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Abstract

A significant challenge in creating machines with artificial vision is designing systems which can

process visual information as efficiently as the human brain. Recent advances in neuroscience have

enabled researchers to develop computational models of auditory, visual and learning perceptions

in the human brain. Among these models, the two widely accepted algorithms that model the

process of attention and recognition in the mammalian visual pathway are - the Saliency based

model for visual attention and HMAX model for object recognition. One of the major burdens of

these biologically plausible models is their massive computational demands. Real time implemen-

tation of these biologically inspired vision algorithms, while challenging, can have a diverse and

profound impact in applications like autonomous vehicle navigation, surveillance, robotics and

face, text and gesture recognition. To mimic true biological systems, implementations of these

algorithms must not only meet real-time performance goals, but also stringent power budgets

and small form-factors.

Previous attempts to parallelize the HMAX model on multi-core processors have been unable

to provide real-time performance due to limited parallelism and high computational complexity.

Researchers have leveraged graphics processors due to their ease of programmability and high

parallelism. However, their excessive power consumption hinders deployment in embedded or

low-power systems.

The focus of this work is on the design and architecture of a reconfigurable hardware acceler-

ator for the time consuming S2-C2 stage of the HMAX model. The accelerator leverages spatial

parallelism, dedicated wide data buses with on-chip memories to provide an energy efficient
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solution to enable adoption into embedded systems. This work presents a systolic array-based

architecture which includes a run-time reconfigurable convolution engine which can perform mul-

tiple variable-sized convolutions in parallel. An automation flow is described for this accelerator

which can generate optimal hardware configurations for a given algorithmic specification and

also perform run-time configuration and execution seamlessly. Experimental results on Virtex-6

FPGA platforms show 5X to 11X speedups and 14X to 33X higher performance-per-Watt over

a CNS-based implementation on a Tesla GPU.
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Chapter 1 |

Introduction

1.1 Motivation

For several decades computer scientists have been working towards creating machines capable of

interpreting visual information as effectively as the brain. It is fascinating to see how humans

are able to quickly scan a scene and easily identify objects of importance irrespective of the envi-

ronments. Be it dull or bright, whether at an angle or far away, humans can effectively recognize

a car as a car and a dog as a dog. Neuroscientists have only recently begun to understand and

model how the brain handles cognitive functions making up its auditory, visual and learning

perceptions. While the reasons for the superior performance of biological systems are still only

partly understood, it is apparent that the architecture and the style of computation in nervous

systems are fundamentally different from those applied in artificial information processing. It

is envisioned that these brain-inspired, or neuromorphic, algorithms for computer vision will

provide an unprecedented improvement in the way computers can analyze and interpret infor-

mation. Applications of neuromorphic vision algorithms include autonomous vehicle navigation,

smart camera systems, surveillance and augmented virtual reality. Real time implementations of

these algorithms, while challenging, can have a diverse and profound impact in these applications.

To mimic true biological systems, hardware implementations of neuromorphic algorithms

must not only meet real-time performance goals, but also stringent power budgets and small

form factors. Due to limited parallelism and significant overheads of general purpose many-core

processors, utilizing hardware accelerators for such algorithms can be a pragmatic choice, both
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in terms of performance and energy efficiency [5]. In addition, due to temporal dependencies and

intricate control flow in these algorithms, they might not be a good fit for graphics processors.

Accelerators can be in the form of fixed-function hardware, programmable cores or dynam-

ically programmable logic such as FPGAs [5]. Increasing amounts of dark silicon in next gen-

eration processors [8] have fueled interest in instruction- set extensions by adding fixed-function

hardware [13] and by dynamically composing an accelerator datapath [11]. The two popular

computational models of vision in the mammalian visual pathway are -

• The bottom-up Visual Attention model based on Saliency [14] [25].

• And, the multi-class recognition model based on HMAX (Hierarchical Models of recognition

in the cortex) [26] [21].

The Saliency model mimics the way the brain determines fixations and object importance

within an image, and forms the front end of the object recognition system. The model includes

processing each image in 12 channels - 7 static channels namely - Intensity, Color (RG, BY color

opponents) and Orientation (4 angles) , and 5 dynamic channels namely - Motion (4 directions)

and Flicker [25]. This Saliency based attention model has been applied in object detection, gaze

detection, eye movement tracking and video compression.

The brain performs exceedingly well not only at extracting salient regions within an image,

but also at categorizing those objects. HMAX is a cortical model for classification which models

the ventral visual pathway. It is fundamentally made up of hierarchical Simple (S) and Complex

(C) layers which perform alternate template matching and max pooling to build complex features

that are invariant to position and scale [26]. The HMAX model which follows the Visual Atten-

tion model forms the back end of the system and has applications in object, text and gesture

recognition [22].

From a computational standpoint, this hierarchical organization of Simple (S) and Complex

(C) computing layers results in a feed-forward architecture, where the amount of data, and the

number of computations needed to process that data increases massively as we move up the layer

hierarchy. The S2 stage in particular is the most compute intensive. This stage involves convolv-
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ing each scale of the multi-scaled image pyramid with a large number of variable-sized convolution

kernels. Where each convolution has a computation complexity of O(w2MN), w ◊ w being the

kernel size and M ◊ N is the size of the input layer. This has been validated by empirical tests

using the CNS-HMAX framework [20] running on a Nvidia Tesla C1060 GPU. The tests indi-

cate that the algorithm spends almost 85% of the total execution time to compute the S2 features.

Previous attempts to parallelize the HMAX model on multi-core processors have been unable

to provide real-time performance due to limited parallelism and high computational complexity.

Researchers have leveraged graphics processors due to their ease of programmability and high

parallelism. The CNS-HMAX framework [20] for GPU-based systems has shown to offer 97x

speed-up over CPU-based implementations. However, their excessive power consumption hin-

ders deployment in embedded or low-power systems

This work presents a reconfigurable accelerator for the S2 and C2 layers combined. The

architecture, which is inspired by systolic arrays [30], is extremely parallel and offers the benefits

of application-specific hardware while providing the flexibility to support several algorithmic

variants. The accelerator includes -

• A run-time reconfigurable convolution engine (CoRe16 ) which can compute variable-size

convolutions in parallel.

• Intelligent multi-ported memory architectures for low-latency and high bandwidth access

of image data and kernel coefficients.

• An automation flow which includes a hardware optimizer for efficient partitioning of the

patches on to multiple CoRe16s and a software API for run-time configuration and execu-

tion.

1.2 Related Work

There has been considerable interest in using hardware accelerators to speedup biologically in-

spired vision algorithms. Hardware acceleration of Convolutional Neural Networks (CNN), which

is a prominent model for feature extraction, has been explored in both the FPGA [9] and the
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architecture domains [6]. An accelerator for Saliency-based visual attention was proposed and

implemented on an FPGA [15]. Other Saliency algorithms such as AIM(Attention based on In-

formation Maximization) algorithm have also been accelerated using FPGAs [4]. Some general

computer vision based approaches for object recognition such as geometric-hashing [7] and ensem-

ble classifier [23] have been accelerated on hardware. An FPGA implementation of a parts-based

object detection system was proposed in [10] , and a prototype of a machine vision processor for

V1- like algorithm was presented in [29]. While there has been a lot of interest in accelerating

the HMAX-based recognition algorithms using FPGAs [17] [24], there was no prior work of on

accelerating HMAX before this work was published [27]. In the computer vision context, [18]

integrates face detection and face recognition to provide an end-to-end solution. However, this

work as published in [16] is the first that discusses the mapping of end-to-end models of the

biological visual stream on multi-FPGA platforms.

1.3 Outline

This thesis is organized as follows - Chapter-2 discusses the computation vision models of Saliency

based Visual Attention and HMAX based object recognition.Chapter-3 discusses the design and

architecture of the proposed S2-C2 hardware accelerator and finally, the experimental setup and

results of a complete end-to-end system integrating both the attention and object recognition

vision models are discussed in Chapter-4.
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Chapter 2 |

Models of Neuromorphic Vision

The human visual system has the ability to focus attention on to specific regions in a visual

scene instead of doing an exhaustive search in a scene. This is because, in the primate brain,

anatomical and functional separation between localization and identification of objects is ob-

served: cortical areas along the dorsal stream are concerned with spatially directing attention

towards conspicuous image locations (where), while areas along the ventral stream are concerned

with localized identification of attended objects (what) [26] [19] .

The ventral stream as shown in Figure 2.1 processes the images captured by the retina in an

unsupervised feature extraction stage (LGN, V1, V2, V4 layers) and classifies the objects in a

supervised learning stage (infero-temporal cortex or IT) [26], using attention cues from the dor-

sal stream. In this chapter, two widely accepted biologically plausible models of the mammalian

visual cortex are described.

2.1 Saliency Based Visual Attention System

Visual attention is the ability of the human vision system to detect salient or important sections

in an image-scene, on which higher vision tasks, such as object recognition, can focus. The mam-

malian visual system has innate ability to identify objects in a natural scene through the selective

attention mechanism. The human visual system can sequentially perceive not only a static input

scene(image) but also dynamic scenes(video) with this selective attention mechanism. Real-time
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Figure 2.1: Ventral stream ("what" pathway) of the human visual cortex and corresponding layers
of HMAX model

analysis of such images or a motion video is critical in many surveillance applications.

A number of models of the human visual attention have been proposed. Among them, a pop-

ular model is the one proposed by L. Itti et al. [14] and this model takes into account primitive

features such as intensity(I), orientation(O), color(C), motion(M) and flicker(F) which are com-

puted independently. The work was further enhanced by Peters et al [25]. Peters et al, extended

the model proposed by Itti which had only I,O,C to incorporate F and M. Intensity (I), Orienta-

tion (O) and Color(C) can work on independent images, however Flicker (F) and Motion(M) add

spatio-temporal properties and are critical in a video-stream. Figure 2.2 as explained in [25]

gives a detailed block diagram showing the sequence of the major computational steps. Figure

2.3 as depicted in [25] illustrates this sequence for a sample image by showing the intermediate
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Figure 2.2: Saliency Algorithm [25]

maps generated by each computational step. This model processes the input through feature

channels (color, intensity, orientation, flicker and motion) to generate feature maps at multiple

scales. These help identify unusual feature values relative to their surroundings also consider-

ing the spatial aspect. An output normalization/weighting stage then follows. The conspicuity

map of each feature channel is then summed and averaged to obtain the final Saliency map. As

such, there are several stages of normalization and summation, first within features(say differ-

ent orientations) and then across features(different feature channels),to give a single saliency map.

We refer to the Figure 2.2 for a more detailed breakdown of this process into following steps:
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Figure 2.3: Saliency with image [25]

(1) RGB input from some source (camera/frame grabber or movie files) feeds into the front

end of the Visual Attention system called "Retina." This block is a preprocessing module.

(2) The retina splits the RGB image into one luminance component(Intensity) and two Inten-

sity normalized color opponent chrominance components(Red-Green(RG) and Blue-Yellow(BY)).

These retinal outputs further expand into 12 feature channels within the model "Visual Cortex"

. The two chrominance components feeding two color-opponent channels ("C"; RG and BY),

and the luminance component feeding the intensity, orienta- tion ("O" ; 0¶, 45¶, 90¶, 135¶), flicker

("F") and motion ("M"; left, right, up down) channels. The flicker channel computes the absolute

difference between the Intensity images of the current and previous frames.
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(3) Each image stream is decomposed into a multi-scale dyadic feature pyramid by recursive

application of a linear filter followed by subsampling across nine scales, from level 0 at the original

scale of the image, to level 8 at a 256-fold reduction in width and height. The C, I, F and M

channels efficiently compute low-pass pyramids L from their respective inputs, using a separable

filter composed of 5-point low-pass kernels. The O channel computes a high-pass ("Laplacian")

pyramid H [12] , essentially it is the difference between parallel full-band F and low-passed L

pyramids.

(4) O and M channels use extra processing to extract the features of interest from the pyra-

mid. In the orientation channels, an efficient steerable filter implementation is used to produce

0¶, 45¶, 90¶, 135¶ orientation-tuned responses from the high-pass pyramid [12] In the motion

channel, a simple Reichardt motion detector [31] is used to compute motion energy in the left,

right, up and down directions. Details of these processing components is discussed in further

chapters.

(5)There are now 12 pyramids, representing color, intensity, orientation, flicker and motion

features.

(6) A center-surround operator is then applied to detect locations whose fea- ture values are

different from those at surrounding locations and surrounding spatial scales. This is implemented

by computing point-wise differences be- tween different pairs of pyramid scales, for combinations

of three center scales (c = 2, 3, 4) and two center-surround scale differences (s = c + δ, δ = 3, 4);

thus, six center-surround maps are computed for each of the 12 features, giving 72 maps at this

stage.

(7)Center-surround operator followed by normalization and scaling helps enhance sparse peaks

and supress the cluttered peaks. In this way, initially noisy feature maps can be reduced to sparse

representations of only outlier locations which strongly stand out from their surroundings. The

processed center-surround maps are then summed together to form a single output from each of

the 12 individual feature channels.
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(8) The overall output maps for each feature type are formed. For the I and F channels, the

maps simply pass through from the previous step. Within the C, O, and M channels, each hav-

ing multiple subchannels, the subchannel outputs are processed with the same dynamic iterative

normalization procedure, and summed together to produce the channel output map.

(9) Finally, the channel output maps are processed once more with the iterative normalization

procedure and summed together to form the final output saliency map.

2.2 Hierarchical Models of Object Recognition, HMAX

The processing in the HMAX computational model starts with a gray scale image. Next, using

bicubic interpolation a image pyramid of 12 scales is created, where each scale is a factor 21/4

smaller than the last. As shown in Fig 2.4, this image pyramid forms the input layer of the HMAX

model. This image pyramid is successively feed-forward to obtain responses from the alternating

higher S(simple) and C(complex) layers. The simple layers are convolutions with local filters to

obtain higher order features, and the complex layers help increase the invariance by pooling units

of same type from previous layers. The overall goal of the model is to reduce gray scale images

to feature vectors, which can then be classified by an Support Vector Machine(SVM) classifier.

2.2.1 S1 and C1 computation layers

The S1 layer is computed by processing the image layer with 2D Gabor filters with different

orientations at each possible position and scale [28] [21]. The S1 layer has twelve Gabor filter

kernels representing twelve orientations, and each is of size 11x11. The output of S1 layer can be

visualized as 12 pyramids (for 12 orientations), which feeds into the C1 layer [22]. The C1 layer

convolves the S1 pyramids (of the same orientation) with a 3-D Max filter at every 10x10 units

in position and 2 units deep in scale to give position and scale invariance. This operation also

subsamples the S1 pyramid (steps of 5 in position), resulting in C1 pyramids which are smaller

in spatial extent, but have the same number of orientations as S1 pyramids; see Fig 2.4.
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Figure 2.4: Feature vector computation using HMAX model [21]

2.2.2 S2 and C2 computation layers

The S2 layer computes the intermediate features of the HMAX model. These features are cal-

culated by template-matching every position and scale of the C1 pyramids with a dictionary of
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4075 "sparsified" or "dense" prototype kernels (aka Patches) [21]. The sparse prototype kernels

are of size n x n, where n œ {4, 8, 12, 16}, and each coefficient in the kernel encodes information

about it’s preferred orientation of the C1 pyramid. Whereas, the dense patches are of size n

x n x 4 (four orientations), where n œ {4, 8, 12, 16}. The response of the C1 pyramid to these

prototype kernels is given by the following Gaussian Radial Basis Function (GRBF).

R(Xs, Pi) = exp(≠
Î Xs ≠ Pi Î2

2σ2α
) (2.1)

where Pi={1,..4075}, represents the number of prototype kernels in the dictionary, and Xs={1,..11}

represents the number of scales in the C1 pyramid. The standard deviation σ is set to 1, and

the parameter α = (n/4)2 is the normalizing factor for different kernel size n. Depending on the

kind of prototype kernels used, the resulting S2 output can be 4075 pyramids (sparse) or 4075 x

4 pyramids (dense).

The C2 is a global max across scales(done for each of the 4075 pyramids) to obtain a single

vector, each value of which is response to a given prototype patch. The C2 response can be

represented as:

max{R(Xs, Pi)} (2.2)

2.2.2.1 Hardware oriented S2 and C2 reformulation

Alternatively, we can re-formulate the S2 and C2 computations as:

R(Xs, Pi) = (
Î Xs ≠ Pi Î2

2σ2α
) (2.3)

exp{min{R(Xs, Pi)}} (2.4)

This reformulation allows us to move the exponential operation to after the C2 computation.

As a result, the C2 operation is global min instead of global max and the exponential needs to

12



be computed only on the min value rather than the entire array - i.e we need to perform the

exponential operation directly on the C2 vector once. Similarly, we also factor out the constant

denominator term (for a given kernel size) in the equation. This helps save computation resources

(multipliers), which in turn can be used to speed up the convolution operations.
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Chapter 3 |

S2-C2 Hardware Accelerator Archi-

tecture

This chapter describes the architecture of the proposed hardware accelerator.

3.1 Reconfigurable Convolution engine (CoRe16)

The proposed hardware accelerator for S2-stage is inspired by systolic arrays. Systolic arrays,

due to their spatial and temporal regularity are highly modular and this makes it easy to param-

eterize the hardware design to scale to the computational needs of the application. The basic

processing element of this accelerator module is the GRBF Processing-Block(PB) shown in Fig

3.1(a). Depending on the size of the smallest kernel in the S2 prototype dictionary, this PB

can be composed into two dimensional arrays called Composed-Processing-Blocks(CPB), shown

in Fig 3.1(c). And, depending on the size of the largest kernel in the S2 prototype dictionary,

the CPB can be composed into a two-dimensional grid to form the Reconfigurable convolution

engine, also referred to as CoRe16. Using CPB of size 4 x 4, 16 such CPBs can be tiled in a 2-D

grid to form a 16x16 convolution engine shown in Fig 3.1(a). This CoRe16 is highly-flexible and

can reconfigured at run-time to process kernels of all sizes in the S2-dictionary. The next few

sections explains the hardware details of this accelerator module.
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Figure 3.1: (a) Processing Block (PB) can be composed into 1D or 2D arrays to form (b)(c)
Composed Processing Blocks (CPB).

3.1.1 Processing Block(PB)

The Processing block forms the lowest hardware primitive in this design hierarchy, and has been

tailored for computing GRBF features in S2 layer. The simplified block diagram of this block
15



is shown in Fig 3.1(a). The computational units inside the block are pipelined and have simple

hand shaking signals between them. In addition, all these units are parameterized to handle the

algorithm-specific parameters. The configuration information during run-time reconfiguration is

passed to this block by using the control port and stored in internal registers. During operation,

the inputs to this block are the C1-feature vector (Xφ1

, ...Xφ12

), which are features from same

position of different C1 pyramids. The other input is the S2-prototype kernel coefficient (P φn

).

The multiplexer unit at the input selects the input C1-feature depending on the orientation (φn)

preference encoded in the kernel coefficient. The Subtractor followed by the multiplier in the

pipeline computes the partial-product of the Euclidean-distance between the C1 feature and the

kernel coefficient. This partial product is accumulated by the adder. The number of partial

products accumulated depends on the the size of the S2 kernel being processed. The kernel size

information is passed to the PB through the control port during the run-time reconfiguration

phase. The output of PB is the partial sum along with a valid signal that indicates the validity of

the partial sum. The second output of PB is the delayed (1 cycle) value of the kernel coefficient

which is passed to the neighboring PB. The Start-Of-Frame(SOF) signals are frame delimiter

signals to indicate the start and end of input frame.

3.1.2 Composed Processing Blocks(CPB)

Depending on application requirements, the Processing Block (PB) for GRBF feature computa-

tion can be composed into 2D arrays of various sizes. These 2D Composed Processing Blocks

(CPB) form the next level of hardware primitives in this design hierarchy. The simple signaling

interface of the PB makes it easy to connect them as 1D arrays of desired size(Fig 3.1(b)). The

valid out signals of the PB in the 1D array are used as the select bits for the output multiplexer.

The FIFO acts as a local buffer for the kernel coefficients. These 1D arrays can then be replicated

to form the 2D array(Fig 3.1(c)). The adder tree at the output are used to accumulate the partial

sums of the 1D arrays.

16



(b) Mode 1: Sixteen 4x4

kernels
(c) Mode 2 : Four 8x8

kernels

(d) Mode 3 : One 12x12

kernel

(e) Mode 4 : One 16x16

kernel

(f) Mixed mode : two 8x8,

eight 4x4 kernels

(g) Mixed mode : one 12 x12,

four 4x4 kernels

12x12

Sum out

Multiplexer

Multiplexer

(a) 16x16 Reconfigurable Convolution Engine (CoRe16)

MUX

MUX

+

+

+ +

D-mux

D-mux

D-mux

D-mux

4x4

Sum out

4x4

Sum out

4x4

Sum out

4x4

Sum out

+

+

+ +

D-mux

D-mux

D-mux

D-mux

4x4

Sum out

4x4

Sum out

4x4

Sum out

4x4

Sum out

8x8

Sum out

8x8

Sum out
MUX

MUX

+

+

+ +

D-mux

D-mux

D-mux

D-mux

4x4

Sum out

4x4

Sum out

4x4

Sum out

4x4

Sum out

+

+

+ +

D-mux

D-mux

D-mux

D-mux

4x4

Sum out

4x4

Sum out

4x4

Sum out

4x4

Sum out 8x8

Sum out

8x8

Sum out

16x16

Sum out

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

4
x4
(C
P
B
)

D
a
ta

R
o
u
te
r
(R
1
6
+
R
8
)

Figure 3.2: (a) CoRe16 module (b)-(g) Operation modes

3.1.3 CoRe16

The Reconfigurable Convolution engine (CoRe16) can be composed by tiling the 2D CPBs as a

2D grid. This module forms the third level of hardware primitive in this design hierarchy. In
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this configuration, each CPB in the 2D grid is an independent GRBF computation engine. The

CoRe16 which represents a reconfigurable 16x16 convolution as shown in Fig 3.2(a) is composed

using sixteen CPB of size 4x4. A single instance of the CoRe16 can be reconfigured at run-time

to operate in the following pre-defined modes:

• Mode 1 : process up to sixteen 4x4 S2 kernels in parallel (Fig 3.2(b)).

• Mode 2 : process up to four 8x8 kernels in parallel (Fig 3.2(c)).

• Mode 3 : process one 12x12 kernel (Fig 3.2(d)).

• Mode 4 : process one 16x16 kernel (Fig 3.2(e)).

• Mixed-modes: process [one 12x12, four 4x4], [two 8x8, eight 4x4] and [three 8x8, four 4x4],

each case in parallel (Fig 3.2(f-g)).

The mixed-mode operation helps in optimal usage of hardware resources for an arbitrary

distribution of the kernels in the dictionary. For example, for twenty 4x4, and seven 8x8 kernels

in the dictionary, we could choose to sequence the operations as {mode1, mode1, mode2, mode2}

or, we could sequence operations as {mode1, mode2, mixed-mode (three 8x8, four 4x4)}. In this

example, the later sequence obviously has better resource utilization. Further, acceleration can

be gained by having multiple of these CoRe16 modules operating in parallel. These multiple

instances of the CoRe16 forms the top level hierarchy of our design, see Fig 3.3. In this config-

uration, a CoRe16 in the group can be independently operating in any of the above pre-defined

modes. The data and the kernel co-efficient to this module are fed by the Multi-port memory

and Patch Buffer modules. The details of these two modules are discussed next.

3.2 S2-C2 pipeline

3.2.1 Multi-port Memory and Routers

The CoRe16 operates on the C1 image pyramid, one level at a time. Since S2 computation needs

to be repeated over a large number of kernels or patches for each C1 image (say 4075), there are

repeated accesses for the same C1 data. Thus by storing the C1 image in a on-chip memory data
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reuse is utilized.

The (CoRe16 ) module needs access to up to 16 rows and 16 columns of the C1 image at a time

depending on the mode it is operating. Example: If in Mode 1 (for 4x4 kernels), all the CPBs

require rows i to i+3 and columns j to j+3, but in Mode 4 (for 16x16 kernel) each CPB requires

a unique 4x4 block of the C1 image. In order to enable each CoRe16 to operate these various

modes and utilize the parallelism within the CoRe16, a multi-port memory (MPM) is proposed

along-with data routers (R16 and R8 ) to feed the CoRe16 modules with appropriate image data.

The MPM utilizes bank-interleaving along the rows of the image to enable multiple reads per

cycle. The number of banks is set to 16 to allow 16 reads per cycle from 16 contiguous rows,

since 16 is the maximum size of patches. The bank-interleaving along the rows also takes care of

the sliding window (16x16) required while processing the image.

Further, data routers R16 and R8 route the appropriate 4x4 pixels to each CPB in the CoRe16

module. The routers can be reconfigured at run-time to modify the selection of pixels based on

the operating mode. The MPM can be reconfigured at run-time to change the C1 image size

(which is different for each scale of the pyramid).

The C1 image is read repeatedly from the MPM to complete the processing of all the patches.

When multiple CoRe16 modules are enabled, the output bus from MPM is broadcast to all

CoRe16s with each CoRe16 processing a different set of patches on the image. The above process

is further repeated for all scales of the pyramid to complete the S2-C2 computation for one image.

3.2.2 Patch Buffer

As mentioned before, the CoRe16 module operates in different modes and can process multiple

patches and patches of different sizes. This requires an efficient mechanism to initialize the

CoRe16 with patch coefficients. Since the patches are reused for every pyramid level for every

image, all the patches are stored in on-chip BRAMs. If memory constraints are severe, then

on-chip BRAMs can be used to cache a subset of patches and then remaining patches must be

loaded from external memory.
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Figure 3.3: S2-C2 Pipeline

The patch buffer is a critical component which handles loading of appropriate patches into

the CoRe16 module and control information to the C2 stage to handle data accumulation. To

minimize load time, 16 coefficients are loaded per cycle which makes it 16 cycles to completely

20



IDLE

(Load patch 

set for iter0

)

EVALUATE

FLUSH Patch 

buffers

LOAD new 

patches

(iter1:n)

 M
P

M
 r

e
a

d
y

 

~
la

st
 i
te

ra
ti

o
n

)

P
re

se
n

t 
P

a
tc

h
 

se
t 

p
ro

ce
ss

e
d

Load_done 

la
st ite

ra
tio

n

CONFIG 

pipeline

Reset

loading
~ MPM ready 

Lo
a

d
_

d
o

n
e

 

(i
te

r0
)

Figure 3.4: Patch Buffer Initialization

initialize a CoRe16 module (one iteration). This is enabled by a combination of bank-interleaving

and a wide memory lines. Example: with 4 banks and a line size of 4, 16 coefficients can be read

per cycle. This load operation must be repeated before each iteration to complete the processing
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for all patches for a C1 image. This process is then repeated over multiple levels.

The patch buffer also sends out a header to the CoRe16 and C2 modules before every iter-

ation, which includes information on the mode of operation, number of valid patches etc which

are used to configure the CoRe16 module and the data routers for that iteration.

The patch buffer needs to be initialized with the patches at run-time before computation

begins. The patches are loaded from a patch configuration file at run-time in an automated way

as shown in 3.3 and 3.4. Thus any change in the number of patches, patch distribution or the

actual patch coefficients can be accommodated without having to modify the hardware.

3.2.3 C2 - Data Accumulation Unit

The C2 block is a global max (global min in this implementation) across scales. The input to

C2 block is the S2 response to 4075 patches for each level of the pyramid. This can be actually

visualized as 4075 pyramids as depicted earlier. The min operation helps perform the exponential

operation external to the S2-C2 block. This mainly provides 2 benefits. First we can reuse the

same exponential block across pipelines and second, we can also perform the exponential opera-

tion in software if required since we only need to perform this operation on the C2 vector(4075

values) instead of a per pixel basis.

The C2 block operates on the S2 responses of all the patches and computes the Global Mini-

mum across all scales of the S2 pyramid(Fig 3.3). The operation is repeated iteratively for each

patch across all C1 scales to obtain a C2 vector. A block level description of this hardware

module is shown in Fig 3.5.

The global min is unique for each patch in the patch dictionary. The challenge is to keep

track as to which of the patches are being processed during a given iteration and update the value

accordingly. A control header generated by the patch buffer is used by the C2 module for this

purpose. The header includes fields for the current pyramid level being processed, the current

iteration count and the operating mode of the CoRe16. An on-chip RAM is used to buffer the
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min values for each patch and a particular value is updated by indexing into the RAM based on

the fields in the header. Once all the pyramid levels are processed, the final C2 vector is read

out of the RAM, exponential computed by a library core and then passed to a classifier software
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implemented on host computer for object classification.

3.3 Automation Flow and Scheduling

Parallelism, reconfigurability and scalability are key factors that determine the efficiency of a

hardware accelerator. This hardware accelerator has a high degree of coarse-grain parallelism -

multiple CoRe16 pipelines (Fig 3.3) and fine-grain parallelism - within a CoRe16 all multiplica-

tions are in parallel (Fig 3.2). It is completely parameterized and supports both compile-time

and run-time reconfiguration. The architecture is independent of image size or number of patches

or number of pyramid levels or resources available and can scale to any desired algorithmic spec-

ification or power/area constraints.

In order to leverage these features of the accelerator, an automation flow (Fig 3.6) was de-

veloped. This automted flow can seamlessly generate optimal hardware configuration for a given

algorithmic specification and perform run-time configuration and execution. The algorithmic

and architectural parameters and performance requirements can be specified as a parameter file.

The automation flow performs resource estimation based on area models for each hardware com-

ponent and performance estimation based on timing models and generates the optimal hardware

configuration under the given constraints. This is followed by an optimization step which at-

tempts to maximize utilization of hardware resources by partitioning the computation effectively

on to multiple pipelines. For a given hardware configuration and a given patch distribution (#

of patches of 4x4, 8x8, 12x12, 16x16 sizes), the optimization step partitions the computations on

to the pipelines such that the total execution time is minimized. The scheduling step includes

generation of the initialization tables for the MPM and the patch buffer based on the above par-

titioning and generating the patch configuration file for each pipeline. The initialization tables

include all parameters such as image sizes and number of iterations for each C1 pyramid level,

which are required by the hardware to iteratively run the CoRe16 pipelines to compute the C2

vector for a given C1 pyramid.

The software/API handles write/read of data to/from the hardware. Based on the number of

pipelines specified by the optimization step, the API determines the number of FPGAs required.
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The C1 pyramid is then iteratively loaded one level at a time into each FPGA and the resulting

C2 vector is fed into an SVM classifier implemented on the host computer.

Figure 3.6: Automation and Scheduling
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Chapter 4 |

Experimental Setup and Results

The Dinigroup DNDualV6-PCIe4 board [2] with two Xilinx Virtex6 SX475T FPGAs was used as

a test platform. The Verilog implementation of this accelerator is in fixed-point and Xilinx ISE

tools were used to generate the hardware. Direct PCIe connection between one of the compute

FPGAs and the host-machine is established via the DNSEAM-PCIe [1]. A set of software APIs

running on the host-machine was developed to configure the accelerators and for DMA read/write

and polling registers. The software also handles scheduling by partitioning each incoming 2352

x 1724 video frame captured using a high resolution Basler camera into smaller chips of size 256

x 256. A double buffer architecture is followed on the multi-port memory to overlap I/O with

computation.

In Table 4.1, we compare the performance of S2-C2 implemented using the CNS framework

on a GPU with our FPGA accelerator. The CNS (rev.372) numbers were obtained using a sin-

gle NVIDIA Tesla C1060 GPU running CUDA 3.0 at 1.3 GHz. This was hosted on a Linux

machine with dual quad-core Intel(R) Xeon(R) CPU running at 2.27Ghz and with 12GB RAM.

The same set of patches were utilized on both the GPU and the FPGA platforms to get realistic

comparison. The GPU numbers were averaged over 100 runs to remove any overheads. It should

be noted that the CNS framework on GPU itself provides close to 97X speedups over a CPU

implementation [20].

The test cases for comparison are -

• case 1k4x4 - 1024 patches, all of size 4x4.
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• case 1k8x8 - 1024 patches, all of size 8x8.

• case 1k12x12 - 1024 patches, all of size 12x12.

• case 1k16x16 - 1024 patches, all of size 16x16.

• case 4kmixed - 4075 patches with 1521 patches of size 4x4, 1145 of 8x8, 802 of 12x12 and

607 of 16x16.

The operating frequency of the FPGA is 100 MHz. The performance metric is the frame rate

for the entire S2-C2 processing stage which decides the recognition throughput. Table 4.1 shows

that the implemented accelerator running at 100 MHz on a single Virtex-6 FPGA provides 5X to

11X speedups over the CNS implementation on GPU for cases ranging from 1k4x4 to 4kmixed

when compared to the GPU. The performance numbers for the FPGA are for 2 CoRe16 pipelines

and 12 orientations.

Table 4.1. Comparison of S2-C2 (sparsified) for 256 x 256 images
Test Case Tesla C1060 GPU Virtex-6 SX475T FPGA

FPS FPS per Watt FPS FPS per Watt
case 1k4x4 37.03 0.197 432.52 6.654
case 1k8x8 13.69 0.0729 131.13 2.017

case 1k12x12 7.69 0.0409 39.78 0.612
case 1k16x16 5.26 0.028 48.42 0.7449
case 4kmixed 2.88 0.0153 22.92 0.3526

Also measured is an approximate performance-per-Watt comparison using the peak power of

the GPU and FPGA devices. The peak power of the Tesla C1060 GPU is taken as the Thermal

Design Power (TDP), which is 187.8 Watt [3] and the peak power of the Virtex6 SX475T on

the DN-DualV6-PCIe board [2] is 65 Watt. As shown in Table 4.1, this accelerator running on

the FPGA provides 14X to 33X higher performance-per-Watt for cases ranging from 1k4x4 to

4kmixed when compared to the GPU. This shows that the proposed FPGA accelerator is an

energy efficient solution for accelerating HMAX.

4.1 Performance vs Accuracy trade-off

The object recognition accuracy of the algorithm has a strong dependence on the number of

patches and the patch distribution [22], i.e the number of patches of 4x4, 8x8, 12x12 and 16x16.

It is obvious that the 16x16 and 12x12 (BIG) kernels involve much more computations than 4x4

and 8x8 (SMALL) kernels. Higher the number of BIG patches, better the recognition accuracy,
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but lower the performance. Lower the number of BIG patches, lower the recognition accuracy,

but higher the performance. A trade-off analysis was performed by comparing the performance

of the accelerator for different patch distributions, while the total number of patches is fixed.

Figure 4.1 shows a plot of the throughput as a function of the total number of iterations, where

total iterations = [(#(4 ◊ 4)/16) + (#(8 ◊ 8)/4) + #(12 ◊ 12) + #(16 ◊ 16)]. In the plot, as

we move from left to right the number of SMALL patches are increasing and the number of

BIG patches are decreasing. It shows that the performance scales almost linearly as the number

of iterations. The same behavior is observed when multiple pipelines are present, which means

that the optimizer partitions the computations almost equally to all pipelines. The plot also

shows that the performance of the accelerator scales almost linearly with increase in number of

pipelines. These results are for 4 orientations where we can fit 3 pipelines on a single FPGA.

Figure 4.1: Performance scaling with degree of parallelism

Another parameter is the number of orientations, a higher value of which improves the reso-

lution of the sparsification and hence improves recognition accuracy [21]. Table 4.2 provides the

FPGA resource utilization for our S2-C2 accelerator for 4 and 12 orientations. For higher number

of orientations, more resources are used by the on-chip memories and routing logic which reduces
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Figure 4.2: Performance scaling with number of CoRe16s

the number of pipelines that can be fit on a single FPGA, hence reducing performance.Further,

the accuracy also depends on the precision of the hardware implementation. Higher the bit-

width, better the accuracy. However, given a resource/area constraint, if the bit-width of the
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pipeline is high, resource consumption is high and the lesser number of parallel pipelines and

lower the performance. For this implementation, a 24-bit width was utilized to guarantee the

best classification accuracy.

Table 4.2. Resource Utilization on Virtex-6 SX475
Architecture Slice Regs Slice LUT’s BRAM’s DSP48

3 Pipelines, 4xθ 253313(42%) 209942(70%) 500(46%) 1536(75%)
2 Pipelines, 12xθ 224730(37%) 212448(71%) 558(52%) 1024(50%)

Figure 4.2 shows that the performance of the FPGA accelerator scales almost linearly with

increase in number of pipelines. This is because, each CoRe16 can compute the S2 kernel in-

dependently on different set of patches, while reusing the same C1 data from the multi-port

memory as shown in Fig 3.3. This improves the performance of the application while introduc-

ing minimal overhead. Further performance gains can be obtained by mapping CoRe16s onto

multiple FPGAs, and partioning the S2-patches across pipelines on multiple FPGAs.

Table 4.3. Performance Comparison in FPS for HMAX Implementation
GPU [20] FPGA [17] FPGA [27]

Tesla C1060 4 x Virtex5 SX240T Virtex6 SX475T
2.88 3.61 22.92

Table 4.3 provides a performance comparison between this HMAX accelerator [27] imple-

mented on a single Virtex6 SX475T FPGA with existing GPU [20] and FPGA implementations

[17]. As seen this implementation obtains speedups of 15X over the GPU [20], 12.5X over the

Virtex5-based multi-FPGA platform [17].

4.2 Full-System Implementation and Results

As implemented in another work by Srinidhi et al [16], this section discusses the integration of

the proposed HMAX S2C2 architecture into an end-to-end attention recognition system. The

accuracy of the object recognition system are also discussed.

Biologically Inspired vision algorithms are both computation and data intensive, so acceler-

ation on FPGAs requires a large number of logic slices, RAMs and DSPs. In order to decouple
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Figure 4.3: Multi-FPGA System Setup

accelerator design, implementation and evaluation of different bio-inspired vision algorithms, one

option is to dedicate independent FPGA for each complex algorithm. Figure 4.3 illustrates the

complete end-to-end attention-recognition system that was implemented.

4.2.1 Multi-FPGA Interconnection Network

The architecture of the proposed HMAX accelerator was intergrated into an end-to-end attention

recognition system and implemented on a multi-FPGA platform. As shown in Figure 4.4 the

attention (Saliency) and recognition (HMAX) accelerators are configured on independent FPGAs

. The Dinigroup DNV6F6-PCIe board [2] was chosen as the multi-FPGA platform to implement

this attention-recognition system. The DNV6F6-PCIe board is populated with up to six Virtex6-
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Figure 4.4: Saliency and HMAX configuration on Multi-FPGA Platform

SX475T devices for compute purposes. An on-board Marvell CPU provides support for GbE,

USB and PCIe. However, the PCIe bandwidth utilization was observed to be extremely poor due

to overheads in the Marvell CPU. In order to bypass the Marvell CPU, a high- speed connector

DNSEAM-PCIe [1] was used to obtain direct PCIe connection to one of the compute FPGAs via

the GTX expansion headers. Currently, there are 4-lane GEN2 PCIe connection from a host PC

to FPGA C on the DNV6F6 board. The interconnection network as depicted in Figure 4.4 uses

inter-FPGA LVDS links for communicating between devices. Asynchronous FIFOs are used to

synchronize data between clock domains. This multi-FPGA setup includes a simple router to

help route data between the devices. This router is mapped on FPGA C, and the host computer

communicates to the other FPGAs on the board through this router interface. Dedicated or
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Shared one-hop or multi-hop links are provided between FPGA C and the other FPGAs on

board. The router is optimized to operate in streaming mode. It scans the frame header which

provides the device ID of the destination, the target memory space (config/input/output/regs)

and the frame size. It then routes the entire frame without any further scan or packetization

overheads. The front-end host computer sets the fields in the frame header and initiates the data

transfer and is abstracted from the complexities of the network.

4.2.1.1 Clocking

One challenge in inter-FPGA communication is working with source-synchronous clocks. In this

setup (Fig. 4.4), each FPGA uses Xilinx Clock managers (MMCM) to generate phase-aligned

parallel clock for the accelerator and serial clock for inter-FPGA links. At the receiving end, the

serial clock is extracted from the data on the link and used to generate the phase-aligned parallel

clock. The repeaters act as receiver and transmitter and hence have to extract the clock from

the source and generate clocks for the destination. On the DNV6F6, the serial clock is 500 MHz

and the parallel clock is 100 MHz.

4.2.1.2 Multicast Support

The network is designed to support multicast - specific device IDs assigned to target a specific

set of FPGAs as the target. Each destination may be at one or multiple hops for multicast.

Similarly, broadcast is also supported. The multicast feature of the network is extremely useful

in cortical vision since, often multiple algorithm stages need to operate on the same image data.

In such cases the critical network interface can be used only once by enabling multicast modes.

On the DNV6F6, FPGA C was chosen as the network interface since the DNSEAM PCIe is

connected to this device as shown in Figure 4.4. FPGA C can do some optional pre-processing

or post-processing steps which are not resource intensive. Each of the other FPGAs can be

configured with an accelerator. In the current system,FPGAs B and A are configured with the

Saliency accelerator and FPGAs F and E configured with the HMAX S2C2 accelerator. FPGA

D is assigned for S1C1 stages of HMAX.
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Figure 4.5: Result from Saliency based Attention accelerator- left image is 512x512 input frame
and right image is corresponding grayscale saliency map from FPGA

4.2.2 Attention Results

An example of the output from the attention accelerator is shown in Figure 4.5. Each 512x512

frame is divided into 4 chips of size 256x256. The saliency maps from the chips are concatenated

to obtain the full-saliency map of the frame. The number of objects that can be detected is equal

to the product of number of chips and number of salient locations per chip. In order to minimize

false alarms, the number of salient locations per chip is chosen to be 1. The most salient chips

are then input to the HMAX object recognition system.

34



4.2.3 Recognition Results

Figure 4.6: Results from the SVM Classifier with C2 vector generated from HMAX accelerator
- Images are labeled with ground truth and the results of classification

Table 4.4. Classification Accuracy of implemented HMAX system for 53 Images
Number of S2-Patches Correct Images Percent Accuracy

1176 (only 4x4) 35 66.04
2000 (mixed) 51 96.22

The result from the HMAX system is shown in figure 8. The C2 vector from the HMAX

accelerator is used by a Classifier to classify objects of interest into 6 classes. The recognition

system was validated using a database of 53 images and the classification accuracy is shown in

table 4.4. It is to be noted that, while the size and nature of the patch dictionary directly affects

the accuracy, the hardware remains the same.
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4.3 Discussion and Futurework

The overall objective of this project was to design an artificial vision system which emulates the

visual cortex. Since attention and recognition are the two main components of the visual process,

the focus of this work was on one of those two these steps. Modeling cortical vision is in itself

an active research area and there exists several variants of the models that were used in this

work.This work does not attempt to prove the biological plausibility of the models chosen, but

rather uses them as a baseline to emulate the visual cortex.

Some of the performance limitations of this setup are the overheads due to software. Currently

the intermediate Focus Of Attention (FOA) step, which is the intermediate step between atten-

tion and recognition, and the S1C1 stages of HMAX are implemented in software. In the current

system the computed saliency map is returned to the host CPU, where the software then identifies

the most salient chips per frame, compute S1C1 and then transfers the C1 images of the salient

chips back to the HMAX FPGA. Due to this increased I/O the PCIe link becomes the bottleneck.

In the current architecture, all pixels (12 orientations) at a given position of the C1-pyramid

are broadcast to all the Processing Blocks (PB) in the CoRe16 module. Broadcasting C1-pixels

of all orientation to all the Processing Blocks in the accelerator creates routing congestion issues.

However, this would not be an issue if dense-S2 prototypes are used instead of sparse-S2 proto-

types. In case of dense S2-prototypes we only need to broadcast C1-pixel of one orientation, and

this could significantly reduce routing congestion issues.

One possible optimization to the current architecture would be to decompose all 8x8,12x12

and 16x16 S2-prototypes into smaller 4x4 prototypes. In other words, a 8x8 prototype would

decompose into four 4x4 prototype, a 12x12 would decompose into nine 4x4 prototypes and

16x16 would decompose into sixteen 4x4 prototypes. This decomposition could eliminate some

of the multiplexer and adder tree overheads in the CoRe16 module. However, this decomposition

would require ’non-uniform’ convolution with some of the decomposed 4x4 prototypes and could

be complicated.

36



Another observation is that the HMAX model requires iterating through all the 4075 pro-

totypes in the S2-prototype dictionary even if the same object was processed in the previous

few frames(chips). In other words, the model has no memory of recently observed objects and

simply interates through the entire dictionary for every frame. This brute-force computation

seems inefficient. One possible solution could be to compare a new incoming frame with some of

the recently processed frames (say last fifty or hundred frames with unique objects) and calcu-

late a Maximum Likelihood Estimate(MLE). The MLE can be computed either in the attention

(saliency) stage or S1 stage of recogntion (HMAX). If the MLE is high the entire S2C2 compu-

tations of HMAX can be skipped and the class of the object can be predicted.

It is also observed that the classifier needs a complete C2-vector (4075 x1) to classify an ob-

ject. Instead, if we can accurately classify ’certain’ objects by only computing a partial C2-vector,

we could save the number of S2 computations and therefore potentially increase the system per-

formance.This would require a dynamic re-ordering of the S2-prototypes to be processed and can

be supported by the proposed automation flow.

Reconfigurable hardware serve as the ideal fabric for emulating the brain. Parallels can

be drawn between logic slices in an FPGA fabric and neurons in a neural network. However,

biological neural networks are far more complex. The reconfigurable nature of the hardware is

critical to allow the artificial vision system to evolve, as the models evolve. Hardware reuse is the

key, since FPGA resources and power are costly and hardware cannot infinitely scale to mimic

biology. Further, self-adaptation and learning are essential components that can be realized

efficiently in programmable hardware.

4.4 Conclusion

In this work, a parallel and reconfigurable accelerator for HMAX-based multi-class object recog-

nition algorithm was presented. The core of the accelerator is a run time reconfigurable con-

volution engine which can perform variable size kernel computations in parallel. Intelligent

multi-port memory architectures are designed to provide low-latency access to image data and

patch coefficients. The architecture scales with number of pipelines and patch distribution. An
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automation flow for run-time configuration and execution is presented. Experimental results

on Virtex6 FPGA platforms show 5X to 11X speedups and 14X to 33X higher performance-

per-Watt over a CNS-based implementation on a Tesla GPU. This acceleration results in faster

recognition which may be used to build quick-response systems for autonomous vehicle naviga-

tion, unmanned surveillance and robotics. Further, the higher energy efficiency of the accelerator

could mean longer and reliable operation in a battery operated device. Prototype of the complete

attention-recognition vision system was implemented on a multi-FPGA platform. Results show

stable performance and high recognition accuracy, while providing speedups over existing CPU,

GPU and FPGA implementations.
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