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FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs)
applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible
neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron
connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable
SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE),
incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the
evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the
architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant
computing.
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1. Introduction

Biological research has accumulated an enormous amount of
detailed knowledge about the structure and function of the
brain. The basic processing units in the human brain are neu-
rons that are interconnected in a complex pattern [1]. The
current understanding of real biological neurons is that they
communicate through pulses and use the timing of the pulses
to transmit information and perform computations. Spiking
Neural Networks (SNNs), which interact using pulses or
spikes, emulate more closely real biological neurons of the
brain and have therefore the potential to be computationally
more powerful than traditional artificial neural network
models [2]. Fault tolerant computing can exploit the brain’s
behaviour in the repair and restoring of functionality. This
is a feature of particular interest to SoCs designers where
reliability is becoming difficult to guarantee postdeployment

with scaling device geometries, and also in the deployment
of computing systems in harsh environments.

Inspired by biology, researchers aim to implement
reconfigurable and highly interconnected arrays of Neural
Network (NN) elements in hardware to produce robust
and powerful signal processing units. However, the standard
topologies employed to model biological SNNs are proving
difficult to emulate and accelerate in hardware, even for
moderately complex networks.

Current software environments available for simulating
Spiking Neural Networks (SNNs) provide biophysically
realistic models, albeit with large simulation times [3].

Moreover, software simulations of SNN topologies and
connection strategies face the problem of scalability in that
biological systems are inherently parallel in their architecture
whereas commercial PCs are based on sequential processing
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architectures [4] making it difficult to assess the efficiency of
these models to solve complex problems.

The ability to reconfigure FPGA logic blocks and inter-
connect has attracted researchers to explore the mapping of
SNNs to FPGAs [5–9]. Efficient, low-area/power implemen-
tations of synaptic junctions and neuron interconnect are key
to scalable SNN hardware implementations. Existing FPGAs
limit the synaptic density achievable as they map biological
synaptic computations onto arrays of digital logic blocks,
which are not optimised in area or power consumption for
scalability [3]. Additionally, current FPGA routing structures
cannot accommodate the high levels of neuron interconnec-
tivity inherent in complex SNNs [3]. The Manhattan-style
mesh routing schemes of FPGAs typically exhibit switching
requirements which grow nonlinearly with the mesh sizes
[10]. A similar interconnect problem exists in System-on-
Chip (SoC) design where interconnect scalability and high
degrees of connectivity are paramount [11]. The use of
networking concepts has been investigated to address the
interconnectivity problem using Network-on-Chip (NoC)
approaches which time-multiplex communication channels
[12]. The NoC approach employs concepts from traditional
computer networking to realise a similar communicating
hardware structure. The key benefit provided by NoCs is
scalable connectivity; higher levels of connectivity can be
provided without incurring a large interconnect-to-device
area ratio [11].

This paper presents the EMulating Biologically-inspiRed
ArChitectures in hardwarE (EMBRACE) hardware platform
for the realisation of SNNs. EMBRACE uses an NoC-based
neural tile architecture and programmable neuron cell which
address the interconnect and biocomputational resources
challenges. The paper illustrates how the EMBRACE archi-
tecture supports the routing, biological computation, and
configuration of SNN topologies on hardware to offer
scalable SNNs with a synaptic density significantly in excess
of what is currently achievable in hardware [7–9, 13]. In
addition, the paper discusses the potential opportunities
EMBRACE offers in providing a new hardware information
processing paradigm which has the inherent ability to
accommodate faults via its neural-based structures.

Section 2 of the paper provides a review of related
work and identifies the challenges of scalable SNN hard-
ware implementations. Section 3 describes the proposed
EMBRACE architecture, and Section 4 discusses the neural
tile. Section 5 presents results on the evaluation of the archi-
tecture using the XOR benchmark problem and on neural
tile implementations from the perspective of performance-
architectural optimisations. Section 6 provides a discussion
on the fault tolerance opportunities of the new paradigm,
and Section 7 provides a summary and outline of future
work.

2. Background

SNNs differ from conventional artificial NN models because
information is transmitted by the means of pulses or spikes.
Brain-inspired paradigms such as SNNs offer the potential of

an elegant, low-powered, and robust method of performing
computing. In particular, SNNs offer the potential to emulate
the ability of the brain to tolerate faults and repair itself. The
human brain continually replaces neurons by reconnecting
to newly generated neighbouring neurons via synaptic junc-
tions. This adaptability allows the brain to overcome faults,
so providing the inspiration for establishing robust fault
tolerant computers. Other similar approaches are currently
under investigation for fault tolerant computing paradigms
based on biological organisms [14].

When implemented in hardware, SNNs can take full
advantage of their inherent parallelism and offer the
potential to meet the demands of real-time fault tolerant
applications. However, the first step towards SNN-based
fault tolerant systems is the creation of a hardware platform
which can support the levels of parallelism and adaptability
required.

FPGAs have been widely recognised as a platform which
can provide the adaptable requirements of NNs [8] and
so enable rapid acceleration of NNs and hardware-in-
loop training. The popularity of FPGAs has been fuelled
by the reconfigurability offered by such devices and the
introduction of platform FPGAs with increased logic and
embedded processors [15].

2.1. Biological Spiking Neurons. FPGA implementations of
SNNs typically aim to accelerate and prototype biologically
inspired computations [5, 7, 8, 13, 16]. However, FPGAs are
not appropriately suited for efficient SNN implementation
as they attempt to map biological neuron and synaptic
computations onto general arrays of configurable digital
logic blocks which are not optimised in area and power
for dense network realisations [8]. Existing FPGAs can
only provide limited synapse density. More importantly,
they underutilise silicon area as larger numbers of gen-
eral programmable units are required to achieve specific,
optimal implementations. Providing configurable, dedicated
computational SNN blocks within a custom FPGA-type
structure will offer a more suitable reconfigurable platform
for SNN accelerated prototyping, with optimised utilisation
of hardware area and power. Also, issues associated with
training must be addressed whereby the programmability
and efficient storage of synaptic weights are accommodated.

2.2. FPGAs and Neuron Interconnectivity. SNNs have a signif-
icant level of connectivity between neurons and, increasing
SNN neuron density results in a nonlinear interconnect
growth. For example, a 2-layered feed forward fully inter-
connected network with m neurons per layer exhibits an
interconnect density of m2, which rapidly increases as the
number of neurons per layer increases. Neuron interconnec-
tion in current FPGAs is typically achieved using Manhattan
style layouts with diagonal [17], segmented, or hierarchical
2-dimensional routing structures [10]. Scaling is one of the
key issues associated with all complex electronic systems
because interconnect consumes large areas of chip real-
estate and subsequently causes longer critical path delays.
For example, the switching requirements of Manhattan-style
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routing schemes typically grow nonlinearly with the number
of logic units on the device [10]. This FPGA interconnect
challenge is a significant limiting factor in the suitability of
FPGAs for SNN implementation.

Researchers have investigated several routing optimisa-
tions and topologies in their attempts to improve the FPGA
routing latency and performance. Rose et al. [17] investigated
architectural-level techniques with the introduction of bus-
based routing between clusters of multibit logic blocks to
reduce routing interconnect density. Increased semiconduc-
tor multilevel metalisation has increased the number of
metal layers that can be realised and has provided new
opportunities for scaling FPGA routing using the Mesh-of-
Trees (MoTs) topology [10]. More recently, nanotechnology
has provided nanowire-based routing topologies for FPGAs
[18].

2.3. Network-on-Chip (NoC). SoC design [11] has seen a
considerable interconnect challenge with the introduction
of multiprocessors. SoCs commonly use Network-on-Chip
(NoC) schemes [19], with varied NoC topologies [20],
router architectures, and the provision of low-power and
high-Quality-of-Service (QoS) designs. Router architectures
include asynchronous [19], circuit-based, packet, and worm-
hole switching [14, 21]. The NoC approach uses computer
networking concepts to achieve a similar networking struc-
ture on hardware. The key benefit from using the NoC is
scalable connectivity; higher levels of connectivity can be
achieved without incurring a large ratio of interconnect-
to-device area. Researchers have demonstrated performance
benefits from incorporating NoC structures in FPGA appli-
cation designs [14, 22–24]. The success of NoCs has seen the
release of commercially available technologies from Silistix
[25] and Arteris [26].

The SNN interconnect problem is similar to that of SoCs;
SNNs have large numbers of neurons (typically in excess
1000 for complex applications), which exhibit high inter-
neuron connectivity requirements.

Current attempts to realise SNNs using multiprocessors
in hardware have included limited numbers of neurons due
to connectivity issues [3, 6, 8, 9, 27–29]. An FPGA-based
multiprocessor SNN [6], incorporating reduced interneu-
ron connectivity, has been demonstrated. However, this
implementation strategy does not scale efficiently since
large FPGA SNN networks are inherently limited by the
interconnect requirements between large numbers of pro-
cessors [10]. Similarly, multiprocessor approaches to sup-
port the accelerated simulation of SNNs are also under
investigation [27, 28] and use network-type communication
structures. However, in general these approaches do not
accommodate the dedicated computational requirements of
the biological neurons and the temporal dynamics of SNN.
Reported implementations provide suboptimal strategies
which attempt to “force-fit” SNNs into current multipro-
cessor architectures which typically target regular data-path
computational applications.

Several full-custom neuromorphic architecture devices
have been proposed [13, 30, 31] which aim to address

the inefficiencies of FPGAs by including optimised synaptic
cells and Address Event Representation (AER) routing [32].
However, these architectures cannot scale due to limited
connectivity provided by AER between neurons. More
importantly, their “fixed” full-custom nature has a significant
impact on the level of reconfigurability and prohibits the
computational benefits afforded by programmable SNN
interconnect.

2.4. Current Emulation Challenges. A major challenge is
the development of bioinspired platforms which can sup-
port scalable low-power realisations and reprogrammable
interconnect. In particular, the problem of SNN interneu-
ron connectivity is the dominant obstacle that prohibits
the implementation of biological scale NNs. The rapid
increase in the ratio of fixed connections to the number
of neurons self-limits the network size [1]. If scalable,
reconfigurable networks are to be realised on SNN, domain-
specific programmable devices, the interconnect issue must
be addressed. This sets the primary focus of the paper.
To address the large scale implementation issues of pro-
grammability, synapse weight storage, power consumption,
and inter-neuron connectivity, a new device architecture
tailored to the requirements of SNNs is required.

This paper proposes EMBRACE, a custom field pro-
grammable neural network architecture (EMBRACE) which
merges the programmability features of FPGAs and the
scalable interconnectivity of NoCs with low-area/power spik-
ing neuron cells that have an associated training capability.
The EMBRACE architecture supports the programmability
of SNN topologies on hardware, providing an architecture
which will enable the accelerated prototyping and hardware-
in-loop training of SNNs. Earlier investigations by the
authors in using NoC router strategies to implement large
scale artificial neural networks [33] have demonstrated
benefits in network scalability. In addition, the authors have
developed an initial custom low-area/power programmable
synapse cell with characteristics similar to real biological
synapses [34, 35]. The following sections introduce the
proposed EMBRACE architecture.

3. Embrace Architecture

The EMBRACE architecture is illustrated in Figure 1(b)
as a 2-dimensional array of interconnected neural tiles
surrounded by I/O blocks. The authors recognise that
approaches to implementing the brain, which is a 3D
structure, are currently limited to 2D because current
fabrication techniques are not mature enough to reliably
support large scale 3D SNN architectures. Therefore, the
neural tiles are connected in North, East, South, and West
directions forming a nearest neighbour connect scheme.
Each neural tile can be programmed to realise neuron-level
functions which collectively implement an SNN. An SNN is
realised on the EMBRACE architecture by programming the
tile functionality and connectivity. Consider the interconnec-
tivity requirements of a feed-forward (FF), 2-layer n×m SNN
network with each neuron in layer 1 connected to m neurons
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Figure 1: Architecture overview.

in layer 2; see Figure 1(a). When a neuron in layer 1 fires
(spikes), its pulse signal is propagated to the target neurons
in layer 2 via dedicated individual lines. Using an NoC
strategy, the same pattern of connectivity between layers is
achieved through time-multiplexing of the communication
channels. This significantly reduces interconnect density as
the proposed architecture of Figure 1(b) includes a reduced
number of fixed, regular-layout communication lines, and a
network of NoC routers.

EMBRACE runtime and configuration data is propagated
from source to destination via time-multiplexing using the
NoC routing lines. For example, during runtime, spike events
occurring in layer 1 are forwarded to the associated synapses
of layer 2 via several router transmission steps. The proposed
NoC strategy uses individual routers to group n synapses
and the associated neuron, using a novel structure referred
to as a neural tile, illustrated in Figure 1(c); the neural tile
is viewed as a macro-block of EMBRACE. The novelty of
the tile resides in the merging of analogue synapse/neuron
circuitry with NoC digital interconnect to provide a scalable
and reconfigurable neural building block. Other approaches
[28, 29] do utilise NoC routers but with software models of
synapse and neurons running on microprocessors. Figures 2
and 3 illustrate how the n × m network can be realised using
the NoC strategy, whereby m neural tiles are required, with
each one corresponding to one of the m postsynaptic neurons
of layer 2; a feed-forward (FF) network with 103 neurons
per layer would require 103 neural tiles each containing 103

synapses. The m neural tiles are arranged in a 2D array
structure, as shown in Figure 3, with i number of rows and
j columns, for example, i = 200 and j = 5 for m = 103.
Note that Figure 2 highlights which synapses are connected
to neuron (2, 1), and Figure 3 illustrates how the synapse
and neuron functionality are mapped to tile number 1; for
example, each synapse maps to one of the n synapse cells
in the tile. The mapping process is repeated for neurons (2,
2) through to (2, m), where the unique n synapses for each
neuron are allocated to tiles 2 through to m, respectively.

3.1. Distribution of Computational Resources . The aim of the
NoC strategy is to use the router of each tile to communicate
spike events to its group of n synapses. This enables a reduced
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Figure 2: n xm network showing only the synapse inputs to neuron
(2,1). Each of the m neurons in layer 1 has n synapse connections.

number of connections; for example, an SNN interconnect
density of 106 (n × m) can be implemented using 4 × 103

(4×m connections). The 4 term stems from the N, E, S and
W router connections. The n individual synapses in a neural
tile are referred to as synapse cells and are combined with
the point neuron to form the neuron cell. The synapse cell
is analogue in nature and captures the pertinent biological
features of real synapses [34]. The output responses from
each synapse cell are connected together to produce the
desired biological response from the point neuron.

Due to the time multiplexing manner of the intercon-
nections between neurons, the data transfer time (spike-
interval) between neurons is increased; however this is
not a significant degradation to the speed-performance of
EMBRACE as the biological speed (spike-interval) of the
human brain is typically in the order of 10 milliseconds
[2, 4].

3.2. Spike Event Communication. The inputs and outputs
of the synapse cells are controlled via the NoC router. The
events of a spike train are received as data packets from
neighbouring routers where each spike-event packet includes
a source address (indicating the SNN neuron/tile in which
the event originated) and destination address (of neural tile
and synapse). Figure 4 illustrates the packet format where the
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Figure 3: Mapping SNNs to EMBRACE: realisation of the neuron (2,1) and its n synapse connections to tile 1.

header contains information on the type of data contained
in the payload (i.e., a packet can be contain runtime,
configuration, or error data). The maximum payload size
per packet is 22-bits where in runtime mode it contains the
addresses of the source and target neuron. Each packet is
transmitted as two 12-bit flits in runtime mode; in config-
uration mode the number of flits can verify as discussed
later in Section 4.1. Tile routers send an output packet each
time a spike-event occurs within the tile. Exploiting the
relatively lowfrequency of biological spike trains (∼Hz) [2],
EMBRACE can use a regular and scalable NoC structure.
The time-multiplexing of spike data along router paths
between SNN layers enables large parallel networks and high
levels of routability, without the need for an overwhelmingly
large number of connections; see Figure 1(a). The proposed
method of connecting neural tiles enables various SNN
topologies to be realised for example, multilayered feed-
forward and recurrent networks can be implemented.

4. Reconfigurable Neural Tile

The EMBRACE neural tile is illustrated in Figure 5 and high-
lights the connections between the NoC router, synapse cells,
and point neuron. The packet-switched router implements
12-bit communication paths with buffer support where a
round-robin scheduling policy is used for arbitration at the
buffer input/outputs. The NoC router uses an XY routing

scheme where all flits are transmitted in the same path
direction (wormhole operation).

The intra-tile communication buses include the follow-
ing signals: Spike I/P and O/P, Mode, ACK, Config Data and
Indexing.

(i) Spike I/P initiates a spike on an individual synapse
cell.

(ii) Spike O/P receives spike events from the neuron.

(iii) Mode specifies the tile operation, namely, runtime or
configuration programming

(iv) Indexing bus is used to address individual synapse
cells (via address decoders) for receiving spike events
or configuration data.

(v) ACK acknowledges the correct synapse addressing.

(vi) The Config Data bus is used to transmit configuration
data to the cells. Cells configure the connections to
the q global voltage lines, V , which are common to
tiles and run throughout the device.

Each neural tile has a unique address, and the synaptic con-
nectivity is also specified using an Address Table (AT) within
each router. The AT is programmed during EMBRACE
configuration to specify the desired connectivity between
tiles and enables spike events to be routed. A spike event is
detected at the Spike O/P, and the AT identifies which target
neural tiles and synapses must receive event notification.
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Mode

Header Payload

M1 M2 X X

Source address Target address Not used

Flit 1 (0–11) Flit 2 (12–23)

Figure 4: General Packet Format.

Table 1: Packet header definitions.

Header Information M1, M2

Runtime mode 00

Configuration mode (Start) 01

N/A 10

Configuration mode (End) 11

4.1. Reconfigurable and Runtime Operations. The neural tiles
operate in one of two modes: runtime or configuration. This
is defined by the information in the packet header (see
Table 1) where “00” and “01” define the payload to be either
runtime or configuration, respectively. In runtime mode,
EMBRACE routes spike events (data packets) and computes
the programmed SNN functionality. In configuration or
programming mode, EMBRACE is configured to realise
particular synapse models and the desired SNN topology.
Configuration data is also delivered to the EMBRACE device
in the form of data packets where each packet is addressed
to a particular neural tile and contains information on the
configuration of the router’s AT, the selection of cell synapse
weights via the programmable voltage lines, Vq, and other
neural tile parameters. However, in this mode, a packet
typically contains more than two flits as the payload exceeds
the 22-bit limit shown in Figure 4. The additional flits are
required as several synapses are often reconfigured within
a single tile. In this case, Configuration (Start) and (End)
information is specified in the packet, header as shown in
Table 1. For example, when a router detects “01” in the
header of a packet it is alerted that the following packet
payload contains configuration data and to expect more flits.
When it detects the value “11” in the header, it recognises
that the transmission of configuration data is complete for
the tile. A wormhole routing scheme is used to forward all
flits in the payload to the target tile.

This strategy fully exploits the flexibility of the NoC
structure by additionally using it to select and distribute
configuration data to EMBRACE tiles. It is envisaged that
this type of configuration mechanism would also be able to
partially support the repair implementation of a tile neural
structure in the event of faults.

4.2. Synapse Weight Storage. Each synapse is analogue in
nature and models key pertinent biological features of real
synapses [34], such as long and short term plasticity. Spike
stimuli are received by synapse inputs. Synapse outputs
within a neural tile are combined as inputs to the point

Table 2: Example of synapse weight configurations.

S6S5 S4 S3 S2 S1 Synapse cell weight

1 1 1 1 1 1 5.04 V
...

...
...

...
...

...
...

1 0 0 0 0 0 2.56
...

...
...

...
...

...
...

0 0 0 0 0 1 0.08 V

0 0 0 0 0 0 0 V

neuron of the tile. In keeping with biological plausibility,
synapse weight updates for long term plasticity should be
governed by a Hebbian-based rule [35], and the authors
envisage an off-line training procedure that uses this rule.

While floating gate transistors with submicron feature
sizes would yield compact analogue weight storage, there are
significant issues to be resolved with this technology if it is to
be a viable analogue memory storage capability for large scale
neural networks: dynamic range, sensitivity, and stability
[36]. In view of this we propose the novel weight distribution
and storage architecture, shown in Fig.6, where for each
synapse cell, any number or combination of p identical
(smaller) charge-transfer synapses (CTSs) can be hardwired
to programmable weight voltage levels during configuration.
V1 to Vq rails provide a range of supply weights (voltages),
selected using digitally controlled analogue switches (S1 to
Sp). Figure 6 illustrates how the current outputs of the CTSs
are summed when weight voltages V1 and Vq are applied to
synapse 1 and p. Table 2 illustrates an example synapse cell
weight selection where q = p = 6, V1 = 0.08, V2 = 0.16,
V3 = 0.32, V4 = 0.64, V5 = 1.28, and V6 = 2.56 volts.
Varying the number of voltage rails (q) increases the weight
range, and varying the weight rail voltage values modifies
the weight resolution. Selecting combinations of rail voltages
using S1–S6 provides 26 possible synapse weights where a
sample of these combinations is shown in Table 2.

If we consider the first row in the table where all switches
are closed, then each CTS is activated to a level dictated
by the associated supply rail (weight). Therefore, each CTS
will output a postsynaptic current whose magnitude is
proportional to its weight voltage, and the net postsynaptic
response is the aggregate of all CTS outputs. This is further
illustrated in the remaining rows of the table where S6

and S1 are activated in rows two and three, respectively. In
the former only one CTS is activated with a postsynaptic
response proportional to a weighting of 2.56 volts whereas
for the latter we have again a single CTS activated by S1

with an output postsynaptic current proportional to a weight
value of 0.08 volts. Note, it is envisaged that q /= p, where
more than one switch can be connected to a single voltage
rail.

The authors recognise the need for a nonvolatile memory
capability and are currently investigating the replacement
of the latches/switches of Figure 6 with flash memory
techniques using floating gates. What is novel about this
approach to nonvolatile weight storage is that it only
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requires that the transistors associated with each floating gate
operate in either a fully on or off mode (binary operation)
thereby avoiding the problems associated with dynamic
range, sensitivity and, stability.

5. Embrace Performance

This section presents results on the functional evaluation of
EMBRACE for the exemplar eXclusive-OR (XOR) problem.

Results on the area performance of the neural tile are pre-
sented, and optimisations of the architecture for scalability
are illustrated.

5.1. Demonstrative Application. The XOR (eXclusive-OR)
problem has been used by researchers as a standard bench-
mark to verify the operation or evaluate the performance of
artificial NNs [37] and more recently SNNs [38]. The XOR
problem is based on the principle of logical pattern matching
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whereby a system must decipher whether or not an input
pattern has an equal or unequal number of logic “0” or “1”.
For example, take the simple case where the XOR is applied
to the binary pattern “11100100”; the system must be able to
detect that the pattern has an equal number of zeros to be
classed as an XOR solver. The XOR problem is not linearly

separable and therefore an appropriate test case to exercise
SNNs.

A 2-layer feed-forward SNN consisting of 3 neurons
(2 input/1 output) was created to solve the XOR; whereby
each neural cell utilised one point neuron and two synapse
cells. Figure 7 illustrates the layout of the SNN-based XOR
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configuration across a 2×2 array of neural tiles. In this exam-
ple only 3 tiles are required, however; four programmable
synapses (the maximum number expected for a 2 × 2 array)
are included in each tile, one for each of the neurons in the
architecture (5 CTSs per synapse cell). Note that although
four synapse cells are shown in Figure 7, only two synapses
per tile are utilised in the XOR problem. For larger problems
additional tiles can be included by appending to the N, E, S
and, W directions of the four example tiles, as depicted in
Figure 1(b).

A hardware model of EMBRACE was created to evaluate
its functionality in emulating the SNN-based XOR problem
and, in particular, the configuration of the synapse weights
and runtime switching of packet data between the NoC
routers. Synthesisable VHDL was created for the digital NoC
router and behavioural VHDL for the analogue synapse cells
[39]. The XOR mapped EMBRACE model was simulated
using commercial VHDL software tools running on a
standard PC. Note: The SNN-based XOR was mapped to
EMBRACE by allocating each single neuron and its multiple
synapses to different tiles. The architecture was programmed
by configuring the synapse weights and neuron threshold of
each tile via a test bench. Figure 8 illustrates the test bed
used to simulate the model of the XOR problem on the
2 × 2 tile array; a Genetic Algorithm (GA) was used to train
the SNN to recognise the correct XOR input patterns over
20 generations. The GA fitness measure was based on the
XOR function where a maximum of 16 was evaluated for
all correct matched input patterns. The left-hand side of
Figure 7 shows the convergence rate in generations and both
the average and maximum fitness measures. Note that the
GA-driven training process defines the inputs of known spike
train patterns to neural tile 1 where each router forwards the
target spike packets to their destination synapses in layer 1
(tiles 1 and 2).

For each of the postsynaptic neurons in layer 1 that fired,
additional packets were generated by tiles 1 and 2 and then
routed to the neuron in layer 2 (located in tile 3). Figure 9
illustrates the runtime mode of the tile with two packets
being received and a spike train consisting of two spikes being
directed to the 5 CTS, that is, one synapse cell.

During each GA generation, new synapse weights were
reconfigured in the synapse cells using the NoC router of
each tile and evaluated with the XOR fitness measure. This
GA-driven training process was repeated until EMBRACE
accurately performed the XOR function, that is, until an
optimal or near-optimal set of weights were identified. The
XOR evaluation of the 2 × 2 EMBRACE model proved
successful as it was able to reconfigure weights, route packets,
and perform the XOR operator on input patterns.

5.2. Neural Tile Resources and Performance. The custom
layout for an indicative neural tile with 10 synapse cells
(each cell containing 10 CTSs) and a single point neuron
[34] is illustrated in Figure 10. Note that the number of
synaptic cells is set by the fan-in, and to avoid limiting the
response time of the point neuron, the cells density was set
to 10: a higher fan-in can easily be achieved by buffering the
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Figure 9: Runtime mode of the tile showing two packets being
received. A spike train consisting of two spikes is directed to the 5
CTS. The total postsynaptic current of the individual CTS currents
(current 1, 3, 4, and 5) increases in value with each spike stimulus.

input of the point neuron circuit. The configuration storage,
synapse voltage selection, and NoC router are not included in
the layout. The 10 programmable synapse cells and neuron
occupy a compact area size of 3× 11µm using 90 nm CMOS
technology (test circuits for the programmable synapse and
neuron are currently being fabricated by Europractice).
The small synapse area indicates the potential to realise
compact neural tiles. Moreover, the synapse operates in
transient mode, and consequently the associated power
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Figure 10: Neural Cell: layout of single point neuron and 10 synapse cells (10 CTS per cell).

consumption is small. Consider the extreme case where the
CTS is stimulated by a 1 MHz presynaptic spike train and
assume that the applied weight voltage to the CTS is 5 V
(maximum weight). For each presynaptic spike, an average
current spike of amplitude 10−7 amps is produced at the
output of the CTS for a duration of 2 nanoseconds [34]. This
yields a power consumption/cycle of 1 nW, which is orders
of magnitude improvement when compared to circuit-
based implementations of dynamic synapses [40]. Although
the estimation does not include power consumption due
to the tile’s configuration circuitry, it does illustrate the
application of the proposed synapse for low-power SNN
implementation.

The initial NoC router design used in the XOR appli-
cation has been implemented on a Xilinx XC2V1000 FPGA
[33]. Data from [22] estimates the AEthereal NoC router
implementation of 2658 LUTs on the Virtex-4 to be equiv-
alent to 2.28 mm2 using 90 nm CMOS technology. Using
this data, a conservative estimate of 0.201mm2 is determined
for the area of the proposed router comprising 234 LUTs
(synthesized for Virtex-4). This analysis provides an early
area estimate of the proposed neural tile (single router,
neuron and 10 synapse cells) at 201 × 10−3 mm2. This initial
estimate suggests promising results for EMBRACE networks,
since the tile area is relatively small.

In terms of NoC router latency or performance, the
router can process incoming data packets every 10 clock
cycles with source packet generation requiring 12 cycles. The
router was verified at 200 MHz on the Xilinx XC2V1000
providing 50 and 60 nanoseconds latencies, respectively.
In the example of XOR problem the latency is negligible
(∼2.9 microseconds :10 spikes in the input train); however,
for large scale network problem sizes the overall latency of
EMBRACE is still faster than the biological spike-interval
time, ts. Consider the network of Figure 1(a) with (n =

m = 103) requiring 106 connections giving m = 103 (such
network sizes are used in image processing tasks such as
object tracking [3]).

Assume ts = 10 millisecondss [2], a clock frequency of
200 MHz (tc = 5 nanoseconds), and a 10 clock cycle period
to receive and forward a packet between each NoC router;
the time for the longest routing path, tp, can be estimated
at (m × tc) = 5 microseconds. Now assume the condition
when the upper bound on data traffic load occurs with all

neurons firing at the same. In consideration that each tile
operates in parallel and multiple paths exist, the total latency
of the 103 neuron layer is not an accumulation of n × m
individual path times but rather an amortisation of path,
times across the number of routing paths available. As each
router can route data in all 4 co-ordinate paths the maximum
number of parallel routes is 4 × m = 103. For the example
network of 106 connections, the total latency with the upper
bound condition will be [106

× tp/4m] = 5 milliseconds.
This demonstrates that the time required to time-multiplex
the 106 connections between layers is significantly less than
the 10 milliseconds interspike period and can therefore be
performed in real-time. It should be noted that not all
neurons spike at the same time [2, 4] so, a further speed
improvement is possible.

5.3. Optimising EMBRACE. Research is currently underway
to optimise the tile area further and so support the creation
of dense EMBRACE architectures. For example, the addition
of larger numbers of neurons and synapses within individual
neural tiles will reduce the number of routers required for
the SNN implementations; this has the effect of creating
multicast groups where many neurons are assigned a single
unique router address within the architecture. This strategy
will allow reduction of the overall SNN area requirements
as shown in Figure 11 (estimated by summing the router,
synapse, and neuron areas). For example, EMBRACE can
implement a fully connected 2-layered SNN with 104

neurons per layer, using a neuron/router ratio of 5 with an
associated area of 642 mm2 (shown by the dashed line in
Figure 11). It can be seen that this scaling trend for increased
neuron to router (N/R) ratios reduces the total device area
of EMBRACE. The trade-off for minimising the number of
routers (i.e., creating multicast groups) increased complexity
in the router interface due to addressing and arbitration
functions. This will increase the latency performance of the
NoC router; however, the multicast groups will minimise
the number of packet transmissions between routers and
therefore minimise the overall network latency incurred.

Further optimisation of EMBRACE can be achieved by
exploring the minimum number of CTS, p, per synapse
cell. Figure 6 illustrated p CTS per cell where the dynamic
range of the cell is defined by the number of CTS p and
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voltage values Vq. Reducing the number of CTS per cell can
reduce the EMBRACE area requirements. For example, in
Figure 12 the total area for a network, with 104 neurons per
layer and a N/R ratio of 5, can be reduced from ∼642 to
∼522 mm2 by reducing the number of CTS per cell from 10
to 5, respectively. This linear reduction in area is consistent
for other N/R ratios. Further research is currently underway
to identify the optimum number of p CTS per synapse cell.

5.4. Scalability. Figure 13 illustrates the total EMBRACE area
as a function of neuron density with a neuron/router ratio
of 5. Since the proposed NoC supports a regular layout of
the tiles and neuron communication, the interconnectivity
between layers using EMBRACE does not limit the network
size that can be implemented, unlike existing strategies. The
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figure also illustrates the linear growth of the area occupied
by the routers with the SNN interconnect requirements.
Although Figure 13 illustrates a synaptic density of the order
of 108 for a die area equivalent to the Xilinx Virtex-4 FPGA
[15], the calculations underestimate the total EMBRACE
area due to configuration circuitry and global chip wiring.
Results do however highlight a scaling trend, indicative of the
proposed architecture.

6. Discussion

The adaptability of EMBRACE provides a framework to
exploit the ability to reconfigure itself and also provide
alternative routing paths for damaged areas using NoCs. For
example, two levels of fault tolerance could be supported,
namely, at the synapse and tile levels.

The abstract basis of SNNs is the strengthening and
weakening of synaptic weights, whereby training algorithms
are used to derive appropriate weight values to reflect a
mapping between the input and desired output data. Faults
occurring in individual synapses could be tolerated by using
such algorithms to appropriately retrain the network when
the output deviates from the “golden” patterns. This process
can be achieved via the strengthening and/or weakening of
neighbouring synapse weights within the tile.

At a more coarse level, complete tiles could be remapped
or relocated to fault-free tiles, whereby the configurable data
of a damaged tile is reconfigured to a new tile with updated
router address contents and synaptic weights. For example,
the adaptability of each neural tile could be exploited to allow
its contents to be updated during runtime by any of its four
coordinate neighbours. When a fault is detected in one of
the neighbouring tiles, using a similar fault detection scheme
such as [41] the centre tile could take control and relocate
the configuration data of the faulty tile to a new available
tile. An address update packet could then be broadcast to
all tiles indicating the new location of the repaired tile. This
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approach would therefore provide a more robust distributed
repair mechanism as opposed to a centrally controlled
strategy.

Such a fault tolerant computing paradigm has the
potential to be used in aerospace avionics (e.g., safety systems
in space-craft or aeroplanes) or automotive electronics (e.g.,
engine management systems) where exposure to harsh envi-
ronmental conditions requires adaptive computing systems.

7. Summary and Future Work

The challenges for large scale SNN implementations on
reconfigurable platforms have been highlighted. A novel
EMBRACE hardware architecture has been presented which
utilises NoC routers and novel synapse cells to provide
the programmable and scalable interconnect and biocom-
putational resources, required in large scale SNNs. Results
have been presented, which demonstrate the functionality
and performance of EMBRACE using the benchmark XOR
problem. Similarly, results on the scalability of EMBRACE
in terms of area and power have been presented and the
capability of the EMBRACE architecture to support dense
SNNs has been illustrated. Overall, the approach has been
proven to be very promising.

Future work will explore NoC routing polices and
topologies for SNN spike traffic. Optimising the number of
neurons per neural tile will be tested, and the application
of asynchronous NoCs will be investigated to support the
QoS for spike-event traffic. Approaches to on-chip training
will also be investigated to support the programming of
the synapse cells and router. Integration of the neural tile
configuration architecture and router with the analogue
neural cell will be realised with the aim of developing a full-
scale EMBRACE implementation. Additionally, the adapt-
ability of EMBRACE provides an ideal framework to further
explore bioinspired fault tolerant computing paradigms,
whereby on-chip SNN learning and reprogrammability of
EMBRACE neural structures could potentially emulate the
repair behaviour of the brain. Future work will also explore
the requirements to support on-chip, self-adaptation for
fault tolerance computing applications.
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