
A reconstruction error‑based framework
for label noise detection

Zahra Salekshahrezaee, Joffrey L. Leevy* and Taghi M. Khoshgoftaar

Introduction

Classification involves predicting the class of a new sample by using a model derived

from training data. A comprehensive and accurate collection of data is essential for

supervised learning and classification algorithms [1]. In a labeled dataset, each sample

(also known as an instance) is associated with an observed label. �is label often cor-

responds to the real class of the sample (also known as the true class). Label noise, or

class noise, exists when the real class is different from the observed class, e.g. a majority

class (negative) label wrongly assigned to a positive instance. For example, an innocent

person in a large city could be wrongly tagged as a crime suspect by a machine learning

algorithm. Models trained on datasets with high levels of label noise will not generalize

well to new data [2, 3].

Sometimes, a data sample may have one or more attributes that are incorrect or

corrupt. This condition is known as feature noise (or attribute noise) [4, 5]. Label

noise has been shown to be potentially more harmful than feature noise [6]. The rea-

son is that a dataset usually has more than one feature, and the value and weight of

each feature may be different for training purposes. However, for each dataset there

Abstract

Label noise is an important data quality issue that negatively impacts machine learn-

ing algorithms. For example, label noise has been shown to increase the number

of instances required to train effective predictive models. It has also been shown to

increase model complexity and decrease model interpretability. In addition, label noise

can cause the classification results of a learner to be poor. In this paper, we detect label

noise with three unsupervised learners, namely principal component analysis (PCA) ,

independent component analysis (ICA) , and autoencoders. We evaluate these three

learners on a credit card fraud dataset using multiple noise levels, and then compare

results to the traditional Tomek links noise filter. Our binary classification approach,

which considers label noise instances as anomalies, uniquely uses reconstruction errors

for noisy data in order to identify and filter label noise. For detecting noisy instances,

we discovered that the autoencoder algorithm was the top performer (highest recall

score of 0.90), while Tomek links performed the worst (highest recall score of 0.62).

Keywords: Label noise, Autoencoder, PCA, ICA, Tomek links

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

RESEARCH

Salekshahrezaee et al. J Big Data (2021) 8:57

https://doi.org/10.1186/s40537‑021‑00447‑5

*Correspondence:

jleevy2017@fau.edu

Florida Atlantic University,

777 Glades Road, Boca Raton,

FL 33431, USA

http://orcid.org/0000-0002-7079-7540
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00447-5&domain=pdf

Page 2 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

is typically one class label, and this label often has a significant effect on classifica-

tion performance [1, 6].

There are several common issues that can cause label noise. It may stem from

inadequate information provided to the expert that, in turn, results in inaccurate

labeling [1, 7]. Label noise may also be caused by the limited specificity of classifi-

cation [7], which can decrease the true accuracy of the classification. Thirdly, label

noise may be a consequence of the unreliable quality of information [8]. To allevi-

ate these issues, various manual and/or automated services are used to assist with

classification [1]. Amazon Mechanical Turk, made popular with its inexpensive and

user-friendly labeling processes, provides one such service [9].

Label noise can also come from data encoding or network connectivity problems

[7, 10]. Real-world databases are believed to contain about 5% encoding errors in

their data [6]. As a result of these errors, there is a certain amount of unavoidable

label noise [11]. Unfortunately, this necessitates the inclusion of either additional

features or an increased training data size to compensate for this inherent label noise

[7].

Our work is grounded on the concept that label noise data points are likely to be

anomalies in the class indicated by the corresponding label [8, 12]. Stated otherwise,

after a feature space is defined for a binary class, there will be some instances in an

assigned class that belong to the other class due to label noise. Our contribution

involves the novel approach of treating reconstruction error as a mapping technique

in order to detect label noise. This error is the difference in mean square error (MSE)

between the input vector and the reconstructed output produced.

Our machine learning models are trained by minimizing reconstruc-

tion error. Three unsupervised learning algorithms were used in this study:

principal component analysis (PCA) , independent component analysis (ICA) and

autoencoders. They have previously been used by other researchers to detect anom-

alies in datasets [8, 10, 13]. We compared these unsupervised methods to Tomek

links, a traditional label noise filter technique for removing data capable of impair-

ing classification performance [14, 15].

In this study, our autoencoder model produced the best scores for all three met-

rics used: Area Under the Receiver Operating Characteristic Curve (AUC) , recall, and

False Negative Rate (FNR) . Our results also showed that the Tomek links algorithm

was the worst performer. For a given metric, it was generally observed that for each

algorithm, the highest noise level yielded the best score, and the lowest noise level

yielded the worst score.

The remainder of this paper is organized as follows: Section "Related Work"

provides an overview of literature related to label noise detection; Section "Back-

ground" provides relevant information on all algorithms used in this study (PCA ,

ICA , autoencoders, Tomek links); Section "Methodology" describes the training and

testing of the unsupervised learners, the levels of noise used, and the metrics used;

Section "Results and Discussion" presents and discusses our empirical results; and

Section "Conclusion" concludes our paper with a summary of the work presented,

along with suggestions for related future work.

Page 3 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

Related work

�ere are two main techniques that address label noise. �e first approach filters

noisy instances and cleans the data, while the second develops methods that are

robust when facing label noise during the modeling process.

In the filtering approach, noisy instances are removed or relabeled to get a cleaner

dataset [16]. One of the earlier works on noise filtering is edited nearest neighbor (ENN)

by Wilson [17]. �is algorithm removes an instance in a training set if the point does

not agree with the majority of its k-nearest neighbors (k-NNs) . Editing of the instances

is done using the three-nearest neighbor rule followed by classification using the sin-

gle-nearest neighbor rule. Tomek et al. [14] later suggested an extension of ENN . In

their approach, they apply the nearest neighbor rule k times. For each execution, the

nearest neighbor rule changes the number of neighbors considered between 1 and

k. If one instance is misclassified by the rule, it is removed. In another related study,

Khoshgoftaar et al. [18] introduced iterative partitioning filtering. �is approach

eliminates noisy instances in multiple iterations until a stopping criteria is met. �e

iterative process ceases if, for a number of consecutive iterations, the number of noisy

examples found in each of these iterations is less than a proportion of the size of the

original training dataset. Each iteration splits the current training dataset into sub-

sets of equal sizes, followed by the creation of a C4.5 decision tree model for each of

these subsets. A voting strategy is then used (consensus or majority voting) to iden-

tify noisy instances. Sáez et al. [19] performed a more recent study, where they intro-

duced an iterative class noise filter based on the fusion of classifiers. �eir technique

eliminates noisy instances in multiple iterations. It is based on three major noise fil-

ter paradigms: ensemble-based filtering, iterative filtering, and metric-based filtering.

For each iteration, the first step eliminates part of the existing noise in the current

iteration to reduce its effect in the subsequent steps. Our study also adopts a filtering

approach. However, we focus on unsupervised learning, which is ideal for studying

raw data.

With regard to the development of robust methods, the aim is to render mislabeled

instances less destructive to the model. Strategies such as robust loss functions [20]

that prevent overfitting can be implemented during training to make the classifier less

responsive to noisy data. In addition, several studies on label noise detection have

explored ensemble learning, which is only suitable for comparatively simple cases

[21]. On the other hand, several approaches are explicitly designed for label noise

problems using various robust optimization methods [22]. We point out that these

are primarily supervised approaches [23]. Zhang and Tan [24] used a reconstruction

error minimization framework to further filter and relabel the mislabeled data. �eir

results, which are based on the MNIST dataset [25], show that their proposed method

could significantly reduce the false positive outlier detection rate and improve both

data cleaning and classification quality. �e authors follow an unsupervised approach

just like we did. However, they use a dataset of images.

Page 4 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

Background

PCA

In machine learning, PCA is an exploratory data analysis method that reveals the

inner structure of the data and explains variance. To create a more compact fea-

ture space, the technique identifies correlated variables and effects a transformation

that best reflects the differences from the input [26]. �e application of PCA results

in m principal components. If the amount of variance captured by the first r-prin-

cipal components represents the majority of the variance in the data, the data can

be mapped to the reduced r-dimensional space represented by the first r-principal

components.

PCA is typically used for dimension reduction. In this study, however, we use it for

label noise detection by applying the subspace method [27]. �e subspace method

works by dividing the principal axes into two sets representing normal and anomalous

data variations. Any data instance represented by a row in the dataset can be defined as

y = ŷ + ỹ by representing it as normal (̂y) and anomalous subspace (̃y). �e concept of

subspace anomaly detection uses an anomalous shift in the feature correlations in a vec-

tor function to represent an increment in the projection of that data point to an anoma-

lous subspace. �e magnitude of ỹ is higher than what is seen among normal instances

[28]. To determine the magnitude of the projection of each instance to an anomalous

subspace, we first examine the set of principal components in the normal subspace as

columns of the matrix P of size m × r.

�e PPT y matrix represents the linear projection to the normal subspace. C̃ represents

a linear projection to an anomalous subspace, and abnormal variations ỹ represent an

anomaly. �e square prediction error (SPE) is used to monitor the changes in ỹ . SPE is

computed as shown in [29]:

If an instance of SPE is more than a threshold, this instance is identified as anomalous,

and in our case, it will be detected as an anomaly to the class that the instance was

labeled as. Each new input is analyzed for anomalies. �e anomaly detection algorithm

combined with a normalized reconstruction error computes its projection on eigen-

vectors. �e normalized error is used as the score for the anomaly, and we presuppose

that the higher the error value, the more anomalous the instance [30, 31]. �is intuitive

assumption also holds true for the ICA and autoencoder algorithms.

ICA

ICA is a statistical technique for analyzing hidden factors (sources or features) from a

collection of measurements or records. �e algorithm is able to separate the sources

according to the distribution of the data. To achieve the separation of mixed data into

independent components, ICA exploits the independence of the sources. �is technique

(1)ŷ =PPT y = Cy

(2)ỹ =(1 − PPT)y = C̃ỹ

(3)SPE = �ỹ�2

Page 5 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

is useful for separating anomalies [32–34]. To formally describe the ICA model, consider

X = (x1, x2, ..., xn) as the input vector and S = (s1, s2, ..., sp) as a random vector of latent

mutually independent sources where p ≤ n . �e ICA model can be described as

ICA involves the calculation of both A and S where only X is known, with A being a

matrix (n × p) . A is presumed to be fixed, but unknown, and finds a matrix W such that

S = WX . ICA obtains S based on the fact that members of this vector are statistically

independent and non-Gaussian random variables [13, 35]. Ideally W−1 should be equal

to A. However, it differs from A due to noise and outliers in mixed results. ICA methods

define transformations such that components derived from mixtures are as independent

as possible by optimizing or decreasing any objective function (kurtosis, entropy, etc.).

Autoencoder

In the field of neural networks, the concept of autoencoders has been popular for dec-

ades, with the most typical applications being the reduction of dimensionality or feature

learning. More recently, the autoencoder concept has been used to learn generative data

models and identify data anomalies [10, 36]. An autoencoder is an artificial neural net-

work used in an unsupervised fashion to learn data representation [37]. �e simplest

type of autoencoder is comparable to a simple multilayer perceptron (MLP) , with an

input layer, an output layer and one or several hidden layers connecting them. �e out-

put layer has the same number of nodes (neurons) as the input layer in order to recreate

its inputs. An autoencoder can be linear or non-linear, depending on its activation func-

tion [38].

�e purpose of an autoencoder is to learn a representation (encoding) while disregard-

ing signal noise. �e algorithm attempts to minimize the difference between the input

and the output, instead of predicting the target value Y given inputs X. A reconstructing

side is learned along with the reduction side, where the autoencoder attempts to produce

a representation as similar as possible to its original input from the reduced encoding.

�e size of the hidden layer determines the size of the latent representation and consists

of two main components: an encoder that maps the input to the code and a decoder

that maps the code to the original input [39]. �e autoencoder reconstructs normal data

efficiently after training, whereas it struggles to do so with anomalous data that was not

encountered during training [40]. For high dimensional data with class anomalies, non-

linear autoencoders have shown superior classification performance [41]. In this study,

we use non-linear autoencoders.

To detect label noise in a dataset, the autoencoder is trained with clean data and learns

the normal behavior of this data. �e weight and architecture of the autoencoder are

adjusted to minimize the reconstruction error for clean instances of the class. For our

training dataset, each record can be described as Z = Z1,Z2, ...,Zn . In this research, we

inject various levels of noise into the test portion of the dataset by changing the label of

a subset of the instances from one class to another. Reconstructed data points can be

described as Ẑ = g(W2f (W1Z + b1) + b2) [24]. W1 and W2 represent the weight matrix,

while b1 and b2 are biases for encoder and decoder, and f(x) and g(x) are tanh activation

functions. �e loss function based on reconstruction error is described as follows:

X = AS

Page 6 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

PCA vs Autoencoder

For PCA modeling, several algorithms are available. One such algorithm involves esti-

mation by minimizing reconstruction error [32]. In this subsection, we compare a linear

single-layer autoencoder with PCA (minimizing reconstruction error method) for sim-

plicity. Ranjan’s depiction [41] of a linear single-layer autoencoder is shown in Fig. 1.

As shown at the bottom of the diagram, the process of encoding is identical to the

transformation of principal components (PCs) . Likewise, the method of decoding is

similar to the reconstruction of data from the principal scores. For both the autoen-

coder and PCA , model weights are calculated through the minimization of the recon-

struction error.

Suppose we have a dataset with p features and an encoding layer of size k. With

PCA, k denotes the number of PCs chosen. For both the autoencoder and PCA ,

dimension reduction occurs when k < p . An over-representative model exists when

k ≥ p , which indicates a reconstruction error of virtually zero.

In the encoding layer of the autoencoder in Fig. 1, a colored cell is a computing node

with p weights denoted as Wij where i = 1, ..., k and j = 1, ..., p . For each encoding node

in 1, ..., k, there is a p-dimensional weight vector. �is is equivalent to an eigenvector

in PCA . �e encoding layer output for an autoencoder is given as z = g(Wx) = Wx ,

if the activation function g is linear, where x is the input and W is the weight matrix

[41]. If g(Wx) is linear, this is the equivalent of the principal scores in PCA.

For autoencoder and PCA reconstruction, the size of the decoding layer must be the

size of the input data p. In a decoder, the data is reconstructed from the encodings

loss =
1

n

n∑

i=1

|Ẑi − Zi|
2

Fig. 1 Single layer autoencoder vs PCA [41]

Page 7 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

and can be represented as x̂ = g(Ẃ z) = Ẃ z , if the activation function g is linear [41].

Similarly, for PCA , the data is reconstructed as x̂ = W T z.

Tomek links

In this study, we also incorporated Tomek links, which is a traditional label noise detec-

tion technique. �e Tomek links algorithm acts as a label noise filter and is denoted by

pairs of instances. A Tomek link is a pair of data points x and y from different classes,

such that, if d stands for the distance metric, there exists no example z such that d(x, z)

is lower than d(x, y), or d(y, z) is lower than d(x, y). Hence, where the two examples x and

y form a Tomek link, either one is noise or both are borderline [42]. �ese two examples

are thus eliminated from the training data. To elaborate further, in a binary classification

environment with classes 0 and 1, a Tomek link pair would have an instance of each class

and would be nearest neighbors across the dataset [43]. �ese cross-class pairs are valu-

able in defining the class boundary [44]. Figure 2 by Argawal [45] shows an alignment

of Tomek link pairs at the class boundary. It is important to note that the use of Tomek

links for label noise detection does not involve the calculation of reconstruction error.

Methodology

Development of Models

We use a credit card fraud dataset [46] that was collected and analyzed through a

research partnership between Worldline and the Université Libre de Bruxelles (ULB).

�e original dataset contains 248,807 instances and 31 columns (class label included).

�e credit card purchases were made by European cardholders in September 2013. �ere

are 492 cases of fraud, or 0.172%, making the dataset highly imbalanced. A high imbal-

ance exists within a dataset if the majority-to-minority class ratio ranges from 100:1 to

10,000:1 [47]. All but two of the independent variables in the fraud dataset are principal

components obtained by PCA . �e label is 1 in the event of fraud and 0 otherwise.

For training purposes, the original dataset was split into normal and fraud sub-data-

sets, and we subsequently trained the models using clean sub-datasets. We introduced

Fig. 2 Tomek link pairs [45]

Page 8 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

noise by changing the labels for a number of instances in each class. Since the original

dataset is imbalanced, the ratio of noisy to clean instances for the normal sub-dataset

is also imbalanced. If, for example, we changed the label for all fraud cases from 1 to 0,

it means we added 492 cases of label noise to the normal sub-dataset. In this case, the

noise ratio is still less than 1% for this sub-dataset.

Our approach entailed k-fold cross-validation (CV) , where the model is trained on k-1

folds each time and tested on the remaining fold. �is is to ensure that as much data

as possible are used in the classification. More specifically, we use stratified CV which

attempts to ensure that each class is approximately equally represented across each fold

[48]. In our study, we assigned a value of 4 to k: three folds for training and one fold for

testing. We repeated the process of building and evaluating the models 10 times for each

unsupervised learner and dataset. �e use of repeats helps to reduce bias due to bad

random draws when generating the samples. �e final performance result is the average

over all 10 repeats. �e primary focus of our work is to detect fraudulent instances mis-

labeled as normal instances (minority class instances mislabeled as the majority class).

For each step of the experiment, we swapped the label for a specific number of instances,

up to 90% of instances of the minority class and a very small number of instances from

the majority class. �e number of noisy examples in the training results is specified as

noise level (NL).

We used four levels of noise, NL = {10, 40, 70, 90}. Similar to the formula used in [5],

the actual number of noisy examples is given as

P is the number of instances in the minority class. NL/100 ∗ P corresponds to the num-

ber of noisy instances injected into the negative class, while NL/10 corresponds to the

relatively small number of noisy instances injected into the positive class. For example,

when NL is 40, the number of noisy examples is calculated as 40/100 ∗ 492 + 4 = 201.

�e PCA configuration used in this work has the same number of principal compo-

nents as the number of original features from our dataset. �e inverse transform func-

tion from Scikit-Learn recreated the original transactions from the key components

produced [49].

For our ICA algorithm, we implemented the sklearn.decomposition.FastICA function

from Scikit-learn [50]. �e FastICA algorithm is an efficient and popular variant of ICA .

Based on best performance during preliminary experimentation, we set the algorithm

on ‘parallel’ mode, and set the max_iteration count to 200. Additionally, we also set the

number of components equal to the input vector dimension size [50].

Our autoencoder was implemented in Keras using a TensorFlow backend [51].

�rough preliminary experimentation, the best parameters were selected. �e model

contained nine densely connected hidden layers, along with the tanh activation function

and L1 regularization. �e input and output layers had the same dimensions as the num-

ber of features in the original dataset.

To identify an error threshold for each learner that discriminates between normal

and anomalous behavior, we examined the distributions of the reconstruction errors.

We then chose the nth percentile of the error distribution of the normal dataset [10].

NL

100
× P +

NL

10

Page 9 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

If, for example, n = 95 , this means that 95% of the errors in the normal dataset are

smaller than a value (v). Hence, any data point fed to a specific learner that generates

an error greater than v would be classified as anomalous. Our analysis showed that

the best outcomes were achieved at higher thresholds, i.e. n ≥ 93.

Metrics

Our work records the confusion matrix (Table 1) for a binary classification problem,

where the class of interest is usually the minority class and the opposite class is the

majority class, i.e. positives and negatives, respectively. A related list of simple perfor-

mance metrics [52] is explained as follows:

• True Positive (TP) is the number of positive samples correctly identified as positive.

• True Negative (TN) is the number of negative samples correctly identified as nega-

tive.

• False Positive (FP) , also known as Type I error, is the number of negative instances

incorrectly identified as positive.

• False Negative (FN) , also known as Type II error, is the number of positive instances

incorrectly identified as negative.

Based on these fundamental metrics, other performance metrics are derived as

follows:

• Recall, also known as True Positive Rate (TPR) or sensitivity, is equal to TP/(TP + FN).

• Specificity, also known as True Negative Rate (TNR) , is equal to TN/(TN + FP).

• Fall-out, also known as False Positive Rate (FPR) , is equal to FP/(TN + FP).

• Miss Rate, also known as FNR , is equal to FN/(TP + FN).

• AUC graphically shows recall versus (1-specificity), or TPR vs FPR , across all classi-

fier decision thresholds [53]. From this curve, the AUC obtained is a single value that

ranges from 0 to 1, with a perfect classifier having a value of 1.

 In our study, we use more than one performance metric (recall, FNR , AUC). �is

strategy allows us to better understand the challenge of evaluating the machine

learning algorithms with highly imbalanced data.

Table 1 Confusion matrix

Predicted Class

Positive Negative

Actual class

 Positive True Positive (TP) False Negative
(FN) (Type II
error)

 Negative False Positive (FP) (Type I error) True Negative (TN)

Page 10 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

Results and discussion

We expect to observe higher reconstruction errors for the mislabeled instances. Fig-

ures 3, 4, 5, 6, 7 and 8 are histograms that show error distribution for both clean and

noisy data points for a noise level of 90, which corresponds to 452 noisy instances.

�ese graphs plot the number of instances against reconstruction error. Tomek links are

excluded for these figures because this algorithm does not rely on reconstruction error

calculations for label noise detection. As indicated in Figs. 3, 4, 5, 6, 7 and 8, the distribu-

tion of reconstruction error is higher for the noisy instances than the clean instances.

Fig. 3 Autoencoder—Number of instances vs reconstruction error value for clean data points

Fig. 4 Autoencoder—Number of instances vs reconstruction error value for noisy data points

Fig. 5 ICA—Number of instances vs reconstruction error value for clean data points

Page 11 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

Performance results for label noise detection are presented as average scores in

Table 2. Each value is the mean of 40 repetitions (10 runs per experiment x 4-fold cross

validation). �e best performance score within each column for each algorithm is in

italic type.

When comparing the same noise levels (same number of noisy instances) among

the algorithms for each metric in Table 2, we see that the autoencoder has the best

scores. Overall, the highest scores for AUC (0.96) and recall (0.90) were obtained with

the autoencoder, while the lowest FNR score (0.10) was also obtained with this model.

Fig. 6 ICA—Number of instances vs reconstruction error value for noisy data points

Fig. 7 PCA—Number of instances vs reconstruction error value for clean data points

Fig. 8 PCA—Number of instances vs reconstruction error value for noisy data points

Page 12 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

Most tellingly, the Tomek links algorithm appears to be the worst performer. In gen-

eral, we observe that for each algorithm, per metric, the highest noise level yielded

the best score, and the lowest noise level yielded the worst score. �e autoencoder

model, for example, obtained its highest recall score of 0.90 for 452 noisy instances,

and its lowest recall score of 0.82 for 51 noisy instances. �is occurs because the algo-

rithms become more efficient at detecting the class of interest (noisy instances) as the

noise level increases. For a machine learning algorithm, the task of detecting a target

class containing an extremely low number of instances is comparable to searching for

a needle in a haystack [54]. We note that a few cases in Table 2 go against the norm,

such as the best recall score for Tomek links (0.62), which is associated with the low-

est noise level of 51 instances.

From a statistical point of view, it is beneficial to understand the significance of the

performance scores in Table 2. Hence, we conduct ANalysis Of VAriance (ANOVA)

tests to determine the impact of the algorithms on performance in terms of recall,

FNR and AUC . ANOVA is a statistical test determining whether there is significant

difference between group means [55]. We use a 95% (α = 0.05) confidence level for

the ANOVA tests shown in Tables 3, 4 and 5, where Df is the degrees of freedom, Sum

Sq is the sum of squares, Mean Sq is the mean sum of squares, F value is the F-statis-

tic, and Pr(>F) is the p-value.

Table 2 Label noise detection results

Algorithm Noisy instances AUC FNR Recall

Autoencoder 452 0.96 0.10 0.90

352 0.95 0.12 0.88

201 0.95 0.14 0.86

51 0.94 0.18 0.82

ICA 452 0.94 0.14 0.84

352 0.93 0.15 0.82

201 0.92 0.17 0.83

51 0.91 0.18 0.81

PCA 452 0.94 0.13 0.83

352 0.93 0.15 0.81

201 0.93 0.17 0.81

51 0.90 0.18 0.80

Tomek links 452 0.90 0.50 0.54

352 0.89 0.50 0.53

201 0.90 0.53 0.55

51 0.88 0.60 0.62

Table 3 Two-factor ANOVA for recall

Factor Df Sum Sq Mean Sq F value Pr(>F)

Algorithms 3 8.840 2.9466 7066.09 <2e-16

Noise level 3 0.081 0.0270 64.77 <2e-16

Interaction 9 0.252 0.0280 67.16 <2e-16

Residuals 624 0.260 0.0004

Page 13 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

The algorithms are the factor of concern for our study. Because this factor

has a p-value of less than 0.05 in all our ANOVA tables, this indicates that algo-

rithms are a significant factor for all our metrics. Therefore, we perform Tukey’s

Honestly Significant Difference (HSD) tests to determine which groups are signifi-

cantly different from each other. Letter groups assigned via the Tukey method indi-

cate similarity or significant differences in performance results within a factor [56].

For all metrics, the letter grades reported in Table 6 corroborate our earlier findings.

Results show that autoencoders are in group ‘a’, which is the top group, while Tomek

links are in groups ‘c’ and ‘d’, which are the worst-performing groups.

In essence, this study shows that our autoencoder model can efficiently detect

label noise in imbalanced large data. The model can also be successfully used to

detect label noise in imbalanced big data. This is because non-linear autoencoders

are capable of modeling complex functions by compressing data to lower dimen-

sions. Detecting label noise in big data is important due to the unique challenges

posed by this type of data. Such challenges arise from the volume, variety, velocity,

variability, complexity, and value of big data [47].

It should be noted that the computational cost of training the encoder is relatively

low, since for each class, the autoencoder needs to be trained only once. In addition,

the comparatively high scores for recall and AUC , as well as the comparatively low

scores for FNR , are a testament to the robust nature of our autoencoder model.

Table 4 Two-factor ANOVA for FNR

Factor Df Sum Sq Mean Sq F value Pr(>F)

Algorithms 3 17.833 5.944 13230.69 <2e-16

Noise level 3 0.522 0.174 387.55 <2e-16

Interaction 9 0.114 0.013 28.14 <2e-16

Residuals 624 0.280 0.000

Table 5 Two-factor ANOVA for AUC

Factor Df Sum Sq Mean Sq F value Pr(>F)

Algorithms 3 1.0855 0.3618 1366.760 <2e-16

Noise level 3 0.1539 0.0513 193.787 <2e-16

Interaction 9 0.0041 0.0005 1.733 0.0783

Residuals 624 0.1652 0.0003

Table 6 Tukey’s HSD results

Metric Autoencoder ICA PCA Tomek links

Recall a b c d

FNR a b b c

AUC a b c d

Page 14 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

Conclusion

In this paper, we propose a novel and effective method to deal with the label noise

problem. Our method considers label noise as anomalous instances in the class where

they have been mislabeled. As a first step, we trained unsupervised learners (autoen-

coders, ICA , PCA) using clean data for each class. �e trained models were then used

to reconstruct unseen portions of data containing different levels of label noise, with

higher reconstruction errors being produced for instances that were incongruent with

their assigned class. �e best detection rates for label noise were obtained by the autoen-

coders. Performance-wise, when the unsupervised learners were compared with Tomek

links, we discovered that this traditional algorithm was the worst performer.

Our proposed model is a potential solution for detecting label noise in imbalanced big

data. �e first-rate performance of our non-linear autoencoder is due to the low com-

putational costs involved in training and the algorithm’s ability to successfully model

complex functions through dimension reduction. Future work will include additional

performance metrics and also datasets from different application domains.

Abbreviations

ANOVA: ANalysis Of VAriance; AUC : Area Under the Receiver Operating Characteristic Curve; CV: Cross-validation; ENN:

Edited nearest neighbor; FN: False Negative; FNR: False Negative Rate; FP: False Positive; FPR: False Positive Rate; HSD:

Honestly Significant Difference; ICA: Independent component analysis; k-NN: k-nearest neighbor; MLP: Multilayer percep-

tron; MSE: Mean square error; NL: Noise level; NSF: National Science Foundation; PC: Principal component; PCA: Principal

component analysis; SPE: Square prediction error; TN: True Negative; TNR: True Negative Rate; TP: True Positive; TPR: True

Positive Rate; ULB: Université Libre de Bruxelles.

Acknowledgements

We would like to thank the reviewers in the Data Mining and Machine Learning Laboratory at Florida Atlantic University.

Additionally, we acknowledge partial support by the National Science Foundation (NSF) (CNS-1427536).

Opinions, findings, conclusions, or recommendations in this paper are the authors’ and do not reflect the views of the

NSF.

Authors’ contributions

ZS carried out the conception and design of the research, performed the implementation and experimentation, and

drafted the manuscript. All authors provided feedback to ZS and helped shape the research. ZS and JLL prepared

the manuscript. TMK introduced this topic to ZS and helped to complete and finalize this work. All authors read and

approved the final manuscript.

Funding

Not applicable

Data availability

Not applicable

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Received: 20 January 2021 Accepted: 7 April 2021

References

 1. Angluin D, Laird P. Learning from noisy examples. Mach Learn. 1988;2(4):343–70.

Page 15 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

 2. Prati RC, Luengo J, Herrera F. Emerging topics and challenges of learning from noisy data in nonstandard classifica-

tion: a survey beyond binary class noise. Knowl Inf Syst. 2019;60(1):63–97.

 3. Pelletier C, Valero S, Inglada J, Champion N, Marais Sicre C, Dedieu G. Effect of training class label noise on classifica-

tion performances for land cover mapping with satellite image time series. Remote Sens. 2017;9(2):173.

 4. Van Hulse JD, Khoshgoftaar TM, Huang H. The pairwise attribute noise detection algorithm. Knowl Inf Syst.

2007;11(2):171–90.

 5. Khoshgoftaar TM, Van Hulse J. Empirical case studies in attribute noise detection. IEEE Trans Syst Man Cybern C.

2009;39(4):379–88.

 6. Maletic JI, Marcus A. Data cleansing: Beyond integrity analysis. In: Iq, pp. 200–209; 2000. Citeseer.

 7. Wang D, Tan X. Robust distance metric learning via Bayesian inference. IEEE Trans Image Process.

2017;27(3):1542–53.

 8. Patel AA. Hands-On Unsupervised Learning Using Python: How to Build Applied Machine Learning Solutions from

Unlabeled Data. O’Reilly Media; 2019.

 9. Raykar VC, Yu S, Zhao LH, Valadez GH, Florin C, Bogoni L, Moy L. Learning from crowds. J Mach Learn Res. 2010;11:4.

 10. Borghesi A, Bartolini A, Lombardi M, Milano M, Benini L. Anomaly detection using autoencoders in high perfor-

mance computing systems. Proc AAAI Conf Artif Intell. 2019;33:9428–33.

 11. Frénay B, Verleysen M. Classification in the presence of label noise: a survey. IEEE Trans Neural Netw Learn Syst.

2013;25(5):845–69.

 12. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv. 2009;41(3):1–58.

 13. Binglin X, Zhanhuai L. An anomaly detection method for spacecraft using ica technology. In: International Confer-

ence on Advanced Computer Science and Electronics Information (ICACSEI 2013), pp. 50–54; 2013.

 14. Tomek I, et al. An experiment with the edited nearest-nieghbor rule. IEEE Trans Syst Man Cybern. 1976;6:448–52.

 15. Van Hulse J, Khoshgoftaar T. Knowledge discovery from imbalanced and noisy data. Data Knowl Eng.

2009;68(12):1513–42.

 16. Jeatrakul P, Wong KW, Fung CC. Data cleaning for classification using misclassification analysis. J Adv Comput Intell

Intell Inform. 2010;14(3):297–302.

 17. Wilson DL. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern.

1972;3:408–21.

 18. Khoshgoftaar TM, Rebours P. Improving software quality prediction by noise filtering techniques. J Comp Sci Tech-

nol. 2007;22(3):387–96.

 19. Sáez JA, Galar M, Luengo J, Herrera F. Inffc: an iterative class noise filter based on the fusion of classifiers with noise

sensitivity control. Inform Fusion. 2016;27:19–32.

 20. Wu Y, Liu Y. Robust truncated hinge loss support vector machines. J Am Stat Assoc. 2007;102(479):974–83.

 21. Rätsch G, Schölkopf B, Smola AJ, Mika S, Onoda T, Müller K-R. Robust ensemble learning for data mining. In: Pacific-

Asia Conference on Knowledge Discovery and Data Mining, pp. 341–344; 2000. Springer.

 22. Zhang W, Wang D, Tan X. Data cleaning and classification in the presence of label noise with class-specific autoen-

coder. In: International Symposium on Neural Networks, pp. 256–264; 2018. Springer.

 23. Wang D, Tan X. Bayesian neighborhood component analysis. IEEE Trans Neural Netw Learn Syst. 2017;29(7):3140–51.

 24. Zhang W, Tan X. Combining outlier detection and reconstruction error minimization for label noise reduction. In:

2019 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 1–4 ; 2019. IEEE

 25. Deng L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal

Process Magaz. 2012;29(6):141–2.

 26. Bartholomew D. Principal components analysis. International Encyclopedia of Education, 3rd edn., pp. 374–377.

New York: Elsevier; 2010.

 27. Najafabadi MM, Khoshgoftaar TM, Calvert C, Kemp C. User behavior anomaly detection for application layer ddos

attacks. In: 2017 IEEE International Conference on Information Reuse and Integration (IRI), pp. 154–161; 2017. IEEE.

 28. Lakhina A, Crovella M, Diot C. Diagnosing network-wide traffic anomalies. ACM SIGCOMM Comp Commun Rev.

2004;34(4):219–30.

 29. Najafabadi MM. Machine Learning Algorithms for the Analysis and Detection of Network Attacks. Florida Atlantic

University; 2017.

 30. Callegari C, Gazzarrini L, Giordano S, Pagano M, Pepe T. Improving pca-based anomaly detection by using multiple

time scale analysis and kullback-leibler divergence. Int J Commun Syst. 2014;27(10):1731–51.

 31. Paffenroth R, Kay K, Servi L. Robust pca for anomaly detection in cyber networks. arXiv preprint arXiv: 1801. 01571

2018.

 32. Hyvärinen A, Oja E. A fast fixed-point algorithm for independent component analysis. Neural Comput.

1997;9(7):1483–92.

 33. Hyvärinen A, Karhunen J, Oja E. What is Independent Component Analysis?, Independent Component Analysis.

New York: Wiley; 2002.

 34. Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw.

2000;13(4–5):411–30.

 35. Reza MS, Ruhi S. Multivariate outlier detection using independent component analysis. Sci J Appl Math Stat.

2015;3(4):171–6.

 36. Chicco D, Sadowski P, Baldi P. Deep autoencoder neural networks for gene ontology annotation predictions. In:

Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics, pp.

533–540; 2014.

 37. Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and

challenges in big data analytics. J Big Data. 2015;2(1):1.

 38. Almotiri J, Elleithy K, Elleithy A. Comparison of autoencoder and principal component analysis followed by neural

network for e-learning using handwritten recognition. In: 2017 IEEE Long Island Systems, Applications and Technol-

ogy Conference (LISAT), pp. 1–5; 2017. IEEE.

 39. Kingma DP, Welling M. An introduction to variational autoencoders. Found Trends Mach Learn. 2019;12(4):307–92.

http://arxiv.org/abs/1801.01571

Page 16 of 16Salekshahrezaee et al. J Big Data (2021) 8:57

 40. Zhou C, Paffenroth RC. Anomaly detection with robust deep autoencoders. In: Proceedings of the 23rd ACM SIG-

KDD International Conference on Knowledge Discovery and Data Mining, pp. 665–674; 2017.

 41. Ranjan C. Build the Right Autoencoder – Tune and Optimize using PCA Principles. https:// towar dsdat ascie nce. com/

build- the- right- autoe ncoder- tune- and- optim ize- using- pca- princ iples- part-i- 1f01f 82199 9b

 42. Tomek I, et al. Two modifications of cnn. IEEE Trans Syst Man Cybern. 1976;11:769–72.

 43. He H, Ma Y. Imbalanced Learning: Foundations, Algorithms, and Applications. New York: Wiley; 2013.

 44. Brownlee J. Undersampling Algorithms for Imbalanced Classification. https:// machi nelea rning maste ry. com/ under

sampl ing- algor ithms- for- imbal anced- class ifica tion/.

 45. Agarwal R. The 5 Most Useful Techniques to Handle Imbalanced Datasets. https:// www. kdnug gets. com/ 2020/ 01/5-

most- useful- techn iques- handle- imbal anced- datas ets. html.

 46. Kaggle: Credit Card Fraud Detection. https:// www. kaggle. com/ mlg- ulb/ credi tcard fraud.

 47. Leevy JL, Khoshgoftaar TM, Bauder RA, Seliya N. A survey on addressing high-class imbalance in big data. J Big Data.

2018;5(1):42.

 48. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of

the 14th International Joint Conference on Artificial intelligence-Volume 2, pp. 1137–1143; 1995. Morgan Kaufmann

Publishers Inc.

 49. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

et al. Scikit-learn: Machine learning in python. J Mach Learn Res. 2011;12:2825–30.

 50. sklearn.decomposition.FastICA: FastICA: a fast algorithm for Independent Component Analysis. https:// scikit- learn.

org/ stable/ modul es/ gener ated/ sklea rn. decom posit ion. FastI CA. html.

 51. Gulli A, Pal S. Deep Learning with Keras. New York: Packt Publishing Ltd; 2017.

 52. Seliya N, Khoshgoftaar TM, Van Hulse J. A study on the relationships of classifier performance metrics. In: Tools with

Artificial Intelligence, 2009. ICTAI’09. 21st International Conference On, pp. 59–66; 2009. IEEE

 53. Seiffert C, Khoshgoftaar TM, Van Hulse J, Folleco A. An empirical study of the classification performance of learners

on imbalanced and noisy software quality data. Inform Sci. 2014;259:571–95.

 54. Bauder RA, Khoshgoftaar TM. The effects of varying class distribution on learner behavior for medicare fraud detec-

tion with imbalanced big data. Health Inform Sci Syst. 2018;6(1):9.

 55. Iversen GR, Wildt AR, Norpoth H, Norpoth HP. Analysis of variance. New York: Sage; 1987.

 56. Tukey JW. Comparing individual means in the analysis of variance. Biometrics. 1949;1:99–114.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://towardsdatascience.com/build-the-right-autoencoder-tune-and-optimize-using-pca-principles-part-i-1f01f821999b
https://towardsdatascience.com/build-the-right-autoencoder-tune-and-optimize-using-pca-principles-part-i-1f01f821999b
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/
https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/
https://www.kdnuggets.com/2020/01/5-most-useful-techniques-handle-imbalanced-datasets.html
https://www.kdnuggets.com/2020/01/5-most-useful-techniques-handle-imbalanced-datasets.html
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html

	A reconstruction error-based framework for label noise detection
	Abstract
	Introduction
	Related work
	Background
	PCA
	ICA
	Autoencoder
	PCA vs Autoencoder
	Tomek links

	Methodology
	Development of Models
	Metrics

	Results and discussion
	Conclusion
	Acknowledgements
	References

