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A Reconfigurable Digital Neuromorphic Processor with Memristive
Synaptic Crossbar for Cognitive Computing

YONGTAE KIM, YONG ZHANG, and PENG LI, Texas A&M University

This article presents a brain-inspired reconfigurable digital neuromorphic processor (DNP) architecture
for large-scale spiking neural networks. The proposed architecture integrates an arbitrary number of N

digital leaky integrate-and-fire (LIF) silicon neurons to mimic their biological counterparts and on-chip
learning circuits to realize spike-timing-dependent plasticity (STDP) learning rules. We leverage memristor
nanodevices to build an N×N crossbar array to store not only multibit synaptic weight values but also
network configuration data with significantly reduced area overhead. Additionally, the crossbar array is
designed to be accessible both column- and row-wise to expedite the synaptic weight update process for
learning. The proposed digital pulse width modulator (PWM) produces binary pulses with various durations
for reading and writing the multilevel memristive crossbar. The proposed column based analog-to-digital
conversion (ADC) scheme efficiently accumulates the presynaptic weights of each neuron and reduces silicon
area overhead by using a shared arithmetic unit to process the LIF operations of all N neurons. With
256 silicon neurons, learning circuits and 64K synapses, the power dissipation and area of our DNP are
6.45 mW and 1.86 mm2, respectively, when implemented in a 90-nm CMOS technology. The functionality
of the proposed DNP architecture is demonstrated by realizing an unsupervised-learning based character
recognition system.
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1. INTRODUCTION

The human brain mediates and produces our thoughts, actions, memory, feelings and
other complex tasks, which are all accomplished with great energy and space efficiency.
In contrast, for the conventional Von Neumann machines to do the same would consume
a tremendous amount of power, energy, and space resources, if not entirely impossible
[Merolla et al. 2011].

To date, implementing the Von Neumann architecture in scaled VLSI technologies
faces significant challenges as a result of growing process variations, device relia-
bility and power consumption. Brain-inspired neuromorphic computing may offer a
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promising architectural solution to overcoming these challenges. In particular, the neu-
romorphic architecture is well suited for complex processing tasks such as character or
image recognition, classification, and language learning with great power efficiency and
scalability [Mitra et al. 2009; Seo et al. 2011; Merolla et al. 2011; Serrano-Gotarredona
et al. 2009; Brink et al. 2013; Massoud and Horiuchi 2011]. Among these, spiking neu-
ral networks are of a particular interest since they more closely resemble biological
brains than more traditional artificial neural networks. Furthermore, this non-Von
Neumann paradigm comes with inherent error resilience and fault tolerance, which is
appealing for large-scale integration in scaled VLSI technologies.

Traditionally, silicon neurons have been implemented with analog circuits that uti-
lize the I-V characteristics of MOS transistors to mimic biological neurons [Mitra et al.
2009; van Schaik 2001; Wijekoon and Dudek 2008; Cosp et al. 2006]. Unfortunately,
analog circuit implementations are intrinsically susceptible to process, voltage and
temperature (PVT) variations and are difficult to reconfigure and interface. An ana-
log implementation often necessitates the use of area-consuming capacitors to store
synaptic weights, which hinders large-scale integration of spiking neurons [Indiveri
et al. 2006; Serrano-Gotarredona et al. 2009].

Two digital reconfigurable neuromorphic chips and their building blocks have been
recently demonstrated [Seo et al. 2011; Merolla et al. 2011; Imam et al. 2012; Arthur
et al. 2012]. These two designs support up to 256 programmable digital neurons as well
as 1024×256 binary synapses by means of an SRAM crossbar array, which occupies a
significant portion of the entire chip area. Binary synapses with a probabilistic weight
update scheme are adopted in Seo et al. [2011]. However, the low synaptic weight
resolution can limit learning performance. On the other hand, one limitation of the
work of Merolla et al. [2011] is its lack of on-chip learning capability.

Chua [1971] theoretically predicted the existence of memristor, as known as mem-
ory resistor, as the fourth fundamental passive circuit element. More recently, TiO2

thin-film-based memristors have been demonstrated at the nanoscale [Strukov et al.
2008]. The memristive nanodevice has gained increasing research interest and become
a promising solution for low-cost on-chip storage thanks to its non-volatility, excellent
scalability, and high integration density of 10 Gb/cm2 or greater [Ho et al. 2011; Yang
and Williams 2013]. Several multibit hybrid CMOS/memristor memory architectures
targeting high integration density and low power dissipation have been proposed to
substitute conventional SRAM and flash memories that are confronted with funda-
mental technology scaling limits [Merkel et al. 2011; Manem et al. 2012].

Several recent studies have suggested to leverage memristive nanodevices for build-
ing neuromorphic synaptic arrays [Jo et al. 2010; Snider 2008; Pershin and Ventra 2010;
K.-H. Kim et al. 2012; Hu et al. 2012]. In particular, ideas for implementing analog-
based CMOS/memristor neuromorphic circuits have been proposed in the literature.
Hu et al. [2012] proposes an analog-based Brain-State-in-a Box (BSB) recall hard-
ware using a memristor crossbar array. Character recognition is demonstrated with a
two-layer network on the proposed 256×256 memristor crossbar array. However, this
design does not support on-chip learning and it is assumed that all memristors are
preprogrammed or already trained. Additionally, the network topology is hardwired
to be a fixed two-layer network. In Ebong and Mazumder [2012], hybrid CMOS and
memristor circuits based on analog computation are discussed and compared with full
CMOS alternatives for a 5×5 two-dimensional position detection network that has 25
neurons and 80 synapses. In Serrano-Gotarredona et al. [2013], the implementation of
several spike-timing-dependent plasticity (STDP) learning rules using a combination
of memristors and analog CMOS circuits is presented.

While initial good progress has been made in hybrid CMOS/memristor circuits, ac-
cording to the authors’ best knowledge, there is no existing work which describes
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integration of digital leaky integrate-and-fire (LIF) neurons with CMOS/memristive
synaptic crossbar arrays. The particular goal of this work is to integrate memristor-
based synaptic crossbar arrays into a digital CMOS architecture. Different from the
earlier work on analog-based neuromorphic systems, we aim to leverage the contin-
uing scaling of digital CMOS devices for scalable realization of large spiking neural
networks in modern CMOS technologies. In particular, we present a reconfigurable dig-
ital neuromorphic processor (DNP) architecture comprising a memristive crossbar, an
array of digital LIF spiking neurons and on-line learning circuits that support STDP
learning rules. The reconfigurability of our digital architecture renders it a flexible
neuromorphic platform onto which a range of cognitive computing applications may be
mapped.

A preliminary version of this work has been presented in Y. Kim et al. [2012]. In
this article, we improve our neuromorphic circuits and architecture by addressing sev-
eral key design issues. To implement a multilevel memristor synaptic crossbar, we
systematically analyze the memristor device in terms of its programming time and dis-
cretization of memory storage. We also investigate memristor readout schemes to more
efficiently perform digital LIF operations and present a low-cost digital pulse width
modulation (PWM) scheme for writing the memristive crossbar. While our prior voltage-
controlled-oscillator (VCO)-based column analog-to-digital converter (ADC) in Y. Kim
et al. [2012] consumes a great deal of power, we address this limitation by introducing
asynchronous counters to measure the VCO oscillation frequency in digital form. The
proposed column ADC effectively accumulates the presynaptic weights of each neuron
and allows a single adder and comparator to be shared among all N neurons to perform
LIF operations without degrading throughput. This leads to considerable silicon area
reduction. The digital implementation style of the ADC is also amenable to integration.
In the proposed DNP, the N×N memristive synaptic array, which stores both multi-
bit synapse values and network configuration data, is designed to be accessible both
column- and row-wise to speed up the synaptic weight update process.

When implemented in a commercial 90-nm CMOS technology, a 256-neuron design
with a 256×256 synaptic array based on the proposed neuromorphic architecture has
an estimated area of 1.86 mm2 and power consumption of 6.45 mW under a regu-
lar supply voltage of 1.2 V, respectively. The proposed memristor cell is 12.8× more
area efficient than the transposable 8T SRAM cell presented in Seo et al. [2011]. Our
256×256 memristive crossbar array occupies only 8.6% of the total chip area while
supporting 3-bit synapses and storage of network configuration. Additionally, the VCO
based column ADC with asynchronous counters reduces the power consumption by
24.8% when compared to the synchronous-counter-based ADC at the cost of only 1.6%
area overhead.

The proposed neuromorphic architecture is rather flexible and can be configured to
various network topologies to support a range of cognitive learning applications. To
demonstrate its potential application, we configure our DNP to realize a two-layer
spiking network with over two hundred silicon neurons for character recognition with
unsupervised learning. The network is successfully trained to recognize all given let-
ters. Furthermore, the impacts of process variations and noise on learning performance
is analyzed for the proposed neuromorphic processor, which reveals the generally good
robustness of the realized neuromorphic system.

2. DIGITAL NEUROMORPHIC PROCESSOR ARCHITECTURE

2.1. Overall Processor Architecture

Figure 1 depicts the overall block diagram of the proposed DNP architecture for an
N-neuron network. It consists of a synapse unit, a learning unit with a global timer, a
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Fig. 1. Block diagram of the proposed digital neuromorphic processor architecture.

neuron unit, a LIF arithmetic unit and a system controller. The synapse unit consists
of the proposed N×N memristive crossbar array, a column ADC, a flash ADC array, a
read/write pulse generator and other interface circuits. The crossbar can represent a
fully recurrent network topology and store N2 all possible synaptic weights among the
N neurons.

A biological neuron has multiple dendrites and a single axon. It receives input spikes
from its presynaptic neurons and transmits output spikes to its postsynaptic neurons.
The axon may connect with the dendrites of multiple postsynaptic neurons. In the
crossbar array, a row and a column contain the axonal and dendritic connections,
respectively, of a mimicked biological neuron. The connection between the jth row
(axon) and ith column (dendrite) is represented by the synaptic weight w ji between
the jth and ith neurons. Each employed memristor device in the synaptic array keeps
not only a multibit synapse value but also the network connectivity information. The
proposed crossbar is fully reconfigurable in the sense that network connectivity can be
programmed for any N-neuron network. Since the full set of N × N connections may
not be necessary for a targeted network topology, we utilize the lowest storage level of
each memristor to represent the absence of connection between the corresponding pair
of the neurons. The detailed memristor cell utilization is presented in Section 3.

We adopt the LIF model to realize the dynamics of silicon neurons. The LIF model has
been shown to be effective for a number of learning applications. It is suitable for digital
implementation due to its moderate hardware overhead, that is, it can be realized using
a few arithmetic components including an adder and a comparator [Indiveri et al. 2011].
The neuron unit, which consists of a finite state machine (FSM) and N neuron elements,
emulates the LIF neuron dynamics while interfacing with the column (dendrite) ADC
and LIF arithmetic unit. The proposed DNP has two different memristor readout
circuits: a low-resolution ADC array and a column ADC, as described in Section 4.2.
Each neuron element tracks the membrane potential and has spike buffers to store both
the external input spikes that are fed by the off-chip environment and each output spike
that is generated when its membrane potential reaches a given threshold. Each neuron
element can be configured to be either excitatory or inhibitory, which potentiates or

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 38, Pub. date: April 2015.



A Reconfigurable Digital Neuromorphic Processor with Memristive Synaptic Crossbar 38:5

Fig. 2. Flow diagram of the proposed neuromorphic processor.

depresses the membrane potential of its postsynaptic neurons, respectively. In addition,
each neuron can be configured as either an input, an output or an internal neuron of
the network.

The learning unit is responsible for performing on-chip learning. It contains N learn-
ing elements that interface with the corresponding neuron elements and an FSM to
control the overall synaptic weight update process. Each learning element has a regis-
ter to maintain the corresponding neuron’s spike timing, which is used to calculate the
spike time difference between a presynaptic and a postsynaptic neurons. The learning
unit updates the synapse values in the crossbar based on spike time difference to re-
alize a given STDP learning rule. The STDP rule is programmable through the use of
look-up tables (LUTs) where synaptic weight change as a function of timing difference
is stored. These LUTs are shared by all N learning elements, thereby reducing silicon
area significantly. Our design allows for parallel STDP updates of synaptic weights.

The communication between the proposed neuromorphic processor and the external
environment is performed through the use of input and output spikes. External stimuli
are applied in the form of input spikes while the output response of the network is sent
off the chip in the form of output neuron spikes. In a character recognition system, for
example, input letters are encoded into sequences of input spikes that are applied to
the input neurons. The recognition (classification) result is identified from the spikes
of the output neurons that are outputted.

2.2. Flow Control of the Neuromorphic Processor

The system controller manages the overall operations of the processor through clocking-
based synchronous control as shown in Figure 2. Each step corresponds to a biological
time unit and consumes many hardware clock cycles. The membrane potential of every
neuron and the corresponding synaptic weights are updated per each biological step.
The processing flow consists of three stages named as: (1) spike input/output (I/O),
(2) neuron, and (3) learning. These stages are executed in a pipelined manner. The
spike I/O and learning stages are processed simultaneously because there are no data
and control hazards between them.

During the spike I/O stage, the spikes from the external environment are read into
the input spike buffers of input neuron elements. Meanwhile, the spikes of the out-
put neurons are read off the chip to observe as the output of the network. After re-
ceiving/transmitting all the input/output spikes, the neuron stage starts, where the
membrane potential of each neuron is updated by the LIF arithmetic unit according
to the governing neuronal dynamics. The neuron whose membrane potential exceeds
the given threshold voltage produces a spike. These spikes are read off the DNP as
the output during the spike I/O stage. After the neuron stage, the processing continues
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Fig. 3. Memristive device structure (left) and variable resistance model (right) [Strukov et al. 2008].

onto the third processing stage (i.e., the learning stage), where the synaptic weights are
updated according to the STDP learning rule. In this rule, the time difference between
a presynaptic and a postsynaptic spike events is measured to determine the synaptic
weight change. The synaptic array access schemes for updating synaptic weights and
membrane potentials are detailed in Section 3.

2.3. Neuron Dynamics of the Neuromorphic Processor

Each silicon neuron of the proposed processor implements the following LIF neuron
dynamics

Vi[t] = Vi[t − 1] + KSYN

M
∑

j=1

w ji Sj[t − 1] + KEXT Ei[t − 1] − VLEAK, (1)

where Vi is the membrane potential of the ith neuron, M is the number of pre-synaptic
neurons, KSYN is the synaptic weight parameter, w ji is the synaptic weight between the
jth and ith neurons, Sj is the activity bit that indicates whether the jth neuron fired,
KEXT is the external input spike parameter, Ei is the activity bit for the input spike of
the ith neuron, and VLEAK is the leaky potential.

If the membrane potential exceeds the given threshold voltage, the neuron element
generates a spike event and its membrane potential is reset to the resting potential.
The spiking activity bit of the ith neuron Si is set according to

Si[t] =

{

1 if Vi[t] > VTH

0 otherwise,
(2)

where VTH is the threshold voltage.
The detailed hardware realization of the neuronal dynamics is discussed in

Section 4.3.

3. MEMRISTIVE SYNAPTIC CROSSBAR ARRAY

In this section, we first briefly introduce the memristor model and two readout
schemes that are suitable for processing LIF operations of silicon neurons and synap-
tic weight update process. Then, the proposed memristive synaptic crossbar array and
CMOS/memristor hybrid cell are presented. Additionally, we propose a new digital
PWM scheme for both reading and updating memristive synapses. While an ana-
log PWM scheme has been conceptualized for implementing the STDP earning rule
[Snider 2008], the presented digital design is more amenable to integration into a
digital system architecture.

3.1. Memristor Model

A memristor is a two-terminal electronic device. Conceptually, it has two divided re-
gions: a doped and an undoped ones as shown in Figure 3. The memristor device model
can be mathematically expressed by Ho et al. [2011]

R(x) = x · RON + (1 − x) · ROFF, where 0 ≤ x ≤ 1. (3)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 38, Pub. date: April 2015.



A Reconfigurable Digital Neuromorphic Processor with Memristive Synaptic Crossbar 38:7

Fig. 4. Memristor sensing schemes by (a) load resistor and (b) summing amplifier.

In (3), RON and ROFF are the fully doped (lowest) and fully undoped (highest) resis-
tances of the memristor, respectively, and x is the internal state variable defined by the
proportion of the memristive device length D that is doped (i.e., x = w/D).

The memristor’s internal state x varies dynamically with the external input. A re-
cent experimental study has shown that the conductance of a memristive device can
be incrementally adjusted by altering the pulse width of its constant input voltage [Jo
et al. 2010]. In other words, a longer positive pulse duration leads to a larger increase
of memductance. Alternatively, the memristor state can be also changed by modulat-
ing the amplitude of the applied voltage input [Ho et al. 2011]. However, realizing
pulse amplitude modulation (PAM) requires programmable analog circuits which are
complex to integrate into a digital system. Hence, we realize the PWM scheme using
digital logic and include it as part of our digital architecture. In this work, we model
the memristors with parameters RON = 10K� and ROFF = 500K�. And the read voltage
VREAD and write voltage VWRITE are considered to be 1.2 V [Xu et al. 2011].

3.2. Memristor Readout Schemes

Two different ways to read the memristor internal state have been proposed by using
either a load resistor or a summing amplifier (i.e., current-to-voltage converter), as
depicted in Figure 4. The load-resistor-based sensing scheme is commonly adopted for
both binary and multilevel memristor memories due to the ease of implementation
[Ho et al. 2011; Merkel et al. 2011; Manem et al. 2012]. This scheme leverages a load
resistor RL, which is connected in series with the memristor, to form a voltage divider.
Hence, the output voltage VOUT of Figure 4(a) under a given read voltage VREAD is given
by

VOUT =

∑N
i=1(1/Ri)

(1/RL) +
∑N

i=1(1/Ri)
VREAD =

∑N
i=1 Gi

GL +
∑N

i=1 Gi

VREAD, (4)

where N is the number of memristors attached to the sensing node, Ri and Gi are the
resistance and conductance of memristor Mi, and RL and GL are those of the load resistor,
respectively. This scheme is unable to integrate multiple memristor internal states in
one step since the output voltage VOUT in this equation does not represent a linear
summation of either memristor resistances or conductances under a fixed read voltage
VREAD. To update the membrane potential of a neuron based on a dynamical neuron
model, what is possible with this scheme, though, is to accumulate all presynaptic
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Fig. 5. Uniform partitioning of conductance (memductance) for multilevel synaptic weight storage.

Table I. Normalized Write Times to Change Memristor Conductance
by One Level (RON = 10K�, ROFF = 500K�, VWRITE = 1.2V )

Level change 0 ⇔ 1 1 ⇔ 2 2 ⇔ 3 3 ⇔ 4 4 ⇔ 5 5 ⇔ 6 6 ⇔ 7 7 ⇔ 8

Time 8205 117 25 10 5 3 2 1

weights of the neuron, which are stored in N memristors, by spending N iterations
with an additional adder. In other words, one memristor state can be readout and
accumulated by the adder at a time, requiring a total of N2 iterations to complete all N
neurons’ LIF tasks. Alternatively, to concurrently integrate the pre-synaptic weights
of N neurons requires N adders and N iterations [Seo et al. 2011].

On the other hand, the summing-amplifier-based sensing scheme provides a linear
summation of conductances of memristors such that it is possible to integrate all pre-
synaptic weights of each neuron at once [Y. Kim et al. 2012]. This scheme forms a
virtual ground at the negative input terminal of the amplifier. The current from each
memristor flows into the virtual ground. Thus, the output voltage VOUT of Figure 4(b)
with the input voltage VREAD is given by

VOUT = RF

N
∑

i=1

VREAD

Ri

= RF

N
∑

i=1

GiVREAD, (5)

where RF is the feedback resistor of the amplifier.
Note that both schemes can be employed to sense the state of a single memristor while

the amplifier based scheme is more efficient for accumulating the internal states of
multiple memristors. Hence, we leverage the summing amplifier based sensing scheme
to accumulate all presynaptic weights of each neuron for LIF operations, whereas the
resistor-based sensing is exploited to detect each memristor’s current state in the
synaptic weight update process.

3.3. Multilevel Memristive Synaptic Storage

Since the summing amplifier based sensing provides a linear summation of conduc-
tances of memristors, each memristor is designed to have uniformly spaced conductance
(memductance) levels to represent a multilevel synaptic weight as shown in Figure 5.
However, what is important to note is that the programming (writing) time required
to perform a synaptic update has a strong dependency on the memristor current in-
ternal state [Manem et al. 2012]. Table I shows the write times needed to change the
conductance value by one level under different internal states according to our adopted
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Fig. 6. Proposed synaptic crossbar array and hybrid CMOS/memristor synaptic cell.

memristor model [Xu et al. 2011]. These write times are normalized with respect to
the time needed to move the memristor state from level 7 to level 8. Note that the
write times are symmetric with respect to the direction (e.g., write time for changing
from level 1 to level 0 and vice-versa are the same). The programming time required
to move from level 0 to level 1 is over 8000× longer than that from level 7 to level 8.
The excessive programming time required to change the state between levels 0 and 1
may notably slow down the overall on-chip learning speed during the training phase.
To minimize performance delay by avoiding long writing times, we utilize the lowest
level of the memristor state to store the network connectivity information and other
higher levels to represent the actual synapse value (i.e., 3-bit synapse) if there exists
a synaptic connection. As an example, if the memristor in the ith column and the jth
row of the crossbar is at level 0, there is essentially no connection between the jth and
the ith neurons. On the other hand, memristor conductance (memductance) level 4
indicates that the jth and ith neurons are connected with a synaptic weight of 3.

3.4. Memristive Crossbar Array and Cell Design

Figure 6 exhibits the proposed synaptic crossbar array and the CMOS/memristor hy-
brid synaptic cell. The two switches S1 and S2 in the cell are introduced to allow each
memristor to be accessible in both the column and row fashions. When the row (col-
umn) driver activates a word line, S1 (S2) switches of all cells that lie in the same row
(column) are turned on and ready to be accessed. Parallel voltage pulses are generated
by the read/write (R/W) pulse generator and applied to read or write all cells in the
row (column) as shown in Figure 6. To read from a cell, a fixed positive voltage pulse is
applied to the memristor cell when S3 and S4 are connected to the pulse generator and
the ADC (memristor readout circuit) lines, respectively. The current generated by the
cell due to the applied positive voltage pulse flows out and goes into the ADC line and
is converted to a digital value, reflecting the memductance of the cell. Unfortunately,
the applied positive pulse disturbs each memductance [Ho et al. 2011]. Therefore, a
flipped (i.e., negative) voltage pulse following the positive one is injected to each mem-
ristor to restore its memductance, resulting zero net flux injection for the memristor.
This is effectively done by connecting S3 and S4 to the ADC and the generator lines,
respectively.

In the write operation, the cells in either one row or column are accessed and updated
in parallel. A write voltage pulse is injected to each memristor cell and its memductance
is altered depending on the pulse duration. The write operation latency varies with
respect to the value to be written into the cell. It is possible to either increase or
decrease the memductance. For the latter, S3 and S4 are connected to the ADC and
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the generator lines, respectively, to effectively apply a negative voltage pulse to the
memristor cell.

3.5. Memristive Synaptic Crossbar Array Accesses

The synaptic crossbar array is accessed during both the neuron and learning stages.
At each hardware time step in the neuron stage, through the column driver, a neuron
element activates the corresponding column word line to access all its presynaptic
weights. A R/W pulse generator, which contains N digital PWMs and is detailed in
Section 4.1, produces parallel pulses for reading all the presynaptic weight values from
the memristor cells in the corresponding column of the crossbar. These values are sent
to the column ADC. The ADC accumulates these presynaptic weights and converts
the sum into a digital quantity. Finally, the neuron element updates its membrane
potential by adding up the accumulated presynaptic weights, the weighted external
spike input and the leaky potential through the LIF arithmetic unit.

For the learning stage, the synapse values are updated according to the STDP learn-
ing rule. To do this, each learning element has a time register to keep track of the
neuron’s spike event time that is stamped by the global timer. For each fired neuron,
the learning unit conducts a presynaptic and a postsynaptic weight updates in a row.
If a neuron fires,

(1) all its pre- (post-) synaptic neurons’ time registers are compared with the global
timer and the corresponding learning elements determine the amounts of synaptic
weight update according to the prestored STDP LUT;

(2) the column (row) driver activates the memristor crossbar array’s column (row) word
line that is associated with the dendrites (axon) of the fired neuron;

(3) the R/W pulse generater generates a read pulse word to the corresponding column
(row) to sense each memristor’s current internal state (i.e., current synaptic weight)
through the low-resolution ADC array;

(4) based on the current memristors’ states determined in step (3), the learning ele-
ments calculate the pulse durations needed to produce the desired synaptic weight
changes as determined in step (1).

(5) all pre- (post-) synaptic weights of the neuron are updated by means of the R/W
pulse generator with the durations determined in step (4).

Note that the R/W generator produces parallel write pulses that have different widths
according to not only the amount of each synaptic weight change but also the memris-
tor’s current internal state due to the nonlinear memristor device write-time charac-
teristics described in Section 3.3. This synaptic update process is triggered only when
the corresponding neuron fired in the neuron stage. In other words, if the membrane
potential of the ith neuron does not exceed the threshold voltage, then both the pre-
and postsynaptic weight update processes for the ith neuron are skipped. The en-
tire learning stage is omitted when no neuron has fired during the preceding neuron
stage. The proposed architecture processes spiking I/O tasks and the learning stage
simultaneously.

4. IMPLEMENTATIONS OF BUILDING BLOCKS

4.1. Digital Pulse Width Modulation for Memristive Synaptic Cells

As discussed in Section 3.5, the synaptic crossbar array is accessed during both the
neuron and learning stages through the R/W pulse generator, which contains N digital
PWMs. For instance, in the learning stage the proposed DNP uses a parallel write
pulse word, consisting of N binary pulses whose durations may be different from each
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Fig. 7. Proposed digital pulse width modulator.

other, to update all the presynaptic and postsynaptic weights of each neuron that has
fired.

Several PWM design considerations are worth discussing. The delay line based digi-
tal PWM requires a large number of delay cells to realize many different pulse widths
and a large multiplexer to select one output from these cells, leading to remarkable
area and power overheads [Syed et al. 2004]. Also, the delay cells are sensitive to PVT
variations, introducing pulse width variability that may lead to failures in writing
desired values to the memristors. Instead, we design a low-cost counter-based digital
PWM to generate pulses with various durations as illustrated in Figure 7.

In this PWM design, the counter records the number of cycles of the clock signal
CKPWM. Its output CNTPWM is compared with the desired number of cycles NPWM by the
digital comparator. The multiplexer outputs a “1” until CNTPWM reaches NPWM and after
that it outputs a “0”. The pulse duration is given by

tPWM = NPWM · tCKPWM, (6)

where NPWM and tCKPWM are the desired number of cycles and the clock period, respectively,
of the PWM clock CKPWM. Note that CKPWM does not have to be identical to the DNP
operating clock. NPWM is provided by the learning unit, where the amount of synaptic
weight change is calculated by the time difference between a pre- and a postsynaptic
firing events in accordance with the STDP rule in the learning stage. CKPWM and NPWM

can be straightforwardly configured according to the range of synaptic weight change
and device characteristics of the memristor. The R/W pulse generator includes N digital
PWMs to simultaneously access the memristive synaptic cells in either one column or
one row.

4.2. Memristor Readout

Figure 8 illustrates the proposed memristor readout block that includes a column ADC
and a low-resolution ADC array. The column ADC works only in the neuron stage to
conduct LIF operations while the low-resolution ADC array is activated during the
learning stage to sense each memristor’s internal state.

In Seo et al. [2011], each neuron circuit has its own adder and comparator to integrate
all presynaptic weights and determine firing activity. It requires N iterations to com-
plete all N neurons’ LIF tasks. The proposed column ADC, which contains a summing
amplifier, a sample-and-hold circuit and a high-resolution ADC, provides significant
power and area reductions without degrading overall throughput. It allows a single
adder and comparator (LIF arithmetic unit) to be shared by all N neurons. During
a LIF operation, the R/W pulse generator injects a pulse word into the correspond-
ing column to read all presynaptic weights from the memristor cells corresponding to
the processed neuron. The current from each cell flows into the virtual ground and is
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Fig. 8. Proposed memristor readout block consisting of a column ADC and a low-resolution ADC array.

summed at the negative terminal of the amplifier. The total current is converted to a
voltage quantity through the feedback amplifier. The sample-and-hold circuit keeps the
voltage and the high-resolution ADC transforms it into a digital value that corresponds

to the term
∑M

j=1 w ji Sj[t − 1] in (1). In this way, N-iterations are enough to complete

the LIF operations for all N neurons with only one LIF arithmetic unit (Section 4.3).
It is important to determine the desired column ADC resolution, which can be found

according to

resolution = ⌈log2N + log2L⌉, (7)

where N and L are the numbers of neurons and conductance levels of the memristor
cells in the array, respectively. Obviously, the flash ADC architecture is not suitable
for a high-resolution ADC because it requires 2K − 1 comparators to implement K-bit
analog-to-digital conversion, leading to considerable power and area consumptions. The
successive approximation register (SAR) and pipeline ADCs occupy large silicon area
because of the employed area-consuming passive components. Moreover, the SAR and
delta-sigma (��) ADCs are able to achieve a high-resolution but they unfortunately
have a relatively slow conversion rate that is in the KHz range.

In principle, the ADC architecture and synaptic crossbar access styles shall be jointly
optimized so as to optimally trade off between access speed, and power and area over-
heads. In the case of this work, we have found that a low-cost high-resolution ADC
with a moderate conversion speed is a good choice. For this, we adopt a multiphase
VCO-based ADC whose analog input alters the VCO frequency. The digital output of
the ADC is produced by measuring the VCO frequency using counters [Yoon et al.
2008].

The VCO-based ADC is readily implemented with a few digital components such as
counters, resulting in a small area overhead. Figure 9 shows the block diagram of the
VCO based ADC, which consists of a ring VCO, counters, and a tree adder, and delay
cells. We employ a 12-stage ring VCO with pseudo differential delay cells that are
based on an inverter structure with a NMOS current source. A back-to-back inverter
pair is used in each delay cell to produce a differential output. The VCO operating
frequency is adjusted by controlling the current source (i.e., a higher current leads to a
higher frequency). The clock phases of different VCO stages can be exploited to enhance
the ADC resolution [Kim et al. 2010]. Generally, the use of more phases results in a
higher resolution with higher power and area overheads. In our DNP, six phases (see
Figure 9) are employed to achieve a 12-bit ADC resolution for 256 neurons and 9
conductance levels of the memristor cells under 1 MHz conversion rate as described in
Section 5. These clock phases are connected to the respective digital counters whose
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Fig. 9. Block diagram of the proposed VCO-based ADC and delay cell.

outputs are summed by the tree adder to obtain the final digital output. The oscillation
frequency of our VCO is up to 1016 MHz. Thus, a 10-bit counter is used to measure
the frequency of each clock phase with a 1 MHz sampling frequency. The VCO usually
operates at a frequency of a few hundred MHz. Synchronous counters operating at such
a high frequency can consume a considerable amount of power [Y. Kim et al. 2012].
Hence, we employ asynchronous counters to significantly reduce the ADC power.

The learning stage also require AD conversions. Before performing a synaptic weight
update to set the weight to a specific value, the corresponding memristor’s current
internal state must be read out to determine the right pulse duration for writing the
memristor cell. This is because that the required pulse width varies with respect to the
current memristor state due to the nonlinear device characteristics as demonstrated in
Table I. Note that here a low-resolution AD conversion is sufficient since each synaptic
value needs to be read out individually. To do this, we employ an array of N low-
resolution flash ADCs to read all pre- (post-) synaptic weights of each column (row) in
parallel. Also, we adopt the load resistor based sensing scheme in Figure 4(a) to avoid
using multiple amplifiers and thereby reduce area and power dissipation. Each flash
ADC has eight comparators to detect each of nine internal state levels of the memristor
cell and a digital logic circuit for encoding the output of the comparators. The reference
voltage generator shared by the N flash ADCs is a resistor string that creates eight
reference voltages for the comparators of each ADC. Importantly, this string does not
have equally spaced resistor values since the state of memristor cells is equally sliced
not by resistance but by conductance (see Figure 5).

4.3. Neuron and LIF Arithmetic Units

As described in Section 3.2, we employ the summing-amplifier-based sensing scheme
to accumulate all presynaptic weights of each neuron for LIF operations. In conjunc-
tion with this memristive array access scheme, the neuron unit interfaces with a LIF
arithmetic unit to emulate the LIF neuron dynamics of (1) for all neurons during the
neuron stage. The block diagram of neuron elements with the LIF arithmetic unit and
the processing flow of the neuron unit are described in Figure 10. For each neuron, the
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Fig. 10. Neuron elements with a LIF arithmetic unit (left) and processing flow of neuron unit (right).

neuron unit makes the R/W pulse generator produce a read pulse word for the corre-
sponding column (dendrite) of the crossbar and sums up all the presynaptic weights of
the neuron (VINTPRE) through the column ADC. Importantly, only the synaptic weights
associated with the presynaptic neurons that fired at the previous time step t − 1 are
read to save power. Consider a network of 10 neurons as an example. If the 3rd, 4th,
and 5th neurons fired and the other 7 neurons did not fire at t − 1, only the 3rd, 4th,
and 5th PWMs in the R/W pulse generator produce a read pulse and the other PWMs
output a “0”. Similarly, this entire process of column reading and presynaptic weight
accumulation is skipped when there was no firing activity across the network at time
step t − 1, that is, ∀ j,0≤ j<N : Sj[t − 1] = 0 in (1). In this case, VINTPRE is forced to zero

due to the term
∑M

j=1 w ji Sj[t − 1] = 0 in (1) and only the leaky potential VLEAK and

the weighted external input (the KEXT term) are considered to update the membrane
potential.

Importantly, the column ADC output VINTPRE should be adjusted since our synaptic
cells also store the network connectivity information (e.g., the memristor conductance
level of 4 in the jth row and ith column of the crossbar indicates a synaptic weight
value of 3 between the jth and ith neurons). Therefore, the number of fired presynaptic
neurons NFIREPREi for the ith neuron is subtracted from VINTPRE. The former is evaluated by
the corresponding learning element during the synaptic weight update process (i.e., the
learning stage) at the previous time step t − 1. The subtractor output VINTPRE − NFIREPREi

is added to the corresponding membrane potential VMEMB, and the weighted external
input spike and leaky potential VLEAK are added as well. The adder’s output VMEMBNEW

is compared to the threshold voltage VTH by the digital comparator and the result is
sent to the respective neuron element through the demultiplexer and captured by its
output spike register. Meanwhile, VMEMBNEW is sent to the neuron element and stored in
the membrane register if it does not exceed VTH. Otherwise, the register is reset to the
resting potential VREST via the multiplexer.

4.4. Learning Unit

The learning unit is designed to perform on-chip STDP learning by calculating the
amounts of pre- and postsynaptic weight changes, determining the pulse durations to
write the desired weights, and updating the memristive crossbar array through the
R/W pulse generator.
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Fig. 11. Learning elements with shared LUTs.

Figure 11 exhibits the block diagram of the learning elements with two pro-
grammable LUTs. All learning elements contain their own time register to keep track
of the corresponding neuron’s spike event time and share two register-based LUTs, one
for storing the STDP learning curve and the other write pulse widths for the mem-
ristors. The STDP LUT holds several pairs of spike time difference �t and synaptic
weight change �W while the other LUT stores the required number of cycles of PWM
clock CKPWM to write each desired value to a memristor.

The design of the second LUT involves important area considerations. For K-bit

synapses, a brute-force implementation would require a large number of 2K(2K−1)
2 LUT

entries for all possible pairs of current and target memristor conductance levels. In-
stead, to reduce area and complexity of the selection logic, we design the LUT in
such a way that only the numbers of CKPWM cycles required to alter the memristor
state from the lowest level to each target (i.e., from level 1 to levels 2, 3, 4, 5, 6,
7, and 8) are stored using 2K − 1 entries. With this area-efficient design, the ac-
tual pulse duration for a given update is determined by finding the difference be-
tween the stored numbers of cycles of the current and target memristor levels. For
instance, the number of cycles required to increase the memristor level from 3 to
5 is obtained by subtracting the number of cycles needed for changing the memris-
tor level from 1 to 3 from that for changing the level from 1 to 5. As a result, we
attain 2K−1× area reduction (e.g., 4× reduction in the proposed DNP). In addition,
the learning unit supports a time scaling feature to provide additional programma-
bility for the stored STDP rule. It is implemented with a shift operation of the time
differences.

The processing of the learning stage for the entire network is performed as follows.
The synaptic weight updates are processed by iterating over all fired neurons. To
check each neuron’s firing activity, the learning unit checks the output spike buffer of
the corresponding neuron element, which is filled in the neuron stage. For each fired
neuron, the learning unit runs the following two back-to-back parallel processes, one
for presynaptic weight updates and the other postsynaptic weight updates.
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The respective learning element for every fired neuron updates its time register
with the global timer. Simultaneously, all learning elements calculate the scaled time
differences �t1,�t2, . . . ,�tN between the global timer and their time register values.
This step basically determines the firing time differences between this fired neuron
and all other neurons in the network. The synaptic weight changes �W1,�W2, . . . ,�WN

for �t1,�t2, . . . ,�tN are selected from the STDP LUT in parallel. Meanwhile, all pre-
(post-) synaptic weights W1, W2, . . . , WN (before update) are read from the corresponding
column (row) in the synaptic array through the R/W pulse generator and the low-
resolution ADC array, and are finally fed into the respective learning elements, also in
parallel.

The pre- (post-) synaptic weights to be written into the respective memristor cells
WNEW1, WNEW2, . . . , WNEWN are computed by the adder (i.e., ∀i : WNEWi = Wi + �Wi). Wi and
WNEWi correspond to the current and target levels of the ith memristor, respectively.
Then, each learning element concurrently looks up the cycle counts NWi and NWNEWi from
the entries associated with Wi and WNEWi from the pulse width LUT. The numbers of
cycles NPWM1, NPWM2, . . . , NPWMN required to update the pre- (post-) synaptic weight values
to WNEW1, WNEW2, . . . , WNEWN, respectively, are determined by subtracting each NWi from
NWNEWi (i.e., ∀i : NPWMi = NWNEWi − NWi).

Finally, the pulse generator produces a parallel write pulse word with
NPWM1, NPWM2, . . . , NPWMN as in Figure 7. When creating the word, NPWMi is set to “0” for
zero-valued synaptic wights (i.e., Wi = 0) since no pre- (post-) synaptic connection
exists between these neuron pairs. Additionally, for negative NPWMi values, the gen-
erator inverts the polarity of the pulses, which is effectively done by manipulating
the switches of the memristor cell as shown in Figure 6. Also, all learning elements
record the numbers of fired pre-synaptic neurons NFIREPRE1, NFIREPRE2, . . . , NFIREPREN during
the postsynaptic weight update process as needed for the following LIF operations as
detailed in Section 4.3. Note that the entire learning stage is skipped when there is no
firing activity across the network.

5. SIMULATION RESULTS

To demonstrate the application of the proposed digital neuromorphic processor archi-
tecture, a DNP with 256 silicon neurons, learning circuits and 64K synapses has been
implemented. Except for the memristor nanodevices, the proposed neuromorphic pro-
cessor is designed using a commercial 90-nm CMOS technology under a regular supply
voltage of 1.2 V. The digital blocks of the DNP are synthesized with a commercial stan-
dard cell library using Synopsys Design Compiler under 1-MHz main clock and 50-MHz
PWM clock frequencies. The analog components including the column ADC (e.g., the
ring VCO and summing amplifier) and low-resolution ADC array are custom designed.
The memristors used in the crossbar array are modeled with the parameters in Xu
et al. [2011]. Cadence Virtuoso and SOC Encounter are used for laying out the analog
and digital blocks, respectively. Cadence Virtuoso is used for final layout integration
to create the whole chip layout. Synopsys VCS and HSPICE are used to simulate the
digital and analog circuits, respectively. The results presented in this section are based
on prelayout simulation.

5.1. Column ADC Performance

To show the performance of the VCO-based ADC as proposed in Figure 9, we sweep
the input voltage from 0.45 V to 1.15 V with a 0.05 V step under a sampling frequency
of 1 MHz. The simulated input-to-output characteristic is shown in Figure 12(a). The
digital output spreads over a range between 1,440 and 5,862 (i.e., 12.1-bit resolution)
and exhibits excellent linearity with respect to the input (R2 = 0.9964). Thus, it satisfies

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 38, Pub. date: April 2015.



A Reconfigurable Digital Neuromorphic Processor with Memristive Synaptic Crossbar 38:17

Fig. 12. Column ADC performance: (a) input-to-output characteristics, and (b) power and area as functions
of counter type and resolution.

the resolution required in (7) to serve as a column ADC for the 256 silicon neurons and
256×256 memristive crossbar array with 3-bit synapses in the proposed architecture.

In Figure 12(b), we compare the power and area of the ADCs with asynchronous
and synchronous counters under various ADC resolutions. Up to 24 counters can be
attached to our 12-stage differential ring VCO in Figure 9, producing a ADC resolution
between 9- and 14-bits. Note that the tree adder size also varies according to the number
of counters. The ADC power consumptions are measured with an input voltage of 0.8 V,
which is the mean input level of Figure 12(a). It can be observed from Figure 12(b)
that the ADC with asynchronous counters is more power efficient than the one with
synchronous counters while the areas of the two designs are almost the same. With
a 12-bit resolution, the ADC adopting asynchronous counters dissipates 24.8% less
power with only a 1.6% area increase compared with the synchronous-counter-based
ADC, demonstrating the appealing low-power advantage of the former.

5.2. Overall Processor Performance

Figure 13(a) shows the layout of the proposed DNP with 256 neurons and 64 K synapses.
The chip dimension is 1.45 mm×1.28 mm. In the chip layout, the memristor crossbar
array is defined as an empty macro based on its estimated area. The area breakdown
for the neuromorphic processor is shown in Figure 13(b). The synapse unit, which
includes the column ADC, low-resolution ADC array, memristive crossbar, and pulse
generator, occupies about 40% of the chip area. Despite the relatively small area of the
memristive crossbar array (8.6%), realizing the parallel access scheme for updating
the multibit memristive crossbar in the learning stage requires integration of several
peripherals such as the array of low-resolution ADCs and multiple PWMs. As a result,
the learning unit occupies a large portion (42.2%) of the chip area. Nevertheless, as a
return, this parallel scheme expedites the synaptic weight update process significantly.

Figure 14 demonstrates the overall performance of the neuromorphic processor. The
power consumption of the processor as a function of network size, which is evaluated
based on the 90-nm CMOS technology and memristor parameters in Xu et al. [2011], is
depicted in Figure 14(a). The required column ADC resolution is a function of network
size as given in (7) (e.g., 9-bit column ADC for a 32-neuron design). For the range of
network size considered, doubling the number of integrated neurons N increases the
chip power by less than twice. The asynchronous-counter-based column ADC consumes
over 21% of the overall chip power dissipation but its power does not increase much

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 4, Article 38, Pub. date: April 2015.



38:18 Y. Kim et al.

Fig. 13. Neuromorphic processor: (a) layout of the neuromorphic processor with 256 neurons and 65,536
synapse and (b) area breakdown.

Fig. 14. Neuromorphic processor performance: (a) processor power as a function of network size, and (b) area
comparison of the 8T-SRAM based synaptic crossbars [Seo et al. 2011] and the proposed memristive crossbars.

as the resolution increases (see Figure 12(b)). Additionally, for the 256-neuron design
the power consumed by the synapse unit, which contains the memristive crossbar,
column ADC, flash ADC array, R/W pulse generator and other interface circuits, reaches
5.16 mW or 80% of the entire processor power. The power consumed by the memristive
crossbar is estimated by considering the average memristance and the supply voltage.
Therefore, synaptic access schemes with a better power efficiency are of a particular
interest, as will be explored in the future work.

Figure 14(b) compares the areas of the 8T-SRAM-based synaptic crossbars [Seo et al.
2011] with the proposed memristive crossbars. For a fair comparison, the areas of the
8T SRAM cell designs are scaled to the 90-nm technology node by considering the
feature size difference. Note that the proposed memristive crossbars store 9 levels of
synaptic weight values with the lowest level indicating network connectivity, leading to
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Table II. Neuromorphic Processor Implementation Summary and Comparison

Item [Seo et al. 2011] [Merolla et al. 2011] This work

Technology 45-nm SOI-CMOS 45-nm SOI-CMOS 90-nm CMOS

Synapse Storage SRAM SRAM Memristor

Supply Voltage 0.55 ∼ 1.0 V 0.85 ∼ 1.05 V 1.2 V

Operating (PWM) Frequency 1 MHz Event-Driven 1 (50) MHz

# of Neurons 256 256 256

# of Synapses 65,536 262,144 65,536

Synapse Resol. 1-bit 1-bit 3-bits (8-levels)

Neuron Model Param. Resol. 8-bits 8-bits 5-bits

Membrane Potential Resol. 8-bits 8-bits 16-bits

Neuron Model Digital LIF neuron Digital LIF neuron Digital LIF neuron

Learning Rule On-chip STDP Off-chip learning On-chip STDP

Synaptic Connection
Fully recurrent

crossbar
Fully reconfigurable

crossbar
Fully reconfigurable

crossbar

Power Dissipation N/A N/A 6.45 mW

Area 0.8 mm2 4.2 mm2 1.86 mm2

an effective resolution of 3.2-bits. The 8T SRAM crossbar designs only have a resolution
of 3-bits (8 levels).

As shown in Figure 14(b), the proposed designs are 12.8× more area efficient than
the reference designs for various crossbar sizes and can store more information (i.e.,
3.2-bits vs 3-bits). Furthermore, our 256×256 memristive crossbar occupies only 8.6%
of the total chip area (see Figure 13(b)) while supporting 3-bit synapses and storage of
network configuration. This is in contrast with the reference SRAM based design that
contributes approximately 13% of the chip area while supporting only 1-bit synapses
[Seo et al. 2011]. Obviously, the percentage of area occupied by the SRAM crossbar
would further increase as synapse resolution increases. Hence, the memristive crossbar
is certainly appealing for implementing on-chip multibit synaptic weight storage.

Table II summarizes the key specifications of the our neuromorphic processor design.
According to the best knowledge of the authors, no memristive synaptic-array-based
digital spiking neural networks have been reported in the literature yet. Therefore, we
list the two SRAM crossbar-array-based designs with digital LIF neurons in Table II for
comparison. These two chips have been implemented with a 45-nm SOI-CMOS tech-
nology. They employ supply voltage scaling to reduce power consumption. All three
designs have 256 silicon neurons adopting the digital LIF model. Among the two com-
pared reference designs, the design of Merolla et al. [2011] employs an asynchronous
design technique which is achieved by event-driven communication while the one of
Seo et al. [2011] adopts the standard synchronous clocking scheme with the same op-
erating frequency of 1 MHz. The design of Merolla et al. [2011] integrates 1024×256
binary synapses whose values are programmed based on off-chip learning. This design
consumes the largest area with 4× more synapses than other two designs which have
256×256 synapses. In contrast to the work of Merolla et al. [2011], our design and the
design of Seo et al. [2011] support on-chip STDP learning. The proposed DNP has a
3-bit synaptic resolution while the other two only support binary synapses. In contrast
with the proposed DNP, one key potential limitation of the design of Merolla et al.
[2011] is its lack of on-chip learning capability. Furthermore, the learning performance
of both reference designs ([Seo et al. 2011] and [Merolla et al. 2011]) may be limited
by their low (1-bit) synaptic resolution. To fairly compare the area, we scale down our
chip area approximately to the 45-nm technology node since our DNP is implemented
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Fig. 15. Digital neuromorphic processor configured as a two-layer network for character recognition.

with a 90-nm technology. When the chip area is scaled with a factor of L2 where L is
the ratio of the feature sizes (i.e., 45 nm vs. 90 nm), our chip area would be 0.465 mm2

at the 45-nm node, which is certainly more competitive than the other two reference
designs.

5.3. Application of the Neuromorphic Processor to Character Recognition

We conduct behavior-level digital simulation of the chip to demonstrate the functional-
ity of the neuromorphic processor designed in this article. The behavioral simulation is
necessary as gate or transistor level simulation of long training processes requires huge
CPU times, making it practically infeasible. To realistically capture the functionality
of the designed processor and its dependencies on important hardware design choices,
key network and design parameters including the digital LIF neuron dynamics, the
STDP learning rule, bit-widths of the neuron model and synapses as in Table II are
fully captured in behavioral simulation.

We specifically consider the case where the proposed DNP is configured to be a two-
layer learning network for character recognition as illustrated in Figure 15 [Esser et al.
2010]. The network has an input-and-output layer structure with 232 excitatory and
7 inhibitory neurons and is designed to recognize alphabets “A” −“Z” by unsupervised
learning. The input layer has 196 excitatory neurons, which form a two-dimensional
array. Each excitatory input neuron receives a binary input representing a pixel value
in the 14×14 pixel input pattern and projects its output to all excitatory output neurons
through plastic synapses. In the input layer, the excitatory neurons project signals to 6
inhibitory neurons which provide negative feedback to modulate the firing frequencies
of all excitatory neurons. The output layer consists of 36 excitatory neurons each of
which receives input from all the input excitatory neurons. Structurally similar to the
input layer, one inhibitory neuron is also employed in the output layer to provide strong
negative feedback. The inclusion of this inhibitory neuron implements a winner-take-
all (WTA) mechanism, where any firing output neuron activates the inhibitory neuron
and thereby prevents other output neurons from firing through the negative feedback
formed through the inhibitory neuron.

To train the network, we first convert each training letter, which is composed of a
14×14 pixel map, to 196 (=142) parallel input spike trains as the inputs to the network
in Figure 15. The corresponding input neuron is either silent or active to encode a
binary pixel. Then, for each alphabet from “A” to “Z”, the corresponding input spike
trains are applied to the respective input neurons for 5,000 biological time steps. As
described earlier, network connectivity can be configured by properly programming
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Fig. 16. Neuron index mapping and synaptic connections of the crossbar array.

Fig. 17. Learning results for network: (a) Receptive fields after training, and (b) spike rasters for output
neurons.

the memristive crossbar. For the configured two-layer character recognition chip, the
index mapping of Figure 16 is used to identify each of these 256 neurons. The network
connectivity matrix defined by the synaptic connections of the 256×256 memristive
crossbar array is shown in Figure 16, where each dot represents the connection (i.e., a
memristor conductance level greater than 0) between a pair of neurons.

The weights of all plastic synapses are set to random values before the training.
With any input pattern, the net input received by each excitatory output neuron can
be thought as the inner product of the presynaptic weight vector and a signal vector
representing the activities of the excitatory input neurons. The weight vector of each
output neuron corresponds to its receptive field, which describes the input pattern
whose presence leads to excitation of the corresponding output neuron. During the
training process, the network reshapes receptive fields of some excitatory output neu-
rons to memorize each alphabet such that these neurons receive strong excitations and
emit spikes with the presence of corresponding input pattern.

To demonstrate the recognition functionality of the proposed processor, we depict
the simulated training results of the network in Figure 17. The receptive fields of the
network after the training are shown in Figure 17(a). As can be seen, the receptive
fields are well shaped by the training in the sense that every letter from “A” to “Z”
appears at least once in the fields. This implies that during the recognition phase the
presence of a letter is expected to excite at least one output neuron whose receptive
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field closely resembles the presented letter, signifying the correct recognition of the
letter.

The spike rasters for the 36 output excitatory neurons, which correspond to the
neuron indices from 197 to 232, respectively, during the training process are plotted
in Figure 17(b). Due to the implemented WTA mechanism, each input pattern has the
tendency to excite only one or a few output neurons and all other output neurons are
inhibited through the negative feedback. For instance, the letter “A” is presented from
the first to the 5000th biological time steps in training. The 197th neuron’s receptive
field is trained to resemble “A” and this neuron is the only output neuron that actively
fires in this period. In short, the 197th neuron is the winner when alphabet “A” is
presented. For the training of some letters such as “B”, it is possible to have a small
number of winners. For example, more than one output neuron is trained to have
a “B” shaped receptive field. Similarly, as shown in Figure 17(a), all other letters
“C” −“Z” are memorized by the neural network. That is, when a letter is applied
as input, the corresponding one or multiple output neurons fire, indicating correct
recognition of the input letter. Therefore, the neural network achieves a recognition
rate of 100%. In Figure 17(b), we mark a few representative output neurons that have
fired appropriately to recognize the corresponding alphabets. For ease of visualization,
only a subset of these neurons are marked in the figure.

5.4. Impacts of Device Variability and Noise on the Neuromorphic Application

Most electrical devices are prone to process variations and noise. This vulnerability is
pronounced in scaled VLSI technologies and may degrade circuit performance and pro-
duce operational failures. As a nanodevice, memristors are also susceptible to process
variations and noise [Hu et al. 2012; Niu et al. 2010; Querlioz et al. 2013]. Currently,
there is a lack of quantitative memristor device variation data. To shed light on the
impacts of device variability on the performance of the targeted neuromorphic appli-
cation, we assume that these nonidealities of the memristors and analog circuits (e.g.,
ADCs, summing amplifier) may introduce certain degrees of errors in the synaptic
crossbar read/write process during the neuron stage. We model the collective effect of
these errors by adding an accumulated error at the column ADC output. On the other
hand, we assume that our digital processing core is error free since it operates at a very
low clock rate (e.g., 1 MHz). This is a safe assumption given the capability of modern
CMOS technologies.

Specifically, we perturb the digital output of the column ADC randomly by a certain
percent during the neuron stage. To have a semi-quantitative understanding of robust-
ness of learning performance, three degrees of variability, i.e., 5%, 10%, and 20%, are
considered at the ADC output. Note that these variability levels are fairly large. The
effective number of bit (ENOB) of the ideal column ADC is 12-bits in the full data
range. The losses of ENOB are then 8-, 8-, and 9-bits with 5%, 10%, and 20% variations
of the column ADC outputs, respectively. The same character recognition system in
Figures 15 and 16 is used to examine the resulting learning performance degradations
in terms of the trained receptive fields as shown in Figure 18. The ENOB of the ideal
column ADC is about 5-bits and the losses of ENOB are 2-, 2-, and 3-bits for 5%, 10%,
and 20% of the ADC output variations, respectively, based on the actual processing
workloads during the neuron stage.

Thanks to the built-in resilience of the neuromorphic architecture, the receptive fields
have been trained to recognize a majority of the alphabets even with presence of the
modeled variability. With 5% variation of the column ADC output, the trained receptive
fields of the output excitatory neurons cover all alphabets except for “E” and “Q” as in
Figure 18(a). 10% and 20% variations results in four (“I”, “Q”, “V”, “X”) and six (“E”, “F”,
“G”, “I”, “O”, “V”) missing alphabets out of a total of 26 in the corresponding receptive
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Fig. 18. Receptive fields after training under a variability degree of (a) 5%, (b) 10%, and (c) 20%.

fields, respectively, as shown in Figures 18(b) and 18(c). These results translate into a
corresponding recognition rate of 92.3%, 84.6%, and 76.9%, respectively. It is clear that
the variations do have an impact on performance. However, given that the levels of
variations considered are fairly large and the resulting performance degradations are
quite reasonable, we do observe good robustness of the realized neuromorphic system.

6. CONCLUSION

In this article, we have presented a scalable digital neuromorphic processor architec-
ture for large scale integration of spiking neurons. The proposed architecture targets
the realization of brain-inspired learning based on spike-timing-dependent plasticity
rules. One of the main focuses of this work is to propose to use memristor nanode-
vices to support a high degree of connectivity between neurons, a desired key feature
of neuromorphic computation. The proposed memristive synaptic crossbars store both
multibit synaptic weight values and network connectivity information with low area
overhead. The crossbar arrays are designed to be accessible both column- and row-wise.
Efficient accessing schemes and interface circuits are developed to expedite read and
write accesses that are key to the processing efficiency of the targeted neuromorphic
architecture.

With 256 silicon neurons, learning circuits and 64K synapses, the power dissipation
and area of our DNP are 6.45 mW and 1.86 mm2, respectively, when implemented in
a commercial 90-nm CMOS technology. The functionality of the proposed DNP archi-
tecture is demonstrated by realizing an unsupervised-learning-based character recog-
nition system whose learning performance is validated by developing and adopting a
behavioral digital simulation environment.

The robustness of our digital neuromorphic processor (DNP) architecture is studied
by injecting high degrees of variations at the output of the column ADC, mimicking
the effects of device variability and noise of the memristive crossbar and the analog-
to-digital conversion. For the character recognition system, the resulting learning per-
formance degradations are empirically examined. The presented neuromorphic system
appears to be robust with respect to these nonidealities.

Our results have suggested that neuromorphic architectures employing biologically-
inspired learning principles may be realized efficiently in silicon, in particular, with
use of emerging nonvolatile memory devices (e.g., memristors). In addition, it is also
suggested that neuromorphic architecture such as the one demonstrated in this article
may provide a promising paradigm for building new generations of error-tolerant VLSI
computing systems.
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