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Abstract: This paper presents a reconfigurable hybrid Radio Frequency (RF) rectifier designed to
efficiently convert AC RF power to DC voltages for an energy harvesting system. The proposed
reconfigurable rectifier adopts the advantage of low conduction loss in the switch-connected rectifier
and low reverse current loss in the diode-connection rectifier topology to enhance its power con-
version efficiency (PCE). Capable of reconfiguring into different rectifier topologies, the proposed
circuit can reconfigure into a switch-based cross-coupling differential drive (CCDD) at low input
power and a diode-based hybrid rectifier at higher input power for a wide dynamic range operation.
Designed and implemented on a CMOS 65 nm technology, the post-layout result records a peak PCE
of 88.7% and a wide PCE dynamic range (PDR) of 16 dBm for PCE >40%. The proposed circuit also
demonstrates a −21 dBm sensitivity output across a 1 MΩ output load.

Keywords: RF energy harvesting (RFEH); CMOS; RF-DC; reconfigurable rectifier; CCDD; wide
dynamic range

1. Introduction

With the increasing demand for self-powered autonomous sensors for the Internet of
Things (IoT), energy harvesting will become a key enabling technology with widespread
deployment. The uprising of radiofrequency (RF) has enabled widespread wireless com-
munication in many environments, such as in urban cities, offices, and homes. Due to this,
the opportunity to harvest the available RF energy in the environment presents a new form
of energy source in the upcoming IoT growth.

Integrating miniaturized sensors through complementary integrated circuits to harvest
ambient RF energy adds to challenges. The varying nature of ambient RF, nonuniform de-
ployment of the RF services, and the high frequency spreading loss impede the performance
of RFEH [1]. A reasonable tradeoff of power-conversion-efficiency (PCE) and sensitivity of
the harvester is essential to attain a practical level of power harvesting. Second, the dynamic
characteristic of RF energy adds to the design challenge in PCE performance regardless of
the harvested power level. Hence, there is a need to improve the PCE dynamic range of the
RF energy harvesting (RFEH) system.

There have been many prior-art design schemes and techniques to improve the peak
PCE of the CMOS rectifier, generally by reducing the forward conduction loss and the
reverse current loss effected by the transistors. The forward conduction loss is the power
loss caused by turning on the transistors with on resistance [2]. There is a high internal
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resistance from the threshold voltage of transistors. Techniques, such as threshold com-
pensation [3] and cancellation [4], for the Dickson topology rectifier, and self-body biasing
with an additional coupling capacitor technique in the cross-coupled differential drive
(CCDD) rectifier [5], focus on reducing the conduction loss to enhance PCE. Reverse current
loss is in effect due to non-proper turn-off in the transistors [6], which causes the driving
current to flow back into the previous rectifier stage. A dynamic gate biasing technique can
concurrently reduce the forward and reversion loss, but it requires an additional pumping
stage in the implementation [7]. An alternate solution for restricting reverse current is
replacing the transistor with a diode, forcing the current flow in a single direction. However,
the large threshold voltage from a diode will result in a higher conduction loss which is
undesirable, especially in a low input power range.

Due to the nature of switch and diode rectifier connections, CCDD has a large inherent
reverse current, and the threshold voltage of CMOS limits the PCE performance of Dickson
rectifier topologies. Therefore, the CCDD rectifier typically offers superior PCE at low RF
input power, whereas the Dickson topology offers high PCE during high input RF power.
Both topologies exhibit tradeoffs of a narrow high PCE dynamic range.

Various reported state-of-the-art studies have proposed techniques to enhance the peak
PCE of the RFEH system, yet only a handful of these focus on improving the rectifier’s PCE
dynamic range (PDR) [5,8–14]. In [5,15], diode-connected MOSFETs were added to stem
the reverse leakage current. However, current leakage in the diodes at low input RF power
degrades the PCE [15]. Although the dynamic range is extended, the PCE curve shifted
towards the right, where peak PCE occurs during high input RF power. To extend the PDR
of a CCDD rectifier, an adaptive self-biasing method is applied to control the conduction
of the PMOS at high input RF power [8,9]. It extends the high PCE range by reducing the
reverse current leakage, yet with a penalty of suppressing the forward conduction at low
input RF power, concurrently reducing the rectifier’s peak PCE. A dual-path CCDD rectifier
was proposed in [10] to enhance the PDR. It switches between high and low power paths
using a control circuit and a reference path. However, integrating multiple path rectifiers
and the control circuit consumes the rectifier’s input power and impairs the achievable
PCE. The solution also adopts an off-chip impedance matching network (IMN) at 900 MHz
using an off-chip, which inhibits the System-on-Chip (SoC) applications. Alternatively, [11]
adopted a reconfigurable Dickson topology by adaptively configuring the number of stages
between 6 and 12 stages for low and high input power, respectively. It increases the PDR
compared to the conventional Dickson topology. Nevertheless, due to the diode-connected
configuration, it achieves low peak PCE and sensitivity compared to the aforementioned
CCDD rectifier configuration. Another configuration is improvised on a CCDD topology
to switch between 1 and 2 stages for low and high power, respectively [12]. However, the
peak PCE is low because of high reverse leakage. The reconfigurable rectifier in [13] shows
the PCE of different rectifier configurations, known as conventional CCDD (all switches),
differential Dickson (all diodes), and hybrid switches and diodes (NMOS diodes, PMOS
switches, and vice versa). The work illustrated a high PCE performance across a wide
RF harvesting range by switching between rectifier configurations across low and high
input RF power. However, the control circuit was absent in the work, as manual switches
were used as a proof of concept. Such configuration switching between rectifier topologies
prevents concurrent suppression of forward conduction at low input RF harvesting and
upholds a wide PDR.

To overcome the limitations of related prior-art works, an enhanced PDR RFEH system
is proposed. The system consists of a reconfigurable rectifier, an auxiliary path rectifier, a
comparator, and an on-chip impedance matching network (IMN). Section II provides the
architectural overview of the RFEH system. Section III describes each individual circuit that
is integrated in constructing the entire RFEH system. Post-layout and simulation results
are presented in Section IV, and the summary in Section V concludes the article.
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2. RFEH System Architecture
2.1. Rectifier Topologies

Each rectifier design scheme shown in Figure 1 has an optimal working range, where
it achieves the peak PCE at a specific power level. The dynamic change of power in the
ambient affects the PCE of the rectifier. Selected design schemes function efficiently when
rectifying low RF power, whereas others achieve better performance at high harvesting
power. Therefore, several conventional rectifiers are examined to efficiently design a
rectifier that achieves high PCE at a wide input power fluctuation.
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Figure 1a shows the CCDD rectifier. The rectifier receives differential signals and
accumulates a common-mode gate voltage to bias the MOSFETs. It reduces the threshold
voltage of the MOSFETs. The CCDD rectifier operates better in subthreshold [16] and
threshold regions than other rectifier topologies. Therefore, the CCDD rectifier achieves
peak PCE at a low input power level. On the contrary, at high input power, the CCDD
rectifier suffers from reverse leakage due to the bidirectionality of the CMOS devices [14].
The subsequent rectifier topology is a diode-based configuration. Figure 1b shows the
four diode-connected MOSFETs to rectify the differential signals. Due to the threshold
voltage of the two diode-connected transistors in each signal path, this topology has a
high dropout voltage. In contrast with CCDD topology, the diode-based configuration
achieves low PCE at a low input power due to the forward voltage drop at the diodes.
However, this connection significantly prevents the reverse current flow, achieving high
PCE at a high input power level. The other configuration is a hybrid switch-diode-based
rectifier, as illustrated in Figure 1c,d. It consists of two MOSFETs in diode configuration
and the other two in switch configuration. In one signal path, there is a diode and a switch.
Therefore, the dropout voltage and reverse leakage are reduced compared to the diode
and CCDD configurations, respectively. The hybrid configuration merges the pros of the
diode connected and CCDD topology. Figure 2 depicts the performance of various rectifier
topologies extracted from [13]. The figure shows that the CCDD rectifier achieves high PCE
at a low input power and degrades drastically at a high input power. It is demonstrated
that the hybrid configuration obtained higher PCE than the diode-based rectifier at all
input power levels. At a low input power level, the CCDD performs better, whereas the
hybrid surpasses CCDD at a high input power level.

2.2. Proposed Circuit Architecture

The aim of the proposed front-end RFEH is to obtain high PCE at a wide input power
range to improve the practicality of an RFEH system. By employing standard CMOS,
different configurations can be achieved by altering the transistors’ gate connection. Based
on the analysis in Section 2.1, a combination of CCDD and a hybrid topology would provide
a wide PDR, as illustrated in Figure 3. The proposed front-end RFEH system consists of an
IMN to achieve maximum power transfer and reduce power reflection, the main rectifier for
scavenging the RF to DC, an auxiliary rectifier for a constant comparison of output voltage,
and a control logic circuit as the adaptive switching control. Figure 4a,b illustrate the
rectifier configuration during low input RF power and high RF input power, respectively,
where the top architecture block diagram of the front-end is described in Figure 5.
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input power.

3. Circuit Description
3.1. Main Rectifier

Figure 5a depicts the main rectifier circuit. It has three cascade stages of reconfigurable
CCDD topology rectifiers. In each stage, there are four transmission gates (TG1-TG4). The
transmission gates are controlled by the control logic circuit. To increase the sensitivity of
the rectifier, a low-threshold-voltage transistor is used. The two rectifying NMOS have
W/L of 30 while the PMOS has W/L of 60, because the hole mobility of PMOS is two times
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smaller than the electron mobility of NMOS. For State 1, where the input power is low,
TG1 and TG2 are switched on, while TG3 and TG4 are off. It forms a conventional CCDD.
For State 2, where the input power is high, TG3 and TG4 are on, and TG1 and TG2 are off.
With this configuration, the PMOS is in a diode-connected state, and NMOS is in a switch
configuration. It forms a hybrid rectifier topology similar to Figure 1d. PMOS is connected
directly to the output, so the reverse current is higher. Therefore, the diode connections are
designed at PMOS. The two switches in the hybrid topology contribute to high forward
conduction at high input power, and the two diodes are in a reverse-bias state to control
the high current flow from the output.
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(b) auxiliary rectifier, (c) impedance matching network (IMN), and (d) comparator.

Unlike a full diode topology in [11], where the forward conduction is suppressed by
the diodes, the proposed scheme balances forward conduction and controls reverse leakage.
In contrast with [8,9], the proposed rectifier will not reduce forward conduction at low
input power as it is a conventional CCDD rectifier. At the same time, the peak PCE occurs
at low input power, which is favorable for far-field ambient energy harvesting.

3.2. Auxiliary Rectifier

As the proposed hybrid rectifier will be reconfigured into different topologies at
different input power, it is necessary to detect the input power level to determine the
switching point for the rectifier’s topology reconfiguration. The idea is to compare a target
voltage signal which represents the input power level with the switching point voltage. If
the target voltage is lower than the switching point voltage, the input power is considered
low, and the circuit will be reconfigured into CCDD topology. Similarly, if the target
voltage is greater than the switching point voltage, the circuit will be reconfigured into
switch-diode-based topology.

The input voltage (RF+ and RF−) is not suitable to be used as the target signal, which
represents the input power level, due to the large fluctuation in the AC voltage. The main



Electronics 2023, 12, 175 6 of 15

rectifier’s DC output is also unsuitable as the target signal because its output voltage varies
in different topologies.

An auxiliary rectifier is used in this work to furnish a stable voltage to determine the
rectifier’s switching point. The auxiliary rectifier offers an independent output voltage
from the main rectifier. In other words, the output voltage of the auxiliary rectifier (VAUX)
will not be affected by the change in the main rectifier’s topology; hence, it is ideally used
in triggering the topology switching. A conventional three-stage CCDD is implemented as
the auxiliary rectifier in this work, offering an independent DC voltage representing the
input power level. As shown in Figure 6, the VAUX portrays a linear relationship with the
increment in the PIN. The performance of the CCDD topology is better when VAUX is lower
than 800 mV, while the performance of the diode-based topology is better when VAUX rises
beyond 800 mV. Based on this relationship, we can assign VAUX = 800 mV as the rectifier’s
topology reconfiguration switching point.
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3.3. Impedance Matching Network

In front-end RFEH, the signal scavenged directly from the antenna to the rectifier
results in high reflection and power loss. Thus, an IMN is essential to reduce power
reflection and provide passive amplification. In a perfect match condition, the antenna’s
resistance equals to rectifier’s equivalent resistance, while the reactance of the antenna and
rectifier is in the conjugate. The matched impedance condition only occurs at the resonance
frequency, as the reactance is a frequency-dependent parameter. At the resonance frequency,
maximum power transfer occurs. As the frequency deviates further from the resonance
frequency, the matching is progressively poor, along with increased power reflection. The
performance of the matching is evaluated by the reflection coefficient, S11, of the circuit.
The lower the S11, the better the matching. To realize the matching, the impedance of the
rectifier is first simulated. The rectifier can be modeled as a series or parallel resistor and
capacitor set [17].

In most cases, the simulated impedance is in series form, but it is transformable as long
as the circuit maintains the same quality factor, Q. Figure 7 demonstrates the conversion of
the rectifier model from series or parallel or vice versa. The conversion can be performed
by referring to Equations (1)–(5), where QS and QP are the Q of the rectifier model in series
and parallel, respectively.

QS = QP = Q (1)

QS =
1

ωCSRS
(2)

QP = ωCPRP (3)

RP = RS

(
1 + Q2

)
(4)
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CP =
CS

1 + 1
Q2

(5)
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Figure 7. Rectifier’s equivalent impedance model interchangeable from series to parallel.

There are four configurations of a conventional L-network [18], as shown in Figure 8.
It is categorized into two categories, with either the real impedance of the source, RS being
larger or smaller than the rectifier’s equivalent series real impedance, RL. Each category
has a high or low pass to block or pass the DC signal. A shunt capacitor and series inductor
pass DC. On the contrary, a series capacitor and shunt inductor pass DC. In most cases, a
series capacitor is used to prevent the backflow of signal from the rectifier to the source.
However, since the proposed system has a diode configuration, it is sufficient to block the
high reverse current. Therefore, the IMN design is focused on matching the rectifier and
antenna impedances only.
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RS > RL, (c) Low pass LC for RS < RL, (d) High pass CL for RS < RL.

The simulation of the rectifier’s impedance shows that the real impedance is much
larger than the antenna’s (standard 50 Ω). Consequently, the L-network that matches the
condition will be Figure 8c or Figure 8d. For a fair comparison, the rectifier sizing, load,
capacitance, inductor sizing, and Q are fixed. Figure 9 shows the result of PCE for the
RFEH front-end when CL and LC networks are employed with the proposed rectifier. At
the matching frequency, 900 MHz, the L-C network has a higher peak and overall PCE than
the C-L network. Therefore, the IMN in Figure 8c is selected for the matching.

In this work, an on-chip L network was used by cascading four inductors in series
to increase the inductance while maintaining a high-quality factor. It was tuned to match
at 900 MHz, between a 50 Ω antenna and the proposed reconfigurable rectifier with the
auxiliary rectifier. Considering that the Q of the inductor affects the matching parameter,
the following equations were deduced to obtain matching. A resistor was placed in
series with the inductor to represent the parasitic of the inductor. From (8) and (10), the
parameter of matching components can be calculated based on the desired harvesting
frequency. The matching capacitor is assumed to be ideal. Figure 10 exemplifies the
model for the matching condition, where RL and CL are the equivalent impedance of the
proposed rectifier and auxiliary rectifier, RA is the antenna resistance, L and C are the
matching network’s passive components, and RP represents the parasitic of the matching
inductor. The auxiliary rectifier, integrated in parallel with the main rectifier, reduced the
equivalent impedance of the rectifiers (RL and CL) to be matched, hence reducing the
required matching transformation [19]. To match, Re(Z1) = Re(Z2), and Img(Z1) = *Img(Z2).

Z2 = jωL + RP +

(
1

jωC
||RL||

1
jωCL

)
(6)
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Z2 = jωL + RP +
1

RL
− jω(C + CL)

( 1
RL

)
2
+ [ω(C + CL)]

2
(7)

Re[Z2] = RA = RP +
RL

1 + [RLω(C + CL)]
2 (8)

Img[Z2] = 0 = ωL− ωRL
2(C + CL)

1 + [RLω(C + CL)]
2 (9)

ωL =
ωRL

2(C + CL)

1 + [RLω(C + CL)]
2 (10)

k =
RL

RP + RL
1+[RLω(C+CL)]

2

(11)

A =
1
2

√
RL
RA

=
1
2

√
k (12)
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Based on the equations above, the transformation ratio, known as k = RL/RA [20] can
be found in (11). The equation shows that RP plays an important role in the transformation
performance. The Q of the inductor when parasitic assumed in series is ωL

RP
. When the

rectifier parameters are fixed, the increase in RP will decrease k. It shows that the parasitic
resistance will directly affect the transformation ratio. Furthermore, the matching network
contributes to the passive amplification to provide higher sensitivity of the system. In [21],
the passive amplification is defined as (12). The higher the k, the larger the amplifica-
tion. Therefore, it is concluded that the parasitic of the inductor plays a big part in the
impedance matching. The higher the Q, the lower the RP, the better the performance of the
matching network.
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To maintain a high-quality factor at high total inductance, four similar inductors are
cascaded to increase the total inductance while maintaining high quality factor at 900 MHz.
The parameters of the inductor are shown in Figure 11. The parasitics are included and the
parameters are simulated using Sonnet EM Simulator. At 900 MHz, it has a Q of 11.07, and
inductance of 15.53 nH. Upon stacking four similar inductors in series, the total inductance
is 62.12 nH.
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3.4. Control Logic Circuit

The proposed work adopted a CMOS Op-Amp comparator from [22] to determine
the rectifier’s topology configuration. As depicted in Figure 5d, the comparator consists
of a source input stage for voltage comparison, an output stage that provides the output
signal, and a biasing stage responsible for supplying a bias voltage to the source input
and the output stage. At the source-input stage, the comparator accounts for an external
reference voltage (VREF) of 800 mV to be compared with the auxiliary rectifier’s output
voltage (VAUX). The external VREF serves as a reference for the switching point to validate
the input power level to be either high or low. In the scenario where VAUX is lower than the
VREF (VAUX < 800 mV), the input power is considered low, whereas when VAUX is higher
than the VREF (VAUX > 800 mV), the PIN is considered high. A stable reference source is
required; therefore, an independent external voltage source is supplied. The output stage
compromises two CMOS-connected inverters in generating the control signals VX and VY
to configure the rectifier into a different topology.

Figure 6 portrays the VAUX at different input powers. At a low input power, as VREF is
higher than VAUX (VAUX < 800 mV), the comparator will yield an output with a logic low.
This will activate State 1, where TG1 and TG2 are switched on while TG3 and TG4 are off,
configuring the rectifier into conventional CCDD topology. At a high input power, VAUX
rises above 800 mV. The comparator will yield a logic-high output as VREF is now lower
than the VAUX. At this state, the rectifier will be configured into a diode-based topology
with TG1, TG2 deactivated and TG3 and TG4 activated.

4. Postlayout and Simulation Results

The proposed rectifier and an on-chip LC network are implemented in a 65 nm
CMOS process, as shown in Figure 12. Four inductors are connected in series to form
high inductance while maintaining high Q for matching. The other blocks, such as the
rectifier, auxiliary rectifier, and control logic, are highlighted in the figure. Low-voltage-
threshold (LVT) transistors are used for the main and auxiliary rectifiers to reduce forward
conduction loss and normal transistors are used for the control logic unit. MIM capacitor
is used throughout the entire design. Table 1 records the design’s components value. The
total size of the design, excluding the bond pads, is 620 µm × 480 µm.
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Table 1. The proposed circuit’s components sizing.

Circuit Blocks Circuit Components Type Components
Name Size

Main Rectifier

Rectifier

NMOS (LVT) MNa & MNb 18 µm

PMOS (LVT) PNa & PNb 36 µm

MIM Capacitor CP 1 pF

Transmission Gate
NMOS (LVT) TG (NMOS) 2 µm

PMOS (LVT) TG (PMOS) 4 µm

Auxiliary Rectifier Rectifier

NMOS (LVT) M1 & M3 600 nm

PMOS (LVT) M2 & M4 36 µm

MIM Capacitor CP 1 pF

MIM Capacitor CFilter 1 pF

Control Logic Unit Comparator
NMOS (Standard) MC1,2,5,6,8,10,12,14 21.6 µm

PMOS (Standard) MC3,4,7,9,11,13 7.2 u

The performance of the rectifier block was investigated independently. Figure 13
depicts the output voltage across a wide range of input power for the CCDD topology,
diode-based topology, and the proposed hybrid topology with switch controls. The CCDD
topology obtains higher output voltage at low input power, whereas the diode-based
topology has a higher output at high input harvesting power. The proposed rectifier’s
performance is exhibited in a combination of both, with a slight voltage drop at high input.
This is due to the transmission gates, as there is some reverse leakage through the TG1
and TG2 during the diode-based configuration, where the switches are not fully turned
off. Although the leakage is present, the proposed rectifier scheme provides a wider PDR
due to its hybrid configuration. Contrary to the PCE significantly degrading at high input
power, the PCE increase at the all-load condition at high input power compared to the
conventional CCDD rectifier. It shows that the control logic circuit functions to switch at
the exact condition.
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without matching, (b) the power conversion efficiency of rectifiers across different input powers at
various load conditions.

The on-chip LC-network IMN is implemented along with the proposed rectifier. The
output voltage and PCE of the front-end RFEH system are presented in Figure 14a,b,
respectively. The switching point occurs at approximately −12 dBm. The PCE graph shows
a drop in the PCE at the switching point. Subsequently, it is increased after the configuration
is changed to a hybrid switch-diode-based configuration. Due to the switching losses and
transition, there is a dip in the PCE graph. However, once the switches are fully turned
on, the proposed hybrid configuration follows the PCE of the diode-based configuration at
high input power.
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The PCE of the rectifier is calculated by incorporating the power reflection, denoted
by (12), while the front-end RFEH is calculated by (13). The power reflection is not included
in (13) as a matching network is adopted; hence, it achieves maximum power transfer at the
desired frequency. Figure 15 illustrates the post-layout result on the reflection coefficient,
S11, of the proposed front-end RFEH. It is matched at 900 MHz with an S11 of −14 dB.
POUT refers to the output power of the rectifier, with VOUT

2/RL, PSIG is the input signal
excluding the power reflection, and |S11|is the power reflection. The rectifier achieves a



Electronics 2023, 12, 175 12 of 15

peak PCE of 88.7% at −22 dBm, while the fully integrated RFEH front-end obtains a peak
PCE of 36%.

PCEREC (%) =
POUT

PSIG

(
1−|S11|2

) × 100% (13)

PCERFEH (%) =
POUT
PSIG

× 100% (14)
Electronics 2023, 12, x FOR PEER REVIEW 13 of 16 
 

 

0.50 0.75 1.00 1.25 1.50
−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

R
ef

el
ct

io
n 

C
oe

ffi
ci

en
ct

 (S
11

)

Frequency (GHz)

 

S11

900 MHz

 
Figure 15. Postlayout simulation of S11. 

The PCE of the rectifier is calculated by incorporating the power reflection, denoted 
by (12), while the front-end RFEH is calculated by (13). The power reflection is not in-
cluded in (13) as a matching network is adopted; hence, it achieves maximum power 
transfer at the desired frequency. Figure 15 illustrates the post-layout result on the reflec-
tion coefficient, S11, of the proposed front-end RFEH. It is matched at 900 MHz with an S11 
of −14 dB. POUT refers to the output power of the rectifier, with VOUT2/RL, PSIG is the input 
signal excluding the power reflection, and |S11|is the power reflection. The rectifier 
achieves a peak PCE of 88.7% at −22 dBm, while the fully integrated RFEH front-end ob-
tains a peak PCE of 36%.  𝑃𝐶𝐸  (%) =  𝑃𝑃 (1 − |𝑆 | ) × 100%  (13)

𝑃𝐶𝐸  (%) =  𝑃𝑃 × 100%  (14)
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It shows a similar behavior where the power consumption is negligible when PIN is below 
−10 dBm and it increases exponentially until a peak consumption of 0.037 mW at 5 dBm. 
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Figure 15. Postlayout simulation of S11.

Figure 16a depicted the relationship of PIN, VAUX, and the power consumption of the
control logic unit. VAUX increases linearly with the increment in PIN due to the boosting
effect of the two-stage auxiliary rectifier. The power consumption of the control logic unit
increases exponentially with the increment in PIN. This is because VAUX, which is the source
of the control logic unit, is increased, causing more power to flow into the control logic unit.
The power consumption of the control logic unit is negligible as PIN is lower than−10 dBm
and its power consumption increases with the PIN and reaches a peak consumption of
0.278 mW at 5 dBm. Figure 16b shows the power consumption of the auxiliary rectifier. It
shows a similar behavior where the power consumption is negligible when PIN is below
−10 dBm and it increases exponentially until a peak consumption of 0.037 mW at 5 dBm.
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Figure 16. (a) The relationship between the input power, auxiliary rectifier’s output voltage, and the
power consumption of the control logic unit. (b) The power consumption of the auxiliary rectifier.
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The scope of this proposed work was to extend the PDR of the rectifier. The PDR is
defined as the input power range where the rectifier’s PCE upholds above 20% [9]. At
100 KΩ, the CCDD and diode-based rectifier has a PDR of only 20 dB and 16 dB, respectively.
In implementing the proposed hybrid configuration by switching the PMOS connections,
the rectifier achieves a PDR of 23 dB. To test the robustness of the proposed front-end RFEH,
simulation of the proposed rectifier with respect to process corner and temperate were
performed. The switching point, sensitivity, and peak PCE of the proposed front-end RFEH
at typical-typical, slow-slow, and fast-fast processes at different temperature conditions
are shown in Figure 17. Generally, the peak PCE is higher at −40 ◦C and it is at lowest
for the fast-fast process. However, the peak PCE after process and temperature variation
remains a minimum of 23% with matching network included. It is reasonable for fully
integrated applications. Figure 17a proves the practicality of the proposed circuit as the
switching point for the hybrid configuration only varies for less than 200 mV at different
processes and temperatures. For sensitivity with IMN included, it remains the same for
all the processes at −40 ◦C and reduces gradually with the increase in temperature. There
is only a difference of 4 dBm between the worst and highest sensitivity. The process and
temperature variation have shown the robustness of the proposed front-end RFEH at
different conditions.
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posed rectifier surpasses the performance of other research in peak PCE evaluation. De-
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and PDR performance. For [12], a similar concept of configuring between switch and 
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tual results were shown. [12] compared the four rectifier topologies shown in Figure 1 and 
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rectifier switching voltage (V), (b) sensitivity, (c) PCE.

Table 2 summarizes the performance comparison with state-of-the-art RFEH rectifiers.
The proposed reconfigurable rectifier with extended PDR incorporates the CCDD rectifier
at low input and switches to a hybrid-based switch-diode configuration at high input. A
comparison is drawn by assessing the rectifier block and by incorporating the computation
of power reflection. Hence, the result for the RFEH front-end with IMN block is not
included. This work has comparable sensitivity with other state-of-the-art architectures and
achieves a sensitivity of −21 dBm. Based on Table 2, it is shown that the CCDD topology
achieves a higher peak PCE than the diode-based Dickson topology. The proposed rectifier
surpasses the performance of other research in peak PCE evaluation. Despite reporting
better sensitivity, the results of [2,10] achieve unfavorable peak PCE and PDR performance.
For [12], a similar concept of configuring between switch and switch-diode configurations
was applied; however, only manual switching and conceptual results were shown. [12]
compared the four rectifier topologies shown in Figure 1 and have shown the results for
the four topologies. There were no results with hybrid rectifier configuration.
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Table 2. Performance benchmark with related State-of-the-art RFEH rectifiers.

Reference This Work [3] [5] [8] [10] [11] [23] [13]

CMOS
Tech.
(nm)

65 130 130 180 65 130 130 350

Frequency
(MHz) 900 896 900 900 900 900 953 1356

Rectifier
Topology CCDD Dickson CCDD CCDD CCDD Dickson CCDD CCDD

Proposed
Technique

Reconfigurable
hybrid

switch-diode
configuration

Voltage
Compensation

Self-body-
biasing

Double-Sided
Self-Biasing Dual-Path

Reconfigurable
No. of

Stage/Series/
Parallel

Self-body-
biasing/low-

feeding
DC

Manual
hybrid

switch-diode
configuration

Sensitivity @1
V

−21 dBm @1
MΩ

−22 dBm @1
MΩ

−18.7 dBm
@100 KΩ

−18.2 dBm
@100 KΩ

−17.7 dBm
@∞

−21.7 dBm @1
MΩ

−6.5 dBm
@50 KΩ

3.22 dBm **
@500 KΩ

Rectifier’s
Peak PCE

88.7%
@100 KΩ

51%
@300 KΩ

80.3%
@100 KΩ

66%
@100 KΩ

36.5%
@147 KΩ

34.93%
@1 MΩ

69.5%
@2 KΩ

82% **
@500 KΩ

PDR (Rectifier
PCE > 20%) 23 dB 10.5 dB 17.5 dB * 20 dB * 11 dB 14 dB 13 dB * N.A.

PDR (Rectifier
PCE > 40%) 16 dB 4 dB 14.5 dB 10.5 dB N.A. N.A. 10 dB N.A.

PDR (Rectifier
PCE > 60%) 10 dB N.A. 9 dB 3 dB N.A. N.A. 5 dB N.A.

Rectifier’s
Effective Chip
Area (mm2)

0.028 0.053 0.062 0.0088 0.048 0.039 0.029 0.019

* Estimated from a graph. ** work does not include reconfiguration, estimated from combination of two different
topologies

5. Conclusions

A novel wide-dynamic-range hybrid reconfigurable rectifier for an RF energy harvest-
ing system is proposed in this work, which can be reconfigured into different topologies
based on the input voltage to enhance the rectifier’s PCE and sensitivity. At low input
power, the hybrid rectifier is configured into a CCDD topology that benefits from the
low conduction loss advantage due to the cross-coupled transistor pairs. At higher input
power, the rectifier is reconfigured into a hybrid diode-based (NSPD) topology to reduce
the reverse current leakage. Designed in 65 nm CMOS technology, the proposed rectifier
achieves a peak PCE of 88.7% at 100 KΩ, surpassing the performance of all existing research.
In addition, the reconfigurable hybrid design offers a wide PDR of 16 dB for PCE over 40%.
It attains superior sensitivity of −21 dBm to achieve 1 V with a 1 MΩ load condition.
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