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Abstract—A considerable portion of a microprocessor chip
is dedicated to cache memory. However, not all applications
need all the cache storage all the time, especially the computing
bandwidth-limited applications. In addition, some applications
have large embedded computations with a regular structure. Such
applications may be able to use additional computing resources.
If the unused portion of the cache could serve these computation
needs, the on-chip resources would be utilized more efficiently.
This presents an opportunity to explore the reconfiguration of a
part of the cache memory for computing. Thus, we propose adap-
tive balanced computing (ABC)—dynamic resource configuration
on demand from application—between memory and computing
resources. In this paper, we present a cache architecture to convert
a cache into a computing unit for either of the following two struc-
tured computations: finite impulse response and discrete/inverse
discrete cosine transform. In order to convert a cache memory to a
function unit, we include additional logic to embed multibit output
lookup tables into the cache structure. The experimental results
show that the reconfigurable module improves the execution time
of applications with a large number of data elements by a factor
as high as 50 and 60.

Index Terms—Cache memory, reconfigurable computing.

I. INTRODUCTION

T HE number of transistors on a chip has increased dra-
matically in the last decade. Within the next five to ten

years, we will have a billion transistors on a chip. In a modern
microprocessor, more than half of the transistors are used for
cache memories. This trend is likely to continue. However,
many applications do not use the entire cache all the time. Such
applications result in low utilization of the cache memory. Many
times, these applications are bandwidth limited. This suggests
using the unutilized cache resources for computing. Therefore,
we propose adaptive balanced computing (ABC)—dynamic
resource configuration on demand from application—between
memory and computing resources.

Several researchers have studied the use of reconfigurable
logic for on-chip coprocessors [1]–[5]. Such logic can speed
up many applications. An on-chip coprocessor improves the
performance of the applications and reduces the bottleneck
of off-chip communications. In Garp architecture [1], pro-
grammable logic resides on a processor chip to accelerate
some computations. The frequently used computations are
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mapped to the programmable logic. If an application does
not need the logic, these functions remain idle. PipeRench
[6] reconfigures the hardware every cycle to overcome the
limitation of hardware resources.

A field-programmable gate array (FPGA) can be viewed
as a two-dimensional (2-D) array of configurable logic
blocks (CLBs)—CLB is a primitive programmable element
(PE)—with interspersed routing channels. Each CLB consists
of configurable gates realized through lookup tables (LUTs).
The LUT is an essential component to construct FPGAs. LUTs
usually have four inputs and one output out of an SRAM-based
memory to keep the overall operation and routing efficient.
However, the 1-bit output granularity of each LUT results
in a large interconnect area—even larger than the area of
LUTs—and delay due to a number of switches for the pro-
grammability [8].

Xilinx Virtex FPGA family [7] allows concurrent and partial
reconfiguration. However, the dynamic partial reconfiguration
can be only done at the granularity of a configurable logic block
consisting of four-input LUTs. An advantage of this architecture
is that a number of smaller configuration memory blocks can be
combined to obtain a larger memory. However, a fine-grained
memory cannot be synthesized efficiently in terms of area and
time. In particular, providing a large number of decoders for
small chunks of memory is expensive.

These observations motivate the design of a reconfigurable
module that works as a function unit as well as a cache memory.
Our goal is to develop such a reconfigurable cache/function unit
module to improve the overall performance with low area and
time overhead using multibit output LUTs. The expectation is
that significant logic sharing between the cache and function
unit would lead to relatively low logic overhead for a recon-
figurable cache (RC). If the area overhead of an RC exceeds
the area of the dedicated logic for that function, or if the time
overhead of cache is significant (if the time increases more than
5–10%—commonly treated as a significant increase), this is too
big a compromise.

Single-instruction multiple-data (SIMD) multimedia applica-
tions with large streamed working data sets, in which data are
used once and then discarded [9], can be accelerated by a spe-
cial function unit. A larger on-chip cache hardly helps these ap-
plications due to the lack of temporal locality [10], [11]. Since
SIMD applications need less reconfiguration at run-time by the
nature of SIMD, the run-time reconfiguration does not affect the
overall execution time significantly once we configure the RC as
a function unit. The multiply-and-accumulation [(MAC)—core
of finite impulse response (FIR)] and ROM-based distributed
arithmetic [(DA)—core of discrete/indiscrete cosine transform
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Fig. 1. Multioutput LUTs: (a) 2-bit adder; (b) 2� 2 or 4� 2 constant coefficient multiplier.

(DCT/IDCT)] functions are good examples of such SIMD appli-
cations. Such structured computations are more easily targeted
for a reconfigurable cache, especially within the low area and
time overhead constraints. Hence, in the first phase of this re-
search, we have implemented two computing primitives needed
in structured video/audio processing: FIR and DCT/IDCT. We
partition the cache into several smaller caches. Each cache is
then designed to carry out a set of specialized dedicated com-
pute-intensive functions.

The experimental results show that the reconfigurable
module improves the execution time of applications with a
large number of data elements by a large factor (as high as
50 and 60). With respect to two cache organization models,
a memory cell array cache and a base array cache with seg-
mented/partitioned bit/word lines, the area overhead of the
reconfigurable cache module for FIR and DCT/IDCT is less
than the core area of those functions. The reconfigurable cache
(RC) based on a cache with a large memory cell array may
have faster access time and larger area overhead, while the
RC built in the base array cache structure may increase the
access time slightly with lower area overhead. The concept of
reconfigurable cache modules can be applied at Level-2 caches
instead of Level-1 caches to provide an active-Level-2 cache
similar to “Active pages” in [12].

Section II describes the architecture of a reconfigurable
module with the function unit and cache operations with
multibit output LUTs. The configuration and scheduling of the
module are described in Section III. Section IV presents exper-
imental results on the reconfigurable module. We conclude this
paper in Section V.

II. RECONFIGURABLECACHE MODULE ARCHITECTURE

In this section, we describe how the proposed reconfigurable
cache module architecture (RCMA) is organized and works.
First, we introduce multibit output LUTs to be used in the re-
configurable cache (RC) in Section II-A. Second, we show the
overall architecture of RC and a conventional microprocessor
architecture in Section II-B. Third, we describe the core design
of RC architecture, such as how it operates as a cache memory
and a special function unit in Section II-C. In Section II-D, we
compare and estimate the cache access time of RC.

A. Multibit Output LUTs

In most FPGA architectures, an LUT usually has four inputs
and one output to keep the overall operation and routing effi-
cient. However, an SRAM-based single-bit output LUT does not
fit well with a cache memory architecture because of a large area
overhead for the decoders in a cache with a large memory block
size. Instead of using a single-bit output LUT, we propose to
use a structure with multibit output LUTs. Such LUTs produce
multiple output bits for a single combination of inputs and are
better suited for a cache than the single-bit output LUTs. Since
a multibit output LUT has the same inputs for all output bits,
it is less flexible in implementing functions. However, it is not
a major bottleneck in our problem domain. A 2-bit carry select
adder and a 2-bit multiplier or a 4 2 constant coefficient mul-
tiplier (all need the same size, up to 6-bit output, of LUT) are
depicted in Fig. 1(a) and (b), respectively.

If a multibit output LUT is large enough for a computation,
no interconnection (for example, to propagate a carry for an



KIM et al.: RECONFIGURABLE MULTIFUNCTION COMPUTING CACHE ARCHITECTURE 511

(a)

(b)

(c)

Fig. 2. Eight-bit adder using (a) two 9-LUTs, (b) two 8-LUTs, and (c) four 4-LUTs.

adder) may be required since all possible outputs can be stored
in the large memory. In addition, unlike a single-bit output LUT,
a multibit output LUT requires only one decoder or a multi-
plexer with multiple inputs. Thus, the area for decoders reduces.
However, the overall memory requirement to realize a function
increases. The required memory size increases exponentially
with the number of inputs. Therefore, multibit LUTs may not be
area-efficient in all situations. The computing time in this case
may also not reduce much due to the complex memory block
and the increased capacitance on long bit lines for reading.

Instead of using one large LUT, we show implementations of
an 8-bit adder with a number of smaller multibit output LUTs,
as shown in Fig. 1. Fig. 2(a) depicts an 8-bit adder consisting
of two nine-input LUTs. Each 9-LUT has two 4-bit inputs, one
1-bit carry-in, and a 5-bit output for a 4-bit addition. Thus, the
total memory requirement is bits. The carry
is propagated to the next 9-LUT after the previous 4-bit addi-
tion in one LUT is completed (i.e., a ripple carry). Since each
LUT must be read sequentially, this adder takes longer to finish
an addition. By employing the concept of carry select adder as
depicted in Fig. 2(b), a faster adder using two 8-LUTs can be
realized as the reading of the LUTs does not depend on the pre-
vious carry. In this case, the actual result of each 4-bit addition is
selected using a carry propagation scheme. However, all LUTs
are read in parallel. The total time for the modified adder is the
sum of the read time for one 8-LUT and the propagation time
for two multiplexers. Thus, it is faster. This adder also requires
the same amount of memory (i.e., bits).

To make an area efficient adder, a 4-LUT with 6-bit out-
puts can be employed [Fig. 2(c)]. The same carry propagation
scheme as in Fig. 2(b) is applied to the 4-LUTs to implement
an 8-bit adder, but four 4-LUTs are used. The total time of the

adder using the 4-LUTs might be higher than that using the
8-LUTs because it has twice the number of multiplexers to be
propagated. However, the read time for a 4-LUT is faster than
for an 8-LUT since it has a smaller decoder and shorter data
lines for memory reading. We therefore recommend the design
in Fig. 2(c).

B. Overview of the Processor with Reconfigurable Caches

In an RCMA, we assume that the data cache is physically
partitioned into cache modules. Some of these cache modules
are dedicated caches. The rest are reconfigurable modules. A
processor is likely to have 256 KB to 1 MB Level-1 data cache
within the next five to ten years. Each cache module in our de-
sign is 8 KB, giving us 32–128 cache modules. A reconfigurable
cache module can behave as a regular cache module or as a spe-
cial-purpose function unit.

Fig. 3 shows the overview of the processor with reconfig-
urable caches (RCs). In an extreme case, thesecache modules
can provide an -way set associative cache.modules out of
cache modules are reconfigurable. Whenever one of these cache
modules is converted into a computing unit, the associativity of
the cache drops or vice versa. Alternatively, the address space
can be partitioned dynamically between the active cache mod-
ules with the use of address bound registers to specify the cached
address range. The details of this architecture are being devel-
oped in [13]. The RCMA simulation on real multimedia pro-
grams [13] expects to settle a mix of the following issues. How
large should the mix of RC modules be? How many and
what functions ought to be supported in each RC? What kind of
connectivity is needed between these RCs? RC1, RC2, RC3,,
RC in Fig. 3 can be converted to function units, for example,
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Fig. 3. Overview of a processor with multiple reconfigurable cache modules.

to carry out functions such as FIR filter, DCT/IDCT, encryption,
and a general computation unit like a floating-point multiplier,
respectively. When some subset of theRCs is used as func-
tion units, the other caches continue to operate as memory cache
units as usual. It is also possible to configure some cache mod-
ules to become data input and output buffers for a function unit.
The RCs are configured by the processor in response to spe-
cial instructions. We envision a dynamically configurable bus
(as shown in Fig. 3) to support dynamic communication needs
between RCs.

In this paper, we propose that each cache module be designed
to be reconfigurable into one of several specific function units.
Since each reconfigurable module can be converted into a small
set of functions with similar communication needs, intercon-
nections for each RC are fixed to be a super set of the commu-
nication needs of the supported functions. The advantages of
fixed interconnection are as follows. The fixed interconnection
is less complex, takes less area, and allows faster communica-
tion than a programmable interconnection. Moreover, our expe-
rience demonstrates the feasibility of merging several functions
into one RC with fixed interconnections.

C. Organization and Operation of a Reconfigurable Cache
Module

Since we target computation-intensive applications with a
regular structure, such as digital signal processing (DSP) and
image applications (FIR, DCT/IDCT, Cjpeg, Mpeg, etc.), as
mentioned in Section I, we first partition them at coarse level
into repeated basic computations. A function in each stage
can be implemented using the multibit output LUTs, as de-
scribed in Section II-A. We only add pipeline registers to each
coarse-level stage, which contains a number of LUTs, to make
the entire function unit efficient. All these registers are enabled
by the same global clock. Therefore, a number of coarse-level
computations can be performed in a pipelined fashion.

Fig. 4 shows a coarse template for a module. The cache can
be viewed as a 2-D matrix of LUTs. Each LUT has 16 rows to
support a 4-LUT function and as many multibits in each row as
required to implement a particular function. In the function unit
mode—in which the RC works as a special function unit, the
output of each row of LUTs is manipulated to become inputs
for the next row of LUTs in a pipelined fashion. In the cache
memory mode—in which the RC works as a conventional cache
memory, the least significant 4 bits of the address lines are con-
nected to the row decoders dedicated to each LUT. The rest of

Fig. 4. Cache architecture in the reconfigurable module.

the address lines are connected to a decoder for the entire cache
in the figure. In the cache memory mode, the LUTs take the
4-bit address as their inputs selected by the enable signal for the
memory mode. Therefore, regardless of the value of the upper
bits in the address, the dedicated row decoder selects a word line
in each row of LUTs. This means one word is selected in each
LUT row according to the least significant 4 bits.

Each LUT thus produces as many bits as the width of the
LUT. These are local outputs of the LUTs. These outputs are
available on the local bit lines of each LUT row. For a normal
cache operation, one of the local outputs needs to become the
global output of the cache. This selection is made based on the
decoding of the remaining ( 4) address bits decoded by the
higher bit decoder. The local outputs of the selected row of
LUTs are connected to the global bit lines. The cache output
is carried on the global bit lines, as shown in Fig. 4. Thus, the
output of any row of LUTs can be read/written as a memory
block through global lines. We propose that these global lines
be implemented using an additional metal layer. The global bit
lines are the same as the bit lines in a normal cache.

Both decodings can be done in parallel. After a row is selected
by both the decoders, one word is selected through a column
decoder at the end of the global bit line, as in a normal cache
operation. In the figure, the tag part of a cache is not shown, and
a direct-mapped cache is assumed for the module. However, the
concept of reconfigurable cache can be easily extended to any
set-associativity cache because the tag logic is independent of
the function unit’s operations.
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Fig. 5. Parallel decode cache architecture (base array cache) for faster cache
access time.

D. Access Time for Cache Operations

We compare the access times for the RC with the access
time for a fixed cache module of comparable size. The base
fixed cache module from which a reconfigurable cache is de-
rived comes in two styles. The first is a memory cell-only array
cache with one address decoder and one data array. The second
is a parallel decoding cache with segmented-bit lines and par-
titioned-word lines. The segmented-bit lines are divided every
16 cache blocks and enabled by the decoder for the high-order
address bits with switches like the global bit lines in Fig. 4. The
partitioned-word lines are divided into the decoding lines from
the the high-order address decoder and local word lines in a sub-
memory block from each dedicated decoder in Fig. 4. The local
word lines select one block in every 16 cache blocks, and one
of them is selected by the high-order address decoder. The base
array cache is shown in Fig. 5.

The memory-cell-only array cache has single-level decoding,
leading to low area and slow access time. An RC based on this
design reduces access time by introducing hierarchical decoding
at a cost of large area overhead. A base array cache structure,
however, already incorporates access time advantage of hierar-
chical decoding, and hence also needs more area. An RC based
on this design, hence, shows a slight degradation in access time
with a very small area overhead. We analyze the RC access
time for cache operations in terms of address decoding time
and word/bit-line propagation time. Other components of ac-
cess time, such as sense amplifier and column decoding, do not
differ over the two cache organizations. The access times for an
RC based on a memory cell array cache and the base array cache
are estimated below, respectively.

1) Memory Cell Array Cache:The cache with the recon-
figurable structure may have a faster address decoder than a
memory cell array cache, which contains one main address de-
coder and a bunch of adjacent memory cells. Since each LUT,
with its own row decoder for addressing in the reconfigurable
module, is much smaller than a large synthesized memory cell
array in a conventional cache, the decoding time of an LUT is
faster than the decoding time of a large cache. As mentioned
earlier, since two decoders can decode in parallel, possible word
lines in a cache according to the least significant 4 bits may be
ready to be read or written before the main row decoder even fin-
ishes decoding an address. The assumption here is that the main
decoder has a larger number of address bits. Since the two de-
coding operations are independent, the delay of decoders is the
maximum of two decoding times in the reconfigurable module.

If there are many LUTs that take the same lower 4 bits in the
module, we have to consider the increased capacitance due to
the fan-out of the lower address bits. If the delay of decoding
is higher, we may need a larger driver for the least significant 4
bits to reduce the delay. However, the drivers will not affect the
size of the reconfigurable module much, as we can put a driver
into the space saved due to the reduction in the decoder size for
higher order bits.

Each bit line in a normal cache is replaced by the global line
in the proposed architecture. Since the global line does not drive
any gates (only the drain connections of the switches placed
in an interleaved fashion—every 16 cache blocks), the recon-
figurable module does not have higher delay due to the global
lines. Although the global bit line in RC is stretched by in-
serting the interconnection between LUT rows, the number of
drains—dominant capacitance in the bit line—is reduced by a
factor of 16. Thus, the segmented global bit line in the RC has
less capacitance than the bit line of a conventional cache. Addi-
tionally, the local bit-line discharge can be done in parallel with
the higher address bit decoding and word-line propagation. This
indicates that a data signal from a memory cell through the bit
line in the module is propagated faster than a normal cache.

The word line in the reconfigurable cache is longer than in
a memory cell array cache due to additional row decoders for
each LUT. Therefore, the propagation delay of a signal from
the higher bit decoder through the word line in the module is
slightly higher than in a normal cache. However, the sum of two
propagation times, word and bit lines, is smaller than in a con-
ventional cache since the local bit line in RC starts discharging
before the word line finishes the propagation.

As mentioned earlier, other delays are similar in both cases.
In summary, the cache access time of RC is faster in decoding
time and bit/word-line propagation time. Therefore, the RC is
faster than a conventional memory cell array cache in read and
write cache operations.

2) Base Array Cache:Recall that the base array cache
performs parallel decoding with segmented-bit and parti-
tioned-word lines. Cache implementations may have a similar
or more efficient parallel decoding structure with segmented bit
lines. Unlike the RC organization with vertical and horizontal
partitions, some partitioned caches might employ only the
vertical partition of cache blocks for less capacitance on the
segmented bit lines because the stretched word line causes
more delay than a large subblock. However, if we consider
the word-line propagation time with the discharging time
of local bit lines, the horizontal partition with the dedicated
decoders to each LUT (submemory module) can make the
word-line propagation faster. As described earlier, discharging
the local bit line can start with charging the word line in RC.
If we partition a cache block only vertically for segmented bit
lines, one bit line of each bit-line pair in a cache block cannot
be discharged unless the entire word line is fully charged
(decoded) from the higher address-bit decoder. Although
the entire stretched word-line propagation in RC is slightly
slower due to the insertion of the dedicated LUT decoders, the
parallel discharge/charge of the local bit/word line compensates
the stretched word line (or makes it even faster). Therefore,
we compare the access time for RC to the base array cache
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partitioned vertically and horizontally with the segmented bit
lines and partitioned word lines.

The access time of reconfigurable cache is slightly slower
than that of a plain cache due to the stretched bit lines caused by
the interconnections between LUT rows in the RC. Based on the
SPICE model parameters for 0.5-m technology in [14], the ca-
pacitance of the stretched bit line in the RC is increased by 11%
over the segmented bit line in the caches. Since the bit-line ac-
cess time constitutes 8% of the overall cache access time [15],
the access time overhead due to the stretched line is about 1% of
the overall cache access time. Since the word-line propagation
time, the decoding time, and other components in RC are similar
to those in the base array cache as described above, the overall
cache access time, therefore, is slower than the base array cache
by about 1%. The area overheads for FIR and DCT/IDCT func-
tion modules are given in Section IV-B with respect to both
cache models.

III. CONFIGURATION AND SCHEDULING

We explain how to store and place the configuration data in
a cache memory based on a conventional cache architecture in
Section III-A. Then, in Section III-B, we describe a way to load
the configuration data initially and to load partial configuration
data at run-time. The scheduling and controlling data flow for
RC is described in Section III-C. Finally, we discuss compiler
issues in Section III-D.

A. Configuration of a Function Unit

To reduce the complexity of the column decoding in a normal
cache memory, data words are stored in an interleaved fashion
in a block. The distance in bits between two consecutive bits of
a word is equal to the number of words in a block. Due to the
interleaved placement of data words in a cache block, we cannot
write one entry of a multibit output LUT by writing one word in
a cache. This implies that we can only write one bit into a LUT if
the width of LUT is the same as the number of words in a cache
block or we can write 2 bits simultaneously into an LUT if the
width of the LUT is half the number of words in a cache block.
For example, if a 4-LUT produces an-bit-wide output for a
function and the number of words in a cache block is, 16
words—16 for the number of entries andfor the width of LUT
output (1 bit from each word)—are required to be written to
the LUT in the cache. However, since other LUTs placed in the
same cache blocks (LUT row) can also be programmed simul-
taneously, no more than 16 words are required to fill up the
contents of all LUTs in the entire LUT row. In addition, if the
width of an LUT is larger than the number of words in a cache
block, multibit writing is performed into each LUT in an LUT
row, as mentioned above. This places a restriction that the width
of a multibit output LUT be an integral multiple of the number of
words in a cache block to allow an efficient reconfiguration of all
LUTs in a row. The number of LUTs in a column—placed ver-
tically—for a pipeline stage may also be required to be a power
of two. Since all cache structures are based on a power of two,
it is more convenient to make all LUT parameters (length and
width) a power of two to avoid a complicated controller and an
arbitrary address generator. This may result in underutilization

of memory. However, the idle memory blocks for LUTs are not
likely to be a problem when the module is used as a function
unit due to availability of sufficient memory size in a cache.

B. Initial/Partial Reconfiguration

Initial configuration converts a cache into a specific func-
tion unit by writing all the entries of LUTs in the cache. The
configuration data to program a cache into a function unit may
be available either in an on-chip cache or an off-chip memory.
Loading time for the configuration data in the latter case will
be larger than in the former case. The configuration data may
be prefetched by the controller or the host processor to reduce
the loading time from off-chip memory. Using normal cache op-
erations, multiple writes of configuration data to the LUTs are
easily achieved.

An RC operating as a function unit can also be partially recon-
figured at run-time using write operations to the cache. When a
partial reconfiguration occurs, the function unit must wait for
the reconfiguration to complete before feeding the inputs. Since
computation data (input and output) and reconfiguration data
(contents of LUTs) for a function unit share the global lines for
data buses, we cannot perform both computing and partial re-
configuration at the same time. It is possible to perform both
computations and reconfigurations simultaneously if we have
separate data lines for computation data and configuration data.
To process a large number of data elements, we do not need to
reconfigure often. For example, in convolution application with
256 taps, we need to reconfigure a module implementing eight
taps 32 times.

The time to configure initially from the normal cache
memory mode to a function unit mode or to reconfigure a part
of a function unit depends on the number of cycles to write
words into a cache. Initial configuration time dominates the
total configuration/reconfiguration time. The partial reconfig-
uration at run-time usually loads a small part of configuration.
The targeted SIMD applications require small initial and partial
configurations, and hence configuration has a small effect on
overall execution time. The formulas for the configuration time
and the simulated configuration times (including initial and
partial) for FIR and DCT with various function parameters
are shown in Section IV-C. With a smaller number of data
elements, the configuration time dominates the total execution
time. However, the total execution time is not dominated by
the configuration time when the number of input data elements
exceeds a threshold (which is true for SIMD applications).

C. Scheduling and Controlling Data Flow

A cache module can also be used to implement a function
with a larger number of stages than what can be realized by
the reconfigurable cache in one pass. In this case, we divide
the function into multiple steps. That is, stages required for
a function can be split into sets, , such that each
set can be realized by a cache module. If alls are similar,
then we can adapt data caching, as described in [16], to store the
partial results of the previous stage as input for the processing
by the next configuration. “Similar” here means that the LUT
contents may change, but the interconnection between stages is
the same. This happens, for example, in convolution application.
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By changing the contents of LUTs, we can convert a stage in
the cache block to carry out the operation of a different set of
pipeline stages. In general, MAC is a very common function
in many DSP and image-processing problems. The applications
computing with MAC may have the same interconnection for
all the computing stages with different LUT contents.

In a data caching scheme, we place all input data in a cache
and process it for the first set of stages. Following this, the
cache module is configured for stages. We have to store
the intermediate results from the current set of stages into an-
other cache and then reload them for the next set of compu-
tations. Therefore, we need two other cache modules to store
input and intermediate data, respectively. These modules are
address-mapped to provide efficient data caching for interme-
diate results. The role of the two caches can be swapped during
the next step when a computation requires the intermediate re-
sults as inputs and generates another set of intermediate results.
If both an input and an intermediate result are required by all
the computations, the two caches cannot be swapped. The two
caches must be large enough to hold input and intermediate re-
sults, respectively. Moreover, the reconfigurable cache must be
able to accept an input and an intermediate result as its inputs.

The host processor needs to set up all the initial configura-
tions, which include writing configuration data into LUTs and
configuring the controller to convert a cache into a function unit.
To do this, the host processor passes the information about an
application to the controller, such as the number of stages and
the number of input elements. The allocation and deallocation
of RCs between cache memory mode and function unit mode,
and the corresponding scheduling, are also the controller’s re-
sponsibility. The controller is initiated and terminated by two
new special instructions added to the conventional instruction
set architecture (ISA). These instructions make the RC func-
tions active and inactive in a code sequence. The data caches to
hold the input and the intermediate results are also allocated by
the host processor initially. The controller establishes the con-
nections between the reconfigurable cache and the data caches
with a dynamic bus architecture. The addresses for input, inter-
mediate, and output data are produced by an address generator
in the controller. These addresses are sequential within the re-
spective cache units in regular computations. The controller also
monitors the computation and initiates the next step when the
current step is completed.

D. Compiler Issues

These reconfigurable caches can be employed under com-
piler control by adding new instructions, such asFIR(param-
eters)/DCT(parameters)or rfu cache #, other parameters. The
first approach fixesa priori the functions supported by the ar-
chitecture. The configuration in this case can be stored in the
system memory as a part of the operating system initialization.
These configurations can then be fetched by the microarchitec-
ture in response to an instantiation of these instructions. The
second approach(rfu) is more extensible through compiler anal-
ysis, in as much as it allows the compiler to map any suitable
function on RCs. The configuration for a set of functions is pre-
defined/precomputed (which is an input to the compiler in its

target description). In another case, the compiler could be re-
sponsible for generating the configurations, which allows even
more flexibility. The configuration data generated in either case
(precomputed or compiler-driven) is based on RC framework
(structure), such as the number of LUTs, the width of LUTs,
the size of RC, and the interconnection.

IV. EXPERIMENTAL RESULTS

We have experimented with two applications, convolution
and DCT/IDCT. In this section, we describe how we map the
applications onto RC. First, we map each application into RC
separately; then we merge two applications into a single RC.
We also compare the overall area of separated RCs and a com-
bined RC in Section IV-B. Next, we compare the execution time
of these applications on RCs with the execution time on a gen-
eral-purpose processor (GPP) in Section IV-C.

A. Experimental Setup

1) Convolution (FIR Filter): A reconfigurable cache to per-
form a convolution function is presented in this section. The
number of pipeline stages for the convolution in a reconfigurable
cache depends upon the size of a cache to be converted. Our
simulation is based on an 8-KB size cache with 128 bits per
block/16-bit-wide words implementing four input LUTs with
16-bit output. A conventional convolution algorithm (FIR) is
shown in the following:

(1)

One stage of convolution consists of a multiplier and an adder.
In our example, each stage is implemented by an 8-bit constant
coefficient multiplier and a 24-bit adder to accumulate up to 256
taps in Fig. 6(a). The input data are double pipelined in one stage
for the appropriate computation [6]. An 8 8 constant coeffi-
cient multiplier can be implemented using two 48 constant
coefficient multipliers and a 12-bit adder with appropriate con-
nections [17]. A 4 8 constant coefficient multiplier is imple-
mented using twelve 4-LUTs with single output from each LUT
on FPGAs. In our implementation, we split the 12-bit-wide LUT
contents of a 4 8 conventional constant coefficient multiplier
into two 16-bit output 4-LUTs (part 1, 2) with 6-bit-wide mul-
tiple outputs for a lower routing complexity of the interconnec-
tions, as shown in Fig. 6(b). The first six bits of each content are
stored in LUT part1, while the last six bits are stored in LUT
part2 to realize a 4 8 constant multiplier.

The concept of a carry select adder is employed for an addition
using the LUTs described in Section II-A. Therefore, we need a
6-bit-wide result fora2-bit addition, threebitswhencarry-in
andthreebitswhencarry-in fromanLUT.An -bitaddercan
beimplementedusing 2 suchLUTsandthecarrypropagation
scheme.Theoutput isselectedbasedontheinputcarry.

One stage of convolution can be implemented with 22 LUTs.
To keep the number of LUT rows a power of two for cache
operation, we put six LUTs in each LUT row and have four LUT
rows to use 22 (out of 32) required LUTs. The final placement
of LUTs is shown in Fig. 6(b). A few LUTs in the figure are
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(a)

(b)

Fig. 6. (a) One stage of convolution and (b) array of LUTs for one stage of convolution.

not used for the computation. In Fig. 6(b), pipeline registers
placed between stages and interconnections for LUTs are not
shown. For an 8-KB reconfigurable cache, we have 32 rows of
LUT that can be used to implement eight taps of the convolution
algorithm.

2) DCT/IDCT (MPEG Encoding/Decoding):In this sec-
tion, we show another reconfigurable cache module to perform
a DCT/IDCT function, which is the most effective transform
technique for image and video processing [25]. To be able to
merge the convolution and DCT/IDCT functions into the same
cache, we have implemented DCT/IDCT within the number of
LUTs in the convolution cache module.

Given an input block , the 2-D DCT/IDCT in
[25] is defined as

(2)

(3)

where ( ) is a matrix of the pixel data,
( ) is a matrix of the transformed

coefficients, and , if
.
This 2-D cosine transform can be partitioned into two
-point one-dimensional (1-D) transforms. To complete a 2-D

DCT, two 1-D DCT/IDCT processes are performed sequentially
with an intermediate storage. By exploiting a fast algorithm (the
symmetry property) presented in [18] and [25], an matrix
multiplication for the 2-D cosine transform defined in
(2) and (3) can be partitioned into two 2 2 matrix
multiplications of 1-D DCT/IDCT with additions/subtractions
before the DCT process and after the IDCT process.

The 1-D DCT/IDCT process is an MAC, which can be
represented as . Although an MAC is already
built in the reconfigurable cache in Section IV-A1, the dis-
tributed arithmetic [23] instead is employed in the RC for the
DCT/IDCT function to avoid the run-time reconfiguration of
coefficients required for the coefficient multiplier in FIR. Using
this scheme, once the coefficients are configured into the RC,
no more run-time reconfiguration is required.

The inner product of each 1-D transform (MAC) can be rep-
resented as follows:

(4)
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(a)

(b)

Fig. 7. (a) A DCT/IDCT processing element. (b) Array of LUTs for DCT/IDCT processing element with the input registers.

where with two’s-complement
form of an input word length and ( , )
is the weighted cosine factors. According to (4), the multiplica-
tion with the coefficients can be performed with an ROM con-
taining 2 precalculated partial products ( ) in a
bit-serial fashion. The inner product computes the sums of par-
tial products corresponding to the same order bit from all the
input elements processed in the current stage using a set of se-
rial shift registers. For the output of the inner product, one more
shift register is required. Therefore, one PE contains a ROM and
a shift accumulator for the partial summations of corresponding
data bit order. In this configuration, each inner product is com-
pleted in the number of clock cycles that is the same as the word
length of input. With PEs, -point DCT can be completed in
parallel. Using the symmetry property, the contents of a ROM
can be reduced by 2 . However, it requires two sets of 2
adders and 2 subtracters before the DCT process and after
the IDCT process.

Due to the coding efficiency and the implementation com-
plexity, a block size of 8 8 pixels is commonly used in image
processing [19]. We therefore have implemented an 88 2-D
DCT/IDCT function unit by two sequential 1-D transform pro-
cesses. In addition, the width of input elements is 8 bits. We also
select the word length of the coefficients to be 16 bits for the ac-
curacy of the DCT computation.

One PE with conventional architecture is depicted in
Fig. 7(a). One PE implemented in the reconfigurable cache is
depicted in Fig. 7(b). In the figure, the ROM is placed in the
middle of an LUT row to reduce the number of routing tracks.
In the given cache size, 8 KB, eight such PEs and the additional
adders/subtracters for pre/postprocessing can be implemented.

To make the DCT/IDCT implementation compatible with the
convolution function unit, we place 4-LUTs with 16-bit output
in an 8-KB sized cache. Only 20 LUT rows (16 for PEs and
four for pre/postprocessing) out of 32 LUT row in the 8-KB
cache are used for the implementation. However, the LUTs
not used in this function still remain in the RC module for the
compatibility with other functions.

A 16-bit carry select adder is configured as a shift accumu-
lator with the registers not shown in the figure for the self-ac-
cumulation in each PE. According to (4), only one subtrac-
tion is necessary. This is done by the same adder, which can
keep both addition and subtraction configurations in 12-bit data
width (6 bits for adder and 6 bits for subtracter). The adder-sub-
tracter shares the same input and output with the adder without
requiring any extra logic. However, an extra control signal is
needed to enable the subtraction. The additional adders and sub-
tracters for the pre/postprocessing are implemented using the
scheme for adder-subtracter described above since each pair of
addition/subtraction needs the same input elements. In addition,
the 1-bit shift of accumulated data can be easily done by appro-
priate connections from the registers to the input data lines of
the adder. The input/output shift registers are added only to the
in/out port of the actual DCT/IDCT function unit after the pre-
processing unit and before the postprocessing unit. This means
that only one set of shift registers are necessary since all the PEs
compute using 4 bits out of the same set of input data in each
transform of a row or a column.

In the actual implementation, we add one more set of shift
registers to remove any delay due to loading or storing in/out
data from other memories. All the loading/writing back from/to
the storage can be overlapped with the computation cycle time
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Fig. 8. Data flow of the computation process for 8� 8 2-D DCT transform.

in PEs by appropriate multiplexing of the dual shift registers.
Adding shift registers allows in/out data to be ready to be pro-
cessed and written immediately after the previous computation,
without any idle time. The controller described in Section III-C
handles and controls the computation procedure. Once the host
processor passes the required information to the controller, all
the control signals are sent by the controller.

The computation process of an 88 2-D DCT is as follows.
The function unit on the RC computes the 1-D transform for an
entire row by broadcasting a set of input data after the pread-
dition/subtraction process to eight PEs in eight time units in a
bit-serial fashion (i.e., a half set of data to four PEs and another
half set of data to the other four PEs). A set of bit serial output
from eight PEs is carried out to the output shift registers in the
same fashion. The eight global bit lines described in Section II-C
are used as input and output data lines. To avoid the delay of the
global lines for the cache operations due to additional switches,
we can place other routing tracks into the space between global
bit lines, such as feedthrough. Since we have already added one
additional metal layer for the global bit lines, this layer can be
used to route additional lines. This implies that we have enough
vertical routing tracks in this architecture. This computation is
repeated eight times, once for each row, for eight rows of an
8 8 image. In the mean time during each computation, the
next set of input data is fetched in another set of input regis-
ters and the previous output data is written into an additional
memory. All the intermediate results from the 1-D transform
must be stored in a memory and then loaded for the second 1-D
transform, which performs the same computations to complete
a 2-D transform. Therefore, 2-D DCT/IDCT is computed with
two additional memories similar to the convolution function. A
data flow diagram of the computation process for 88 2-D
DCT is depicted in Fig. 8.

Several other opportunities for reconfigurable units exist in
this architecture, as described later. Although the width of co-
efficients in the ROM configuration is fixed at 16 bits in this
example, the coefficient width is flexible in this architecture be-
tween one and 16. Moreover, the width of input elements can
be easily extended by adding more shift registers without mod-
ifying the current configuration. The emulation of an ROM in
the RC does not imply fixed processing coefficients. Hence, dif-
ferent sets of coefficient values can be loaded using the conven-
tional cache operation for the other distributed arithmetic oper-
ations.

3) Reconfigurable Cache Merged with Multicontext Config-
urations: Since we implement convolution and DCT/IDCT in
the same reconfigurable cache framework, we can merge the
two functions into one reconfigurable cache. With the concept of
multicontext configurations mapped into multibit output LUTs
and individual interconnections, the reconfigurable cache can
be converted to either of two function units. A combined re-
configurable cache with two functions takes less area than the
sum of the areas of two individual function units because the
additional area cost is due to interconnections only. The logic
is absorbed in the available cache memory-based LUTs. The
required interconnection for each function is placed indepen-
dently together in the combined reconfigurable cache, which
implies that there is no sharing of interconnection between the
two functions. As described in Section II-B, we use fixed inter-
connection since it takes less area and propagation time than the
programmable interconnection. The actual area of the reconfig-
urable cache framework (base array cache) and interconnection
is shown in the last part of Section IV-B.

B. Area

To measure the actual area overhead of cache array only for
bothmemory cell array cacheandbase array cache,we experi-
mented with layouts of the reconfigurable cache with only con-
volution, only DCT/IDCT, and both functions. As we compare
the access time of RC for cache operations in two cache models,
thememory cell array cacheand thebase array cachein Sec-
tion II-D, the area overheads are estimated with respect to the
two cache models.

According to our layout experiment, the total area of the re-
configurable module including the pipeline registers with an
FIR filter, which supports up to 256 taps, is 1.53/1.12 times
the area of data array in the memory cell array cache/base array
cache without other logic components, respectively (described
in Section II-D). To see the exact area overhead of memory array
only, we consider the area overhead of RC with respect to the
base area of only the data cache array, which does not include
the additional cache logic—specifically, row/column decoders,
tag/status-bit part, and sense amplifiers. Thepercentageof RC
area overhead would appear to be even lower had we inflated
the base area by including the area for these logic components.
However, the actual area overhead remains the same.

For the DCT/IDCT function unit on an RC, the required inter-
connection is fixed just as in the convolution cache module. In
the DCT/IDCT function, no complicated routing is required and
the number of LUT rows in the RC is less than that for the FIR
filter, while the number of registers is higher. Thus, according
to our experimental layout for DCT/IDCT, the total area of the
DCT/IDCT module is 1.48/1.09 times the area of data array in
the memory cell array cache/base array cache, respectively, in-
cluding the accumulating registers and the shift register at the
in/out port. Again, those basic units, such as row/column de-
coders, tag/status-bit part, and sense amplifiers, are not included
in this comparison as mentioned above.

In Tables I and II, the area overhead of FIR filter and
DCT/IDCT in the RC is compared with designs for these
functions previously reported in the literature. The designs we
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TABLE I
AREA COMPARISON OFFIR FILTERS AND RC OVERHEAD FORFIR

TABLE II
AREA COMPARISON OFCHIPS AND RC OVERHEAD FORDCT/IDCT

compare with this paper are from the literature of the last ten
years. We compare our result to the best area implementations
in the literature. We have estimated the area for an RC in
by scaling from 0.25 to 12 m (some of them are not shown
in the tables). As we explained in Section II-D, the area over-
head for RC is also estimated with respect to the two base cache
architectures. For the memory cell array cache, the area over-
head includes the dedicated decoders, switches, RC-intercon-
nect, and required registers while the area overhead in the base
array cache with the parallel decoding and segmented bit/word
lines consists of only the interconnect and the registers. For a
fair comparison, only the core sizes are listed in both tables by
estimating the area of the core part of the entire chips. Also, the
area overhead of RC in the tables is the area of only additional
units to support the functions implemented. In other words, the
original cache area is not included in the area overhead. The core

TABLE III
AREA COMPARISON OFMULTIPLIER-ACCUMULATORS AND RC OVERHEAD

FOR ONE MAC STAGE

area of design in [22] shown here is estimated in [20]. In Table II,
the core area of 1-D IDCT in design [23] excludes I/O pads and
buffer area. We scale the reported total area by the proportion of
the reported core area to the reported total area. The area of FIR
filter and DCT/IDCT in the RC includes all the required reg-
isters such as pipeline registers for FIR and accumulating/shift
registers for DCT/IDCT.

Most of the reported FIR filter designs have fixed coeffi-
cients with as many physical MACs as the number of taps.
Although coefficients are programmable in [21], only 40 taps
can be supported for various types of filter. Besides, the time
taken for run-time reconfiguration in a serial fashion is high
due to the limited number of pins. The time of run-time re-
configuration of coefficients in the RC is much smaller be-
cause multiple LUT writes are achieved per cache write op-
eration. For a fair comparison, the area per tap can be cal-
culated roughly in each filter by dividing the core area by
the number of taps. According to the area per tap, the area
of a tap in the RC is larger than others with respect to the
memory cell array cache while the area per tap in the RC is
smaller than others with respect to the base array cache area
overhead. Although only eight taps are implemented physi-
cally in the RC, the FIR cache module can support up to 256
taps with fast configuration not visible to the application.

Since some of the filters have a different word length, we
compare the area of 16 16 constant coefficient multiplier
and 32-bit accumulator (MAC) implemented in the RC with
the same word length of MAC, as presented in [27]. Since
constant coefficient multipliers are used in most DSP and
multimedia applications, we implemented a 1616 constant
coefficient multiplier, one MAC stage for FIR. The MAC
area is estimated based on the number of LUT rows used
and interconnection in RC. In our experimental layout, the
MAC (16 16) area in the RC is less than or equal to two
times the area of one MAC stage of convolution (88) in
the RC. This area is smaller than that of the existing MACs,
as shown in Table III in both cases. This implies that an FIR
filter with 16-bit word length can be easily implemented in
the RC with a similar area overhead for four physical taps.
However, it can still support up to 256 taps.

Note that the designs reported in [20] and [21] implement
FIR with 14-bit and 12-bit coefficients, respectively, while we
report RC area overhead for an 8-bit coefficient design. It is hard
to develop a precise analytical model for area parameterized by
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the number of bits in a coefficient. Some parts (such as mul-
tiplier) may scale nonlinearly with the number of coefficient
bits depending on the algorithm. Some parts would scale sub-
linearly, such as control and global routing. For an approximate
comparison, we assume that the area scales linearly in coeffi-
cient width. Hence, the 8-bit version of [20] would take area 28
mm mm , and for [21], the area would be 14.7 mm

mm , which are comparable to the RC area over-
head for FIR. The main advantage of RC for FIR is the recon-
figurability, which allows the RC-FIR to have a virtually infinite
number of taps unlike other customized FIR chips, with faster
reconfiguration of taps. We therefore conclude that the area per
tap for RC is comparable to that of the customized FIR chips.

The area of the previous designs for DCT/IDCT in Table II is
larger than the proposed DCT/IDCT cache module except [24]
with respect to area overhead of the memory cell array cache.
The 2-D DCT/IDCT functions are implemented with a similar
procedure as in the DCT/IDCT cache module—two 1-D DCT
steps. Since the DCT function is implemented using a hardwired
multiplier in [24], the area is smaller than the cache module with
respect to the area overhead of the memory cell array cache.
However, the area overhead with respect to the base array cache
is smaller than all the previous designs shown in the table. The
DCT function in [25] has two 1-D DCT units, so the area of one
1-D DCT unit is roughly half of the overall area, which is still
larger than the RC overhead.

In the combined multifunction reconfigurable cache, each
function needs a fixed interconnection topology. Therefore, the
total area of interconnection occupied by the two functions in
the combined RC is the sum of the individual interconnection
areas for convolution and DCT/IDCT. According to our ex-
perimental layout of the combined cache, the total area of the
RC with two functions is 1.63/1.21 times the area of data array
in the memory cell array cache/base array cache, respectively,
with all the required registers and without other components
described above.

Since the decoders for LUTs account for most of the area
overhead in the reconfigurable caches, adding more intercon-
nection does not add much area in the combined RC. The ac-
tual area of the combined cache module is shown in Table IV.
The base array cache described in Section II-D consists of ded-
icated 4-to-16 decoders, four address lines, and a number of
switches to connect the local bit lines to the global bit lines. The
area of combined reconfigurable cache is smaller than the sum
of smallest areas in the existing FIR and DCT/IDCT function
units in both cache models. This implies that we can add ad-
ditional multiple functions in the existing reconfigurable cache
with a relatively small area overhead. The interconnection area
for individual functions is also listed in Table IV. Moreover,
since some part of the area for routing tracks between the two
functions is overlapped—for example, adders, constant multi-
plier, and ROMs—the area of interconnection in the combined
RC may be less than the sum of two individual interconnection
areas. The fixed interconnection for the functions can be effi-
ciently routed and does not take much area. The placement and
routing of the reconfigurable cache has been done manually as
a first cut. We can expect the area overhead to reduce further if
we place and route carefully.

TABLE IV
AREA OVERHEAD OF THECOMBINED RECONFIGURABLECACHE

C. Execution Time

1) Convolution: We compare the execution time of the FIR
filter using an RC to a conventional GPP running the algorithm
in (1). Since the reconfigurable cache may have to be flushed,
we show the results for the following two cases. In the first
case, no data in the cache needs to be written back to main
memory before it is reconfigured as the function unit, for ex-
ample, caches with write-through policy. In the second case, the
processor has to flush all the data in the cache before configuring
it (i.e., written back to the main memory). The extra time is de-
noted by theflush timeand is required for write-back caches.

The total execution time of the convolution in the reconfig-
urable cache consists of configuration and computation times.
The configuration time includes the times for adder and constant
coefficient multiplier configuration. In addition, in the second
case, the cache flush time is also added to the configuration time.
The actual parameter values to compute the times are given in
Table V. We chose the values to be as conservative as possible
with respect to SPARC IIprocessor cycle time at 270 MHz
[28] (where the GPP simulation was performed). The access
time for the data cache in a SPARC IIprocessor is one cycle
in a pipelined fashion (it is a 16-KB direct mapped cache with
two 16-B subblocks per line). In a typical processor, this ac-
cess time can be anywhere from one to two cycles. Hence, we
chose three cycles for the cache access time in RC for a con-
servative model. Had we chosen a lower cache access time (one
or two cycles), the RC execution time would appear to be even
more favorable since other parameters, such as LUT read time
in RC, were based on the cache access time—three cycles (12
ns). The main memory access time is 20 cycles. The parameters
for the cache structure are based on an 8-KB size cache with
eight words per block and 16 bits per word ( , and

). Since eight words in a cache block are stored in the inter-
leaved fashion, each bit of one word is stored every 8 bits. The
first and ninth bits of an LUT content can be written in the LUT
simultaneously by writing one word (parameter ). The
computation time of one stage/PE in the RCs is chosen by the
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TABLE V
PARAMETERS FOR THERCs

following factors. Each stage in the convolution function unit
requires three LUT reads with additional time for propagation
through a number of multiplexers, while each PE in DCT/IDCT
unit does two LUT reads with additional time for multiplexers.
We use read time for an LUT of 8 ns with the multiplexer prop-
agation time—less than the cache access time because the LUT
is much smaller and faster than the 8-KB cache memory. The
expressions for the times are presented as follows:

1) ConFig. Time for adder +
;

2) ConFig. Time for constant multiplier
TAP ;

3) Cache Flush Time ;
4) Computation Time TAP/S .
In the computation time, we add 2instead of for the ini-

tial pipeline steps because we exploit the double pipelined input
data in each stage of the convolution, as shown in Fig. 6(a). In
addition, we separate the configuration time for adders and mul-
tipliers. The reason for this is that only one set of data for an LUT
is necessary when reconfiguring the LUTs for adders because
the contents of all the LUTs are the same, while different config-
uration data are necessary for multipliers. The time for storing
and loading input and intermediate data can be overlapped with
the computation time. Therefore, data access time for the com-
putation is not added.

The speedup of RC over GPP for convolution is shown in
Fig. 9. We assume that all the input data fit into a data cache
for both RC and GPP computations according to the following
observation. We traced the number of cache misses in GPP for

(a)

(b)

Fig. 9. Ratio of execution time of RC and GPP for convolution: (a) without
memory flush and (b) with memory flush before converting into the function
unit.

all the cases in Fig. 9. From the trace, we found that, regardless
of the number of taps and data elements in the computation, the
number of cache misses does not vary with the execution time.
Therefore, we neglected the effect of the cache miss penalty in
the comparison. We simulated convolution with floating-point
variables instead of integers, which leads to faster processing
in GPP. The choice between memory cell array and base array
determines cache access time in GPP. As we explained in Sec-
tion II-D, the RC based on memory cell array will give smaller
access time in GPP even for other applications, while the RC
based on base array will increase the cache access time by 1–2%.
We have assumed the cache access time in GPP and in the pro-
cessor with RC to be the same for both cache types (memory
cell array or base array).

Our results show that the reconfigurable cache provides a
better performance improvement than the GPP as the number of
data elements increases. Fig. 9 shows that the performance im-
provement is almost independent of the number of taps without
memory flush in Fig. 9(a). The ratio of the computation time
with less taps decreases with memory flush in Fig. 9(b) because
the flush time affects the ratio of the total execution time more
with the decrease in the number of taps.

2) DCT/IDCT: As described in Section IV-A2, the 2-D
DCT/IDCT can be completed by two 1-D transforms. This pro-
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cedure is similar to the data caching scheme, which is adapted
for the FIR filter module (i.e., two additional memories for
processing with intermediate data). We compare the execution
time of the 2-D transforms in RC and GPP executing the fast
DCT algorithm described in Section IV-A2. As in the previous
example, the two cases of cacheflush time,no cache flush and
cache flush, are considered in this section.

The total execution time of the DCT (IDCT) in the reconfig-
urable cache consists of configuration and computation times.
The configuration time includes the writing times for the con-
tents of ROMs and adders. In addition, in the case of cache flush,
the cache flush time is also to be added in the configuration time.
The actual parameter values to compute the times for this func-
tion used are the same as for the convolution in Table V. The
expressions for the execution times are presented as follows:

1) ConFig. Time for accumulators and pre- (or
post)adders/subtracters
+ ;

2) ConFig. Time for ROM
;

3) Cache Flush Time ;
4) Computation Time 1-D transform

Image sizeBasic block size =
.

The cacheflush timeis the same as earlier. Configuration
data need to be written to all the PEs once only because all the
data elements in an image are processed with the same coeffi-
cients using the distributed arithmetic. The configuration pro-
cedure of the convolution in the previous section is applied to
DCT/IDCT. As described earlier, the time of loading and writing
all the in/out data from/to memories can be overlapped with the
computation. Thus, only the initial loading and the final writing
time, which is overlapped in the transition of data set, is added
to the computation time of each 8 8 1-D transform for data
access time. In this configuration, the adder is used as both a
16-bit adder and a 16-bit subtracter with two sets of configu-
ration data. Since only one of the pre/postadders (subtracters)
is necessary for DCT and IDCT, respectively, the configuration
time of pre-(or post)adders/subtracter with the same configura-
tion scheme is added in the execution time.

The speedup of RC over GPP for DCT is shown in Fig. 10.
The assumption regarding the cache misses of data mentioned
in Section IV-C1 has been applied to this simulation. Therefore,
the main memory access time is not considered for in/out data of
the computation. For a larger size of image than the basic block,
8 8, we partitioned the entire image into a number of basic
block images. We assume that the cosine weighted factors are
prestored as coefficients in an array when the GPP processes the
DCT/IDCT, which means the actual cosine coefficient compu-
tation is not performed in GPP. It is much faster than the compu-
tation with the actual cosine factors. Again, floating-point vari-
ables are employed in our simulation of DCT/IDCT for faster
processing in GPP.

According to the result in Fig. 10, the reconfigurable cache
for DCT/IDCT has a better performance improvement over the
execution time of the GPP as the size of input image increases.
The performance improvement is roughly independent of the

Fig. 10. Ratio of execution time of RC and GPP for DCT/IDCT with and
without flush time.

memory flush in the larger size of images. Since the computa-
tion is ROM based, only the initial configuration is necessary.
Thus, the larger sizes in the results, 512768 (TV-image) and
1920 1152 (HDTV), do not rely on the flush time. For main
profile at high level decoding, the maximum allowable time to
process a macroblock is 4.08s [23]. The result shows that it is
possible to process a block in 2.30s.

3) Multicontext Reconfigurable Cache:There is no dif-
ference between individual and combined caches in terms of
the execution time. However, the combined cache may have a
slightly higher propagation delay due to longer wires caused by
the inclusion of interconnection, in our instance, 1.6% increase
in cache access time. Therefore, we can assume that both
individual and combined RCs have almost the same execution
performance.

V. CONCLUSION

We have presented a reconfigurable cache module, which can
perform both as a function unit and a cache. This allows a pro-
cessor to trade compute bandwidth for I/O bandwidth. We have
analyzed it for convolution and DCT/IDCT. The reconfigurable
caches for the computation of convolution and DCT/IDCT im-
prove the performance by a large amount (a factor of up to
50 and 60 for convolution and DCT/IDCT, respectively). The
area penalty for this reconfiguration is about 50–60% of the
memory cell cache array area with faster cache access time, and
10–20% of the base cache array area with 1–2% increase in the
cache access time. However, we save 27% for FIR and 44% for
DCT/IDCT in area with respect to memory cell array cache and
about 80% for both applications with respect to base array cache
if we were to implement all these units separately. We are cur-
rently developing similar mappings for other structured func-
tions. Pseudoprogrammable interconnection with limited pro-
grammability, but with less area overhead, to support more gen-
eral functions—a certain family of applications—is also being
considered. Although we propose integrating the reconfigurable
cache modules within Level-1 caches, these RC modules can
also be used at Level-2 cache. Architecturally, Level-2 integra-
tion would be easier providing us with “Active pages” type of
capability [12].
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