
...

A RECONFIGURABLE FABRIC FOR
ACCELERATING LARGE-SCALE
DATACENTER SERVICES

...

TO ADVANCE DATACENTER CAPABILITIES BEYOND WHAT COMMODITY SERVER DESIGNS

CAN PROVIDE, THE AUTHORS DESIGNED AND BUILT A COMPOSABLE, RECONFIGURABLE

FABRIC TO ACCELERATE LARGE-SCALE SOFTWARE SERVICES. THEY DEPLOYED THE

RECONFIGURABLE FABRIC IN A BED OF 1,632 SERVERS AND FIELD-PROGRAMMABLE GATE

ARRAYS IN A PRODUCTION DATACENTER AND USED IT TO INCREASE THE THROUGHPUT OF

THE RANKING PORTION OF THE BING WEB SEARCH ENGINE BY NEARLY A FACTOR OF TWO.

......Datacenter operators have relied
on continuous enhancements in server per-
formance and efficiency to make both new
and improved services economically viable.
Largely owing to power limitations, however,
servers are improving in performance and
efficiency at ever slower rates. Although spe-
cializing servers for specific workloads run-
ning at scale can provide efficiency gains, it is
problematic for two reasons. First, homoge-
neity in the datacenter is highly desirable to
reduce management issues and provide a
consistent platform for applications. Second,
datacenter services evolve rapidly, making
nonprogrammable hardware features im-
practical. Thus, datacenter providers face a
conundrum: they need continued improve-
ments in performance and efficiency, but
can’t obtain those improvements from stand-
ard general-purpose systems.

Reconfigurable chips such as field-pro-
grammable gate arrays (FPGAs) offer the
potential for flexible acceleration of many

workloads. However, as of this writing, FPGAs
have not been widely deployed as computa-
tional accelerators in either datacenter infra-
structure or client devices. One challenge
traditionally associated with FPGAs is the need
to fit the accelerated function into the available
reconfigurable area on one chip. In theory,
FPGAs can be virtualized using runtime recon-
figuration to support more functions than
could fit on a single device. However, current
reconfiguration times for standard FPGAs are
too slow to make this approach practical. Mul-
tiple FPGAs in a single server provide more
area but cost more, consume more power, and
are wasteful when unneeded. On the other
hand, being restricted to a single FPGA per
server restricts the workloads that might be
accelerated and could make the associated
gains too small to justify the cost.

This article describes a reconfigurable fab-
ric called Catapult, which balances these
competing concerns. The Catapult fabric is
embedded into each half-rack of 48 servers in

Andrew Putnam

Adrian M. Caulfield

Eric S. Chung

Derek Chiou

Kypros Constantinides

John Demme

Hadi Esmaeilzadeh

Jeremy Fowers

Gopi Prashanth Gopal

Jan Gray

Michael Haselman

Scott Hauck

Stephen Heil

Amir Hormati

Joo-Young Kim

Sitaram Lanka

James Larus

Eric Peterson

Simon Pope

Aaron Smith

Jason Thong

Phillip Yi Xiao

Doug Burger

...

10 Published by the IEEE Computer Society 0272-1732/15/$31.00�c 2015 IEEE

the form of a small board with a medium-
sized FPGA and local DRAM attached to
each server. FPGAs are directly wired together
in a 6 � 8 2D torus, allowing services to allo-
cate groups of FPGAs to provide the necessary
reconfigurable area to implement the desired
functionality.

Catapult hardware
The acceleration of datacenter services

imposes several stringent requirements on
the design of a large-scale reconfigurable fab-
ric. To succeed in the datacenter environ-
ment, an FPGA-based reconfigurable fabric
must meet the following requirements:

� preserve server homogeneity to avoid
complex management of heterogene-
ous servers,

� scale to large workloads that might
not fit into a single FPGA,

� avoid consuming too much power,
� avoid single points of failure,
� provide positive return on investment

(ROI), and
� operate within the space and power con-

fines of existing servers without hurting
network performance or reliability.

These requirements guide the architec-
tural choices we made throughout the Cata-
pult system development.

Integration
There are several ways to integrate FPGAs

into the datacenter. For example, they can be
clustered into FPGA-only racks or installed
into a few specialized servers per rack. Both
of these methods violate datacenter homoge-
neity and are vulnerable to single points of
failure, where the failure of a single FPGA-
enabled rack or server can take down many
conventional servers. In addition, communi-
cation to these specialized servers could
potentially create bottlenecks in the existing
network. Instead, this work proposes an
organization where one FPGA and local
DRAM is embedded into each server, retain-
ing server homogeneity while keeping com-
munication local between the CPU and the
FPGA using PCI Express (PCIe), with the
inter-server FPGAs tightly coupled via a sec-
ondary network.

Scalability
On its own, integrating only one FPGA

per server limits applications to those that
can be mapped to a single FPGA. To over-
come this shortcoming, we built a specialized
network to facilitate FPGA-to-FPGA com-
munication without degrading the existing
Ethernet network. Figure 1 illustrates how
the 48 FPGAs are organized at the rack level.
Each server has a single locally attached

(7,0) (7,1) (7,2) (7,3) (7,4) (7,5)
8 6 86

86

86

86

86

86

86

86

Server (4,0) Server (4,5)

Server (3,3)

Server (3,4)

Server (3,5)

Server (2,3)

Server (2,4)

Server (2,5)

Server (1,3)

Server (3,2)

Server (3,1)

Server (3,0)

Server (2,2)

Server (2,1)

Server (2,0)

Server (1,2)

8 6

8 6

8 6

8 6

8 6

8 6

8 6

(6,5)(6,4)(6,3)(6,2)(6,1)(6,0)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

(4,5)(4,4)(4,3)(4,2)(4,1)(4,0)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(2,5)(2,4)(2,3)(2,2)(2,1)(2,0)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(0,5)(0,4)(0,3)(0,2)(0,1)(0,0)

Figure 1. The logical mapping of the torus network, and the physical wiring on a pod of 2� 24

servers. Each server has a single locally attached field-programmable gate array (FPGA).

...

MAY/JUNE 2015 11

FPGA, and an inter-FPGA network lets serv-
ices be logically mapped across multiple
FPGAs. We selected a 2D, 6� 8 torus topol-
ogy, which balanced routability, resilience,
and cabling complexity. Each inter-FPGA
network link supports 20 Gbits per second of
bidirectional bandwidth at submicrosecond
latency, and comprises only passive copper
cables, with no additional networking costs
such as network interface cards or switches.

FPGA board design
Figure 2 shows the FPGA board and the

server into which it installs.1 The board
incorporates an Altera Stratix V D5 FPGA2

that has considerable reconfigurable logic,
on-chip memory blocks, and digital signal
processor units. The 8 Gbytes of DRAM
comprises two dual-rank DDR3-1600 error-
correcting code small outline DIMMs. The
PCIe and inter-FPGA network traces are
routed to a mezzanine connector on the bot-
tom of the board that plugs directly into the
motherboard. To avoid changes to the server
itself, we custom designed the board to fit
within a small 10 cm � 9 cm � 16 mm slot
occupying the rear of a 1U (1.75" high),
half-width server, which offered sufficient
power and cooling for a 25-W PCIe periph-
eral device. In addition, the FPGA is placed

downstream of both CPUs’ exhausts, making
it challenging to ensure that the FPGA does
not exceed thermal and power limits.

Resiliency
At datacenter scales, providing resiliency

is essential given that hardware failures occur
frequently, while availability requirements are
high. For instance, the fabric must stay avail-
able in the presence of errors, failing hard-
ware, reboots, and updates to the algorithm.
FPGAs can potentially corrupt their neigh-
bors or crash the hosting servers if care is not
taken during reconfiguration. Our reconfig-
urable fabric further requires a protocol to
reconfigure groups of FPGAs, remap services
to recover from failures, and report errors to
the management software.

Total cost of ownership
To balance the expected per-server per-

formance gains versus the necessary increase
in total cost of ownership, including both
increased capital costs and operating expenses,
we set aggressive power and cost goals to
achieve a positive ROI. Given the sensitivity
of cost numbers on elements such as produc-
tion servers, we can’t give exact dollar figures;
however, adding the FPGA card and network
cost less than 30 percent in the total cost of

FPGA

ECC SO-DIMM 2

(a)

(c)

(b)

8-Gbyte DDR3

Airflow Airflow

QSPI

flash

Figure 2. The FPGA board and the server into which it installs. (a) Block diagram of the FPGA

board. (b) Picture of the manufactured board. (c) Diagram of the 1U, half-width server that

hosts the FPGA board. The air flows from left to right, leaving the FPGA in the exhaust of both

CPUs.

..

TOP PICKS

..

12 IEEE MICRO

ownership, including a limit of 10 percent for
total server power.

Datacenter deployment
To test this architecture on a critical pro-

duction-scale datacenter service at scale, we
manufactured and deployed the fabric in a
production datacenter. The deployment con-
sisted of 34 populated pods of machines in
17 racks, for a total of 1,632 machines. Each
server uses an Intel Xeon two-socket EP
motherboard, with dual 12-core Sandy
Bridge CPUs, 64 Gbytes of DRAM, and two
solid-state drives (SSDs) in addition to four
hard-disk drives. The machines have a 10-
Gbit network card connected to a 48-port
top-of-rack switch, which in turn connects to
a set of level-two switches. The daughter
cards and cable assemblies were tested at
manufacture and again at system integration.
At deployment, we discovered that seven
cards (0.4 percent) had a hardware failure
and that one of the 3,264 links (0.03 percent)
in the cable assemblies was defective. Since
then, over several months of operation, we
have seen no additional hardware failures.

Application case study
To drive the requirements of this new

hardware platform, we ported a significant
fraction of Bing’s ranking engine onto the
Catapult fabric. We programmed the FPGA
portion of the ranking engine by hand in Ver-
ilog and partitioned it across seven FPGAs
plus one spare for redundancy. Thus, the
engine maps to rings of eight FPGAs on one
dimension of the torus.

The implementation produces results that
are identical to software (even reproducing
known bugs), with the exception of uncon-
trollable incompatibilities, such as floating-
point rounding artifacts caused by out-of-
order operations. Although there were oppor-
tunities for further FPGA-specific optimiza-
tions, we decided against implementing
them in favor of maintaining consistency
with software.

Bing search has multiple stages, many out-
side the scope of our accelerated ranking serv-
ice. As search queries arrive at the datacenter,
they are checked to see if they hit in a front-
end cache service. If a request misses in the

cache, it is routed to a top-level aggregator
(TLA) that coordinates the query processing
and aggregates the final result. The TLA sends
the same query (through midlevel aggrega-
tors) to many machines performing a selec-
tion service that finds documents (webpages)
that match the query, and then narrows them
down to a handful per machine. Each selected
document and its query is sent to a separate
machine running the ranking service (the por-
tion that we accelerate with FPGAs), which
produces a score for that document query.
The scores and document IDs are returned to
the TLA, which sorts them, generates appro-
priate captions, and returns the results. These
scores determine the final order of the web-
pages that the user sees.

The ranking service is performed as fol-
lows. When a document-query pair arrives at
a ranking service server, the server retrieves
the document and its metadata, which
together is called a metastream, from the
local SSD. The document is processed into
several sections, creating several metastreams.
A hit vector, which describes the locations of
query words in each metastream, is com-
puted. It consists of a tuple for each word in
the metastream that matches a query term.
Each tuple describes the relative offset from
the previous tuple (or start of stream), the
matching query term, and several other
properties.

Many dynamic features, such as the num-
ber of times each query word occurs in the
document, are then computed. Synthetic fea-
tures, called free-form expressions (FFEs), are
computed by arithmetically combining com-
puted features. All the features (static, dynamic,
and synthetic) are sent to a machine-learned
model that generates a score. That score deter-
mines the document’s position in the overall
ranked list of documents returned to the user.

We implemented most of the feature
computations, all of the FFEs, and the
machine-learned models on FPGAs. What
remains in software is the SSD lookup, the
hit vector computation, and a few software-
computed features.

Software interface
To avoid sending unnecessary data, the

ranking service compresses each document
into a form that contains only the data

...

MAY/JUNE 2015 13

relevant for the given query. This encoded
document-query request contains three sec-
tions: a header with basic request parame-
ters, the set of software-computed features
(static and dynamic), and the hit vector of
query-match locations for each document’s
metastreams.

The header contains necessary additional
fields, including the location and length of
the hit vector as well as the software-com-
puted features, document length, and num-
ber of query terms. The software-computed
features section contains one or more pairs of
{feature id, feature value} tuples for features
which either are not yet implemented on the
FPGA or do not make sense to implement in
hardware (such as static document features
that are independent of the query and are
stored alongside the document).

To save bandwidth, software-computed
features and hit vector tuples are encoded in
three different sizes using 2, 4, or 6 bytes
depending on the query term. These streams
and tuples are processed by the feature-
extraction stage to produce the dynamic fea-
tures. These, combined with the precom-
puted software features, are forwarded to
subsequent pipeline stages.

Because of buffer limitations in the
FPGA’s direct memory access interface and
the fact that the latency of feature extraction
is proportional to the tuple count, we trun-
cate compressed documents to 64 Kbytes.
This limitation represents the only deviation
of the accelerated ranker from the pure soft-
ware implementation, but the effect on

search relevance is small. Figure 3 shows a
cumulative distributive function of all docu-
ment sizes in an approximately 210,000-
document document sample collected from
real-world traces. As shown, nearly all of the
compressed documents are less than 64
Kbytes (only 300 require truncation). On
average, documents are 6.5 Kbytes, with the
99th percentile at 53 Kbytes.

For each request, the pipeline produces a
single score (a 4-byte float) representing how
relevant the document is to the query. The
score travels back up the pipeline through the
dedicated network to the FPGA that injected
the request. A PCIe direct memory access
transfer moves the score, query ID, and per-
formance counters back to the host.

Macropipeline
The processing pipeline is divided into

macropipeline stages, with the goal of each
macropipeline stage not exceeding 8 ls, and
a target frequency of 200 MHz per stage. At
that target, each stage has 1,600 FPGA clock
cycles or fewer to complete processing. Figure
4 shows how we allocate functions to FPGAs
in the eight-node group: one FPGA for fea-
ture extraction, two for FFEs, one for a com-
pression stage that increases scoring engine
efficiency, and three to hold the machine-
learned scoring models. The eighth FPGA is
a spare that lets the service manager rotate
the ring upon a machine failure and keep the
ranking pipeline alive.

Queue manager and model reload
So far, the pipeline descriptions assumed a

single set of features, FFEs, and machine-
learned scorers. In practice, however, there are
many different sets of features, free forms, and
scorers. We call these different setsmodels.Dif-
ferent models are selected on the basis of each
query and can vary for language (for example,
Spanish, English, or Chinese) or query type.
New experimental models are also frequently
run in production.

When a ranking request comes in, it
specifies which model should be used to score
the query. The query and document are for-
warded to the head of the processing pipeline
and placed in a queue in the FPGA’s local
DRAM that contains all queries using that
model. The queue manager (QM) takes

100

C
D

F
 (

%
)

80

60

40

20

0
0 10,000 20,000 30,000 40,000 50,000

Compressed document size (bytes)

60,000

Figure 3. Cumulative distribution of compressed document sizes. Nearly all

compressed documents are 64 Kbytes or less.

..

TOP PICKS

..

14 IEEE MICRO

documents from each queue and sends them
down the processing pipeline. When the
queue is empty or a timeout is reached, QM
will switch to the next queue. When a new
queue (that is, queries that use a different
model) is selected, QM sends a model reload
command down the pipeline, which will
cause each stage to load the instructions and
data needed to evaluate the query with the
specified model.

Model reload is a relatively expensive
operation. In the worst case, it requires all of
the embedded M20K RAMs to be reloaded
with new contents from DRAM. On each
board’s D5 FPGA, there are 2,014 M20K
RAM blocks, each with a 20-Kbit capacity.
Using the high-capacity DRAM configura-
tion at DDR3-1333 speeds, model reload
can take up to 250 ls. This is an order of
magnitude slower than processing a single
document, so the queue manager’s role in
minimizing model reloads among queries is
crucial to achieving high performance. How-
ever, although model reload is slow relative to
document processing, it is fast relative to
FPGA configuration or partial reconfigura-
tion, which ranges from milliseconds to sec-
onds for the D5 FPGA. An upper bound of
250 ls is reasonable so long as the number of
queued documents per model is large enough
to amortize the switching cost, which we
believe will be the case in production.

Feature extraction
The first stage of the scoring acceleration

pipeline, feature extraction (FE), calculates
numeric scores for various features on the
basis of the query and document combina-
tion. Potentially thousands of unique features
are calculated for each document, because
each feature calculation produces a result for
every stream in the request. Furthermore,
some features also produce a result per query
term. Our FPGA accelerator offers a signifi-
cant advantage over software because each of
the feature-extraction engines can run in par-
allel, working on the same input stream. This
is effectively a form of multiple-instruction,
single-data computation.

We currently implement 43 unique fea-
ture-extraction state machines, with up to
4,484 features calculated and used by down-
stream FFE stages in the pipeline. Each state

machine reads the stream of tuples one at a
time and performs a local calculation. For
some features that have similar computa-
tions, a single state machine is responsible for
calculating values for multiple features. As an
example, the NumberOfOccurences feature
simply counts up how many times each term
in the query appears in each stream in the
document. At the end of a stream, the state
machine outputs all nonzero feature values—
for NumberOfOccurences, this could be up to
the number of terms in the query.

To support a large collection of state
machines working in parallel on the same
input data at a high clock rate, we organize
the blocks into a tree-like hierarchy and repli-
cate the input stream several times. Figure 5
shows the logical organization of the FE hier-
archy. Input data (the hit vector) is fed into a
stream processing state machine, which pro-
duces a series of control and data messages
that the various feature state machines proc-
ess. Each state machine processes the stream
at a rate of one to two clock cycles per token.
When a state machine finishes its computa-
tion, it emits one or more feature index and

Queue
manager

FE

FFE 0

FFE 1

Compress

Scoring 0

Scoring 1

Scoring 2

Spare

ScoringRequests and

responses

CPU 4

CPU 0

CPU 3

CPU 2

CPU 1CPU 7

CPU 6

CPU 5

Figure 4. Mapping of ranking roles to FPGAs on the reconfigurable fabric.

Data is sent from each server to the queue manager. It is then dispatched

through the seven FPGA computation stages, and the results are sent back

to the source server.

...

MAY/JUNE 2015 15

values that are fed into the feature-gathering
network that coalesces the results from the 43
state machines into a single output stream for
the downstream FFE stages. Inputs to FE are
double buffered to increase throughput.

Free-form expressions
FFEs are mathematical combinations of

the features extracted during the feature-
extraction stage. FFEs give developers a way
to create hybrid features that are not conven-
iently specified as feature-extraction state
machines. There are typically thousands of
FFEs, ranging from simple (such as adding
two features) to large and complex (with

thousands of operations including condi-
tional execution and complex floating-point
operators such as ln, pow, and fpdiv). FFEs
vary greatly across models, so it’s impractical
to synthesize customized datapaths for each
expression.

One potential solution is to tile many off-
the-shelf soft processor cores (such as Nios II),
but these single-threaded cores are inefficient
at processing thousands of threads with long-
latency floating-point operations in the desired
amount of time per macropipeline stage (8
ls). Instead, we developed a custom multicore
processor with massive multithreading and
long-latency operations in mind. The result is
the FFE processor shown in Figure 6. The
FFE microarchitecture is highly area efficient,
letting us instantiate 60 cores on a single D5
FPGA.

The custom FFE processor has three key
characteristics that make it capable of execut-
ing all of the expressions within the required
deadline. First, each core supports four
simultaneous threads that arbitrate for func-
tional units on a cycle-by-cycle basis. When
one thread is stalled on a long operation such
as fpdiv or ln, other threads continue to make
progress. All functional units are fully pipe-
lined, so any unit can accept a new operation
on each cycle.

Second, rather than fair thread scheduling,
threads are statically prioritized using a priority
encoder. The assembler maps the expressions
with the longest expected latency to thread slot
0 on all cores, then fills in slot 1 on all cores,
and so forth. Once all cores have one thread in
each thread slot, the remaining threads are
appended to the end of previously mapped
threads, starting again at thread slot 0.

Third, the longest-latency expressions are
split across multiple FPGAs. An upstream
FFE unit can perform part of the computa-
tion and produce an intermediate result
called a metafeature. These metafeatures are
sent to the downstream FFEs like any other
feature, effectively replacing that part of the
expression with a simple feature read.

Because complex floating-point instruc-
tions consume a large amount of FPGA area,
multiple cores (typically six) are clustered
together to share a single complex block.
Arbitration for the block is fair with round-
robin priority. The complex block comprises

Stream
preprocessing

FSM

Feature-
gathering
network

Feature extraction FSMs

Figure 5. The first stage of the ranking pipeline. A compressed document is

streamed into the stream processing state machine, split into control and

data tokens, and issued in parallel to the 43 unique feature state machines.

The feature-gathering network collects generated feature and value pairs

and forwards them to the next pipeline stage.

Cluster
0

Core 0

FST Complex

Core 1 Core 2

Core 3 Core 4 Core 5

O
u

tp
u

t

Figure 6. Free-form expressions (FFEs) placed and routed on an FPGA. Sixty

cores fit on a single FPGA.

..

TOP PICKS

..

16 IEEE MICRO

units for ln, fpdiv, exp, and float-to-int. The
compiler translates pow, intdiv, and mod into
multiple instructions to eliminate the need
for expensive, dedicated units. In addition,
the complex block contains the feature stor-
age tile, which is double buffered, allowing
one document to be loaded while another is
processed.

Document scoring
The last stage of the pipeline is a machine-

learned model evaluator that takes the fea-
tures and FFEs as inputs and produces a sin-
gle floating-point score. This score is sent
back to the search software, and all of the
resulting scores for the query are sorted and
returned to the user in sorted order as the
sorted search results.

Evaluation
We evaluated the Catapult fabric by

deploying and measuring the Bing ranking
engine described earlier on a bed of 1,632
servers with FPGAs, of which 672 run the
ranking service. We compare the average and
tail latency distributions of Bing’s produc-
tion-level ranker running with and without
FPGAs on that bed. Figure 7 illustrates how
the FPGA-accelerated ranker substantially
reduces the end-to-end scoring latency rela-
tive to software for a range of representative
injection rates per server used in production.
For example, given a normalized target injec-
tion rate of 1.0 per server, the FPGA reduces
the worst-case latency by 29 percent in the
95th percentile distribution. The improve-
ment in FPGA scoring latency increases fur-
ther at higher injection rates, because the
variability of software latency increases at
higher loads (due to contention in the CPU’s
memory hierarchy), whereas the FPGA’s per-
formance remains stable.

Figure 8 shows the measured improve-
ment in scoring throughput while bounding
the latency at the 95th percentile distribu-
tion. For the points labeled on the x-axis at
1.0 (which represent the maximum latency
tolerated by Bing at the 95th percentile), the
FPGA achieves a 95 percent gain in scoring
throughput relative to software.

Given that FPGAs can be used to improve
both latency and throughput, Bing could

reap the benefits in two ways: for equivalent
ranking capacity, fewer servers can be pur-
chased (in the target given earlier, by nearly a
factor of two); or, new capabilities and fea-
tures can be added to the software and/or
hardware stack without exceeding the maxi-
mum allowed latency. Of course, a combina-
tion of the two is also possible.

F or over a decade, FPGAs have shown
promise for accelerating many computa-

tional tasks (see the “Related Work in FPGA-
Based Computation” sidebar), but they have

0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0

R
e
la

ti
v
e
 l
a
te

n
c
y
 (

F
P

G
A

/s
o
ft
w

a
re

)
Document injection rate (normalized)

Average 95% 99% 99.9%

Figure 7. Relative latency of the FPGA-accelerated ranker. The FPGA ranker

achieves lower average and tail latencies relative to software as the injection

rate increases.

0

1

2

3

4

5

0 0.5 1.0 1.5 2.0

T
h
ro

u
g

h
p

u
t
(n

o
rm

a
liz

e
d

)

Latency (normalized to 95th percentile target)

FPGA

Software

95% gain

Figure 8. Achievable performance within a given latency bound. The points

on the x-axis at 1.0 show the maximum sustained throughputs on both the

FPGA and software while satisfying Bing’s target for latency at the 95th

percentile.

...

MAY/JUNE 2015 17

not yet become mainstream in modern data-
centers. Unlike GPUs, FPGAs’ traditional
applications, such as rapid ASIC prototyping
and line-rate switching, are unneeded in
high-volume client devices and servers. How-
ever, FPGAs are now powerful computing
devices in their own right, suitable for use as
fine-grained accelerators. Our goal in build-
ing the Catapult fabric was to understand
what problems must be solved to operate

FPGAs at scale and whether significant per-
formance improvements are achievable for
large-scale production workloads.

When we first began this investigation, we
considered both FPGAs and GPUs as possi-
ble alternatives. Both classes of devices can
support copious parallelism because both
have hundreds to thousands of arithmetic
units available on each chip. We decided not
to incorporate GPUs because the current

..

Related Work in FPGA-Based Computation

Many other groups have worked on incorporating field-program-

mable gate arrays (FPGAs) into CPUs to accelerate workloads in large-

scale systems.

One challenge in developing a hybrid computing system is the

integration of server-class CPUs with FPGAs. One approach is to plug

the FPGA directly onto the native system bus, for example, in systems

using AMD’s HyperTransport1,2 or Intel’s Front Side Bus3 and Quick-

Path Interconnect (QPI).4 Although integrating the FPGA directly onto

the processor bus would reduce direct memory access latency, this

latency is not the bottleneck in our application and would not signifi-

cantly improve overall performance. In addition, attaching the FPGA to

QPI would require replacing one CPU with an FPGA, severely impact-

ing the server’s overall utility for applications that can’t use the FPGA.

IBM’s Coherence Attach Processor Interface5 and Convey’s

Hybrid-Core Memory Interconnect6 enable advanced memory sharing

with coherence between the FPGA and CPU. Because our ranking

application requires only simple memory sharing, these mechanisms

are not yet necessary but could be valuable for future applications.

Instead of incorporating FPGAs into the server, several groups

have created network-attached FPGA appliances that operate over

Ethernet or Infiniband. The Convey HC-2,6 Maxeler MPC series,7 Bee-

Cube BEE4,8 and SRC MAPstation9 are all examples of commercial

FPGA acceleration appliances. Although the appliance model appears

to be an easy way to integrate FPGAs into the datacenter, it breaks

homogeneity and reduces overall datacenter flexibility. In addition,

many-to-one network communication can result in dropped packets,

making the bounds on latencies more difficult to guarantee. Finally,

the appliance creates a single failure point that can disable many

servers, thus reducing overall reliability. For these reasons, we distrib-

ute FPGAs across all servers.

Several large systems have also been built with distributed FPGAs,

including the Cray XD-1,10 Novo-G,11 and QP.12 These systems inte-

grate the FPGA with the CPU, but the FPGA-to-FPGA communication

must be routed through the CPU. Maxwell is the most similar to our

design, as it directly connects FPGAs in a 2D torus using InfiniBand

cables, although the FPGAs do not implement routing logic.13 These

systems are targeted to high-performance computing rather than

datacenter workloads, but they show the viability of FPGA accelera-

tion in large systems. However, datacenters require greater flexibility

within tighter cost, power, and failure tolerance constraints than spe-

cialized high-performance computing machines, so many of the design

decisions made for these systems do not apply directly to the Catapult

fabric.

FPGAs have been used to implement and accelerate important data-

center applications such as Memcached,14,15 compression and decom-

pression,16,17 k-means clustering,18,19 and Web search. Researchers

have used FPGAs to accelerate search,20,21 but they focused primarily

on the selection stage of Web search, which selects which documents

should be ranked. Our application focuses on the ranking stage, which

takes candidate documents chosen in the selection stage as the input.

The free-form expression (FFE) stage is a soft processor core, one

of many available for FPGAs, including MicroBlaze22 and Nios II.23

Unlike other soft cores, FFE is designed to run a large number of

threads, interleaved on a cycle-by-cycle basis.

The Shell/Role design is aimed at abstracting away the board-

level details from the application developer. Several other projects

have explored similar directions, including VirtualRC,24 CoRAM,25

BORPH,26 and LEAP.27

References

1. D. Slogsnat et al., “An Open-Source HyperTransport Core,”

ACM Trans. Reconfigurable Technology and Systems, vol. 1,

no. 3, 2008, article 14.

2. DRC Accelium Coprocessors Datasheet, white paper, DRC,

2014.

3. L. Ling et al., “High-Performance, Energy-Efficient Platforms

using In-Socket FPGA Accelerators,” Proc. ACM/SIGDA Int’l

Symp. Field Programmable Gate Arrays, 2009, pp. 261–264.

..

TOP PICKS

..

18 IEEE MICRO

power requirements of high-end GPUs are
too high for conventional datacenter servers,
and because it was unclear whether some
latency-sensitive ranking stages (such as fea-
ture extraction) would map well to GPUs.

We have demonstrated that a significant
portion of a complex datacenter service can
be efficiently mapped to FPGAs using a low-
latency interconnect to support computa-
tions that must span multiple FPGAs. Special
care must be taken when reconfiguring

FPGAs or rebooting machines, so they do
not crash the host server or corrupt their
neighbors. We implemented and tested a
high-level protocol for ensuring safety when
reconfiguring one or more chips. With this
protocol and the appropriate fault-handling
mechanisms, we showed that a medium-scale
deployment of FPGAs can increase ranking
throughput in a production search infrastruc-
ture by 95 percent at comparable latency to a
software-only solution. The added FPGA

4. An Introduction to the Intel Quickpath Interconnect, Intel,

Jan. 2009.

5. J. Stuecheli, “Next Generation POWER Microprocessor,”

Hot Chips 2013; www.hotchips.org/wp-content/uploads

/hc archives/hc25/HC25.20-Processors1-epub/HC25.26.210

-POWER-Studecheli-IBM.pdf.

6. The Convey HC-2 Computer, white paper, Convey Com-

puter, 2012; www.conveycomputer.com/files/4113/5394

/7097/Convey HC-2 Architectual Overview.pdf.

7. O. Pell and O. Mencer, “Surviving the End of Frequency Scal-

ing with Reconfigurable Dataflow Computing,” ACM

SIGARCH Computer Architecture News, vol. 39, no. 4, 2011,

pp. 60–65.

8. BEE4 Hardware Platform, BEEcube, 2011.

9. MAPstation Systems, white paper, SRC, 2014.

10. Cray XD1 Datasheet, Cray, 2004.

11. A. George, H. Lam, and G. Stitt, “Novo-G: At the Forefront of

Scalable Reconfigurable Supercomputing,” Computing in

Science Eng., vol. 13, no. 1, 2011, pp. 82–86.

12. M. Showerman et al., “QP: A Heterogeneous Multi-Acceler-

ator Cluster,” Proc. 10th LCI Int’l Conf. High-Performance

Clustered Computing, 2009.

13. R. Baxter et al., “Maxwell—A 64 FPGA Supercomputer,”

Eng. Letters, vol. 16, no. 3, 2008, pp. 426–433.

14. M. Lavasani, H. Angepat, and D. Chiou, “An FPGA-Based In-

line Accelerator for Memcached,” IEEE Computer Architec-

ture Letters, vol. 13, no. 2, 2013, pp. 57–60.

15. M. Blott and K. Vissers, “Dataflow Architectures for 10Gbps

Line-Rate Key-Value Stores,” Hot Chips 2013, 2013; www

.hotchips.org/wp-content/uploads/hc archives/hc25/HC25

.50-FPGA-epub/HC25.27.510-Dataflow-Blott-Vissers-Xlinix

-final no animation.pdf.

16. IBM PureData System for Analytics N2001, white paper,

IBM, 2013.

17. A. Martin, D. Jamsek, and K. Agarawal, “FPGA-Based Appli-

cation Acceleration: Case Study with GZIP Compression/

Decompression Streaming Engine,” Proc. Int’l Conf. Com-

puter-Aided Design, 2013.

18. M. Estlick et al., “Algorithmic Transformations in the Imple-

mentation of K-Means Clustering on Reconfigurable

Hardware,” Proc. ACM/SIGDA 9th Int’l Symp. Field Program-

mable Gate Arrays, 2001, pp. 103–110.

19. H.M. Hussain et al., “Highly Parameterized K-means Cluster-

ing on FPGAs: Comparative Results with GPPs and GPUs,”

Proc. Int’l Conf. Reconfigurable Computing and FPGAs,

2011, pp. 475–480.

20. J. Yan et al., “Efficient Query Processing for Web Search

Engine with FPGAs,” Proc. IEEE 20th Int’l Symp. Field Pro-

grammable Custom Computing Machines, 2012, pp.

97–100.

21. W. Vanderbauwhede, L. Azzopardi, and M. Moadeli, “FPGA

Accelerated Information Retrieval: High-Efficiency Document

Filtering,” Proc. Int’l Conf. Field Programmable Logic and

Applications, 2009, pp. 417–422.

22. MicroBlaze Processor Reference Guide, 14th ed., Xilinx,

2012.

23. Nios II Processor Reference Handbook, 13th ed., Altera,

2014.

24. R. Kirchgessner et al., “VirtualRC: A Virtual FPGA Platform

for Applications and Tools Portability,” Proc. ACM/SIGDA

Int’l Symp. Field Programmable Gate Arrays, 2012, pp.

205–208.

25. E.S. Chung, J.C. Hoe, and K. Mai, “CoRAM: An In-Fabric

Memory Architecture for FPGA-Based Computing,” Proc.

19th ACM/SIGDA Int’l Symp. Field Programmable Gate

Arrays, 2011, pp. 97–106.

26. H.K.-H. So and R. Brodersen, “A Unified Hardware/Software

Runtime Environment for FPGA-Based Reconfigurable Com-

puters Using BORPH,” ACM Trans. Embedded Computing

Systems, vol. 7, no. 2, 2008.

27. M. Adler et al., “Leap Scratchpads: Automatic Memory and

Cache Management for Reconfigurable Logic,” Proc. 19th

ACM/SIGDA Int’l Symp. Field Programmable Gate Arrays,

2011, pp. 25–28.

...

MAY/JUNE 2015 19

computing boards increased power con-
sumption by only 10 percent and did not
exceed our 30 percent limit in an individual
server’s total cost of ownership, yielding a sig-
nificant overall improvement in system
efficiency.

We conclude that distributed reconfigura-
ble fabrics are a viable path forward as
increases in server performance level off, and
will be crucial at the end of Moore’s law for
continued cost and capability improvements.
Reconfigurability is a critical means by which
hardware acceleration can keep pace with the
rapid rate of change in datacenter services.

A major long-term challenge is pro-
grammability. FPGA development still re-
quires extensive hand-coding in Register
Transfer Level and manual tuning. Yet we
believe that incorporating domain-specific
languages such as Scala or OpenCL, FPGA-
targeted C-to-gates tools such as AutoESL or
Impulse C, and libraries of reusable compo-
nents and design patterns, will be sufficient
to permit high-value services to be produc-
tively targeted to FPGAs for now. Longer
term, more integrated development tools will
be necessary to increase the programmability
of these fabrics beyond teams of specialists
working with large-scale service developers.
Within 10 to 15 years, well past the end of
Moore’s law, compilation to a combination
of hardware and software will be common-
place. Reconfigurable systems, such as the
Catapult fabric presented here, will be neces-
sary to support these hybrid computation
models.

MICRO

Acknowledgments

Many people across many organizations
contributed to this system’s construction,
and although they are too numerous to list
here individually, we thank our collaborators
in Microsoft Global Foundation Services,
Bing, the Autopilot team, and our colleagues
at Altera and Quanta for their excellent part-
nership and hard work. We thank Reetu-
parna Das, Ofer Dekel, Alvy Lebeck, Neil
Pittman, Karin Strauss, and David Wood
for their valuable feedback and contribu-
tions. We also thank Qi Lu, Harry Shum,
Craig Mundie, Eric Rudder, Dan Reed, Sur-
ajit Chaudhuri, Peter Lee, Gaurav Sareen,

Darryn Dieken, Darren Shakib, Chad Wal-
ters, Kushagra Vaid, and Mark Shaw for
their support.

..

References

1. K. Vaid,M. Shaw, andM. Drake,HowMicro-

soft Designs its Cloud-Scale Servers, white

paper, Microsoft, 2014.

2. Stratix V Device Handbook, 14th ed., Altera,

2014.

Andrew Putnam is a principal research
hardware development engineer in Micro-
soft Research NExT. His research interests
include reconfigurable computing, future
datacenter design, and computer architec-
ture. Putnam has a PhD in computer sci-
ence and engineering from the University of
Washington. Contact him at anputnam
@microsoft.com.

Adrian M. Caulfield is a senior research
hardware development engineer in Micro-
soft Research NExT. His research interests
include computer architecture and reconfig-
urable computing. Caulfield has a PhD in
computer engineering from the University
of California, San Diego. Contact him at
acaulfie@microsoft.com.

Eric S. Chung is a researcher in Microsoft
Research NExT. His research focuses on the
intersection of computer architecture and re-
configurable computing with FPGAs. Chung
has a PhD in electrical and computer engineer-
ing from Carnegie Mellon University. Contact
him at erchung@microsoft.com.

Derek Chiou is a principal architect at Bing
and an associate professor (on leave) at the
University of Texas at Austin. His research
interests include FPGA-based acceleration,
high-level descriptions of hardware, and high-
performance computer simulation techniques.
Chiou has a PhD in electrical engineering and
computer science from the Massachusetts
Institute of Technology. Contact him at
dechiou@microsoft.com.

Kypros Constantinides is a senior hardware
development engineer at Amazon Web Serv-
ices. His research interests include scalable

..

TOP PICKS

..

20 IEEE MICRO

server platform architectures for datacenters
and heterogeneous compute architectures.
Constantinides has a PhD in computer sci-
ence and engineering from the University of
Michigan. He performed the research for this
article while at Microsoft Research. Contact
him at kypros@amazon.com.

John Demme is an associate research scien-
tist at Columbia University. His research
interests include programming paradigms
for spatial computing and data-intensive
computing. Demme has a PhD in computer
science from Columbia University. Contact
him at jdd@cs.columbia.edu.

Hadi Esmaeilzadeh is the Allchin Family
Early Career Professor of Computer Science
at the Georgia Institute of Technology. He
founded and directs the Alternative Com-
puting Technologies Lab. His research inter-
ests include developing new technologies
and cross-stack solutions to build next-gen-
eration computer systems for emerging
applications. Esmaeilzadeh has a PhD in
computer science from the University of
Washington. Contact him at hadi@cc
.gatech.edu.

Jeremy Fowers is a research engineer in the
Catapult team at Microsoft Research. His
research focuses on creating FPGA accelera-
tors and frameworks to better use custom
FPGA logic and hard intellectual-property
blocks. Fowers has a PhD in electrical engi-
neering from the University of Florida.
Contact him at jfowers@microsoft.com.

Gopi Prashanth Gopal is a senior engineer-
ing manager at Amazon. His research inter-
ests include computer vision, virtual reality,
and machine learning. Prashanth Gopal has
an MS in computational engineering from
Mississippi State University. He performed
the research for this article while at Bing.
Contact him at gopiprashanth@gmail.com.

Jan Gray is a consultant, computer archi-
tect, and software architect. His research
focuses on the design of FPGA-optimized
soft processor arrays and computation accel-
erators. Gray has a BMath in computer sci-
ence and electrical engineering from the

University of Waterloo, Canada. Contact
him at jsgray@acm.org.

Michael Haselman is a software engineer at
Microsoft Applied Sciences Group (Bing).
His research interests include FPGAs and
computation accelerators. Haselman has a
PhD in electrical engineering from the Uni-
versity of Washington. Contact him at
mikehase@microsoft.com.

Scott Hauck is a professor in the Depart-
ment of Electrical Engineering at the Uni-
versity of Washington and a consultant with
Microsoft on the Catapult project. His
research focuses on FPGAs and reconfigura-
ble computing. Hauck has a PhD in com-
puter science and engineering from the Uni-
versity of Washington. Contact him at
hauck@uw.edu.

Stephen Heil is a principal program man-
ager at Microsoft Research. His research
focuses on the development of custom pro-
grammable hardware accelerators for use in
Microsoft datacenters. Heil has a BS in elec-
trical engineering technology and computer
science from the College of New Jersey (for-
merly Trenton State College). Contact him
at stephen.heil@microsoft.com.

Amir Hormati is a senior software engineer
at Google. His research focuses on large-
scale data analysis and storage platforms.
Hormati has a PhD in computer science
and engineering from the University of
Michigan. He performed the research for
this article while at Microsoft Research.
Contact him at hormati@gmail.com.

Joo-Young Kim is a senior research hard-
ware development engineer at Microsoft
Research. His research focuses on high-per-
formance accelerator design for datacenter
workloads. Kim has a PhD in electrical engi-
neering from the Korea Advanced Institute
of Science and Technology. Contact him at
jooyoung@microsoft.com.

Sitaram Lanka is a group engineering
manager for Search Platform at Bing. His
research interests include distributed systems,
large-scale systems, and fault tolerance. Lanka

...

MAY/JUNE 2015 21

has a PhD in computer science from the
University of Pennsylvania. Contact him at
slanka@microsoft.com.

James Larus is a professor and the dean of
the School of Computer and Communica-
tion Sciences at �Ecole Polytechnique F�ed�erale
de Lausanne. His research interests include
programming languages, compilers, and com-
puter architecture. Larus has a PhD in com-
puter science from the University of Califor-
nia, Berkeley. He is an ACM Fellow. Contact
him at james.larus@epfl.ch.

Eric Peterson is a principal mechanical
architect at Microsoft Research. His research
interests include new datacenter energy sys-
tems and system integration. Peterson has a
BS in mechanical engineering from Texas
A&M University. Contact him at eric
.peterson@microsoft.com.

Simon Pope is a program manager for
Microsoft. His research focuses on the nexus
of computing and psychology. Pope has a
master’s in cognitive science from the Uni-
versity of New South Wales. Contact him at
simon.pope@microsoft.com.

Aaron Smith is a principal research software
development engineer at Microsoft Research.
His research focuses on the development of
advanced optimizing compilers and micro-
processors. Smith has a PhD in computer sci-

ence from the University of Texas at Austin.
Contact him at aaron.smith@microsoft.com.

Jason Thong is a hardware design engineer
with Microsoft Research. His research in-
terests include hardware acceleration, heter-
ogeneous computing, and computer-aided
design. Thong has a PhD in computer engi-
neering from McMaster University. Contact
him at a-jathon@microsoft.com.

Phillip Yi Xiao is a senior software engineer
at Bing. His research focuses on distributed
computing architecture and machine learn-
ing. Xiao has a master’s in computer science
and engineering from JiaoTong University.
Contact him at phxiao@microsoft.com.

Doug Burger directed the Hardware, Devi-
ces, and Experiences Group at Microsoft
Research NExT. His research interests in-
clude cloud architecture, efficient silicon
architectures, and machine-learned personal
services. Burger has a PhD in computer sci-
ence from the University of Wisconsin–
Madison. He is an IEEE and ACM Fellow.
Contact him at dburger@microsoft.com.

..

TOP PICKS

..

22 IEEE MICRO

