5% and has a negligible impact on the classification

accuracy.

FIGURE 20. Impact of LRS variation on match-line accumulation, and the

corresponding MNIST classification accuracy.

FIGURE 21. Impact of temperature on match-line accumulation, and the

corresponding MNIST classification accuracy.

C. COMPARISON WITH PRIOR CIM WORKS

Table 4 compares the proposed R-CIM work and prior

R-CIM works. The proposed 4T2R R-CIM structure can

support versatile CIM operations in addition to NVM

operations.

Compared with ReRAM-based TCAM in [6], the

proposed 4T2R TCAM achieves better search performance

and energy efficiency. Comparing with ReRAM-based

TCAM in [8], the proposed word achieves better search

performance and a slightly worse energy efficiency. However,

the metrics in [8] is based on a TCAM with 64-bit word-

length. If considering the same word-length, the energy

efficiency of the proposed TCAM becomes 0.57 fJ/bit/search

as shown in Fig. 15. Moreover, the proposed 4T2R

TCAM can also operate as a conventional NVM stor-

age system, offering a better flexibility than [6], [8]. When

compared with prior ReRAM-based IM-DP for BITW

networks [12], the proposed IM-DP offers better energy. This

is because that [12] employs current-mode sensing for IM-

DP. Therefore, the DC current through ReRAM bit-cells must

be present during the entire sensing period. In contrast, the

DC current only exists for a short period for MLL/MLR

voltage development in the proposed IM-DP system.
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TABLE 4. Comparison with prior R-CIM works.

The R-CIM system in [13] supports the same opera-

tions as this work, but it has lower energy efficiency in

TCAM and IM-DP modes partly due to an old technol-

ogy node. However, even technology scaling is performed

(assuming 3x better efficiency since the technology in [13]

is about 3x of the technology in this work), The proposed

R-CIM system still achieves better energy efficiency. This is

because that [13] is based on an FPGA-like architecture that

requires large hardware overhead for array interconnections,

and complicated data mappings for different operations. For

example, the NVM storage functionality in [13] requires

three 128 x 128 sub-arrays to achieve the storage of one

sub-array (other two arrays act as row and column decoders,

respectively). On the contrary, the proposed R-CIM system

introduces a novel 4T2R cell structure to perform different

CIM operations without FPGA-like interconnections and

complicated data mappings.

VI. CONCLUSION

In this work, we present a reconfigurable R-CIM structure

using a novel 4T2R bit-cell to support NVM, TCAM and

IM-DP operations. We perform optimizations in circuit and

device levels to enhance the efficiency and robustness of

the proposed R-CIM system. Simulation results on a 128 x

128 array show a search delay of 0.92 ns at VDD = 0.9 V

which is comparable to sTCAM. The energy efficiency in

IM-DP mode is 223.6 TOPS/W. Comprehensive Monte-Carlo

simulations of accumulation linearity in IM-DP mode show

a standard deviation of 4.9% which corresponds to a classifi-

cation accuracy of 95.7% on the MNIST dataset and 81.7%

on the CIFAR-10 dataset.
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