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Major biases and stereotypes in group judgments are reviewed and modeled from a recurrent connec-

tionist perspective. These biases are in the areas of group impression formation (illusory correlation),

group differentiation (accentuation), stereotype change (dispersed vs. concentrated distribution of incon-

sistent information), and group homogeneity. All these phenomena are illustrated with well-known

experiments, and simulated with an autoassociative network architecture with linear activation update

and delta learning algorithm for adjusting the connection weights. All the biases were successfully

reproduced in the simulations. The discussion centers on how the particular simulation specifications

compare with other models of group biases and how they may be used to develop novel hypotheses for

testing the connectionist modeling approach and, more generally, for improving theorizing in the field of

social biases and stereotype change.

Petite, attractive, intelligent, WSF, 30, fond of music, theatre, books,

travel, seeks warm, affectionate, fun-loving man to share life’s plea-

sures with view to lasting relationship. Send photograph. Please no

biochemists. (Personal ad, New York Review of Books, cited in Bar-

row, 1992, p. 2)

The ability to learn about groups and their characteristics is

crucial to the way people make sense of their social world. Nev-

ertheless, quite a number of studies have indicated that people can

have great trouble learning associations between groups and their

attributes and often perceive associations that do not exist. It is

generally assumed that these shortcomings or biases are partly

responsible for group stereotyping and minority discrimination.

Among the most prominent of these group biases are illusory

correlation—the perception of a correlation between a group and

some characteristics that do not exist (Hamilton & Gifford, 1976;

Hamilton & Rose, 1980), accentuation—making a distinction be-

tween groups beyond actual differences (Eiser, 1971; Tajfel &

Wilkes, 1963), subtyping—the rejection of stereotype-inconsistent

information concentrated in a few group members (Hewstone,

1994), and outgroup homogeneity—the perception of outgroups as

more homogeneous and stereotypical than the ingroup (Linville,

Fischer, & Salovey, 1989; Messick & Mackie, 1989).

It is thus of crucial importance to psychologists to understand

how these biases are created and how they can be eliminated

(Hewstone, 1994). However, many empirical reports on the

occurrence of group biases were explained by appeals to what

often appear to be rather ad-hoc hypotheses and assumptions.

Moreover, the field of group perception has developed largely

independent from other important areas in cognition at large

and social cognition in particular, including domains such as

person perception, impression formation, attribution, and atti-

tudes (Hamilton & Sherman, 1996). There have been some

recent attempts, however, to provide a common theory of group

judgments and shortcomings under the heading of exemplar-

based models (Fiedler, 1996; Smith, 1991) or a tensor product

connectionist network (Kashima, Woolcock, & Kashima,

2000). The goal of the present article is to build further on these

initial proposals and to present a connectionist model that

potentially can explain a wider range of group biases than these

earlier attempts. Moreover, the proposed model has already

been fruitfully applied to other areas in memory and cognition

(for a classic example, see McClelland & Rumelhart, 1986, p.

170), including the domain of social cognition (Read & Mon-

toya, 1999; Smith & DeCoster, 1998; Van Overwalle & Jor-

dens, 2002; Van Overwalle & Labiouse, in press; Van Over-

walle & Siebler, 2003), where it has been applied to encompass

and integrate earlier algebraic models of impression formation

(Anderson, 1981), causal attribution (Cheng & Novick, 1992),

and attitude formation (Ajzen, 1991).

Our basic claim is that a connectionist account of group

biases does not require special processing of information as

many theories in social cognition posit (e.g., Hamilton & Gif-

ford, 1976; Hastie, 1980). Rather, general information process-

ing characteristics captured in general-purpose connectionist

models lead to these biases. What are the characteristics that

accomplish this?
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First, connectionist models exhibit emergent properties such as

the ability to extract prototypes from a number of exemplars

(prototype extraction), to recognize exemplars on the basis of the

observation of incomplete features (pattern completion), to gener-

alize knowledge about features to similar exemplars (generaliza-

tion), to adjust to multiple constraints from the external environ-

ment (constraint satisfaction), and to lose stored knowledge only

partially after damage (graceful degradation). All of these proper-

ties have been extensively reviewed in Smith (1996) and in

McLeod, Plunkett, and Rolls (1998). It is clear that these charac-

teristics are potentially useful for any account of group stereotyp-

ing. In addition, connectionist models assume that the develop-

ment of internal representations and the processing of these

representations are done in parallel by simple and highly intercon-

nected units, contrary to traditional models where the processing is

inherently sequential. As a result, these systems have no need for

a central executive, which eliminates the requirement of previous

theories of explicit (central) processing of relevant information.

Consequently, biases in information processes are, in principle,

due to implicit and automatic mechanisms without explicit con-

scious reasoning. Of course, this does not preclude people’s being

aware of the outcome of these preconscious processes.

Second, connectionist networks are not fixed models but are

able to learn over time, usually by means of a simple learning

algorithm that progressively modifies the strength of the con-

nections between the units making up the network. The fact that

most traditional models in psychology are incapable of learning

is a significant restriction. Of interest, the ability to learn

incrementally can put connectionist models in agreement with

developmental and evolutionary pressures. This implies that

group biases emerge from general processes that are otherwise

quite adaptive.

Third, connectionist networks have a degree of neurologically

plausibility that is generally absent in previous approaches to

integration and storage of group information (Ajzen, 1991; Ander-

son, 1981). Although it is true that connectionist models are highly

simplified versions of real neurological circuitry and processing, it

is commonly assumed that they reveal a number of emergent

processing properties that real human brains also exhibit. One of

these emergent properties is the integration of long-term memory

(i.e., connection weights), short-term memory (i.e., internal acti-

vation), and outside information (i.e., external activation). There is

no clear separation between memory and processing as there is in

traditional models. Even if biological constraints are not strictly

adhered to in connectionist models of group prejudice, interest in

the biological implementation of social cognitive mechanisms has

indeed started to emerge (Adolphs & Damasio, 2001; Ito &

Cacioppo, 2001; Ochsner & Lieberman, 2001) and parallels the

increasing attention paid to neurophysiological determinants of

social behavior.

This article is organized as follows: First, we will describe the

proposed connectionist model in some detail, giving the precise

architecture, the general learning algorithm, and the specific de-

tails of how the model processes information. In addition, a num-

ber of other less well-known emergent properties of this type of

network will be discussed. We will then present a series of simu-

lations, using the same network architecture applied to a number of

important biases in group judgments, including illusory correla-

tion, accentuation, stereotype change and homogeneity. Our re-

view of empirical phenomena in the field is not meant to be

exhaustive, but is rather designed to illustrate how connectionist

principles can be used to shed light on the processes underlying

group judgments.

Although the emphasis of the present article is on the use of

a particular connectionist model to explain a wide variety of

group biases, previous applications of connectionist modeling

to social psychology (e.g., Read & Montoya, 1999; Smith &

DeCoster, 1998; Van Overwalle, 1998; Van Overwalle & Jor-

dens, 2002) are also mentioned and compared with the present

approach. Finally, we will discuss the limitations of the pro-

posed connectionist approach and discuss areas where further

theoretical developments are under way or are needed. Ulti-

mately, what we would like to accomplish in this article is to

create a greater awareness that connectionist principles could

potentially underlie diverse shortcomings in group judgments,

as a natural consequence of the basic processing mechanisms in

these adaptive cognitive systems.

A Recurrent Model

Throughout this article, we will use the same basic network

model—namely, the recurrent autoassociator developed by Mc-

Clelland and Rumelhart (1986, 1988). This model has already

gained some familiarity among psychologists studying person and

group impression (Queller & Smith, 2002; Smith & DeCoster,

1998), causal attribution (Read & Montoya, 1999), and many other

phenomena in social cognition (Van Overwalle & Labiouse, in

press; Van Overwalle & Siebler, 2003). We decided to apply a

single basic model to emphasize the theoretical similarities that

underlie group biases with a great variety of other processes in

cognition. In particular, we chose this model because it is capable

of reproducing a wider range of phenomena than other connec-

tionist models, such as feedforward networks (see Read & Mon-

toya, 1999), constraint satisfaction models (Kunda & Thagard,

1996; see also Van Overwalle, 1998), or tensor product models

(Kashima et al., 2000).

The autoassociative network can be distinguished from other

connectionist models on the basis of its architecture (how infor-

mation is represented in the model), its learning algorithm (how

information is processed in the model), and its testing procedure

(how knowledge in the network is retrieved). We will discuss these

points in turn.

Architecture

The generic architecture of an autoassociative network is illus-

trated in Figure 1. Its most salient property is that all nodes are

interconnected with all of the other nodes. Thus, all nodes send out

and receive activation. The nodes in the network can represent

groups, attributes implied in the descriptions of the group, as well

as episodic information on specific behaviors, and so on. This, in

fact, reflects a localist representation where each node represents a

single symbolic concept, in contrast to a distributed representation

where each concept is represented by a pattern of activation across

a set of nodes (Thorpe, 1994). We elaborate on the differences

between these two representation schemes in the section on Fit and

Model Comparisons.
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Information Processing

In a recurrent network, processing information takes place in

two phases. During the first activation phase, each node in the

network receives activation from external sources. Because the

nodes are interconnected, this activation is spread throughout the

network in proportion to the weights of the connections to the

other nodes. The activation coming from the other nodes is called

the internal input (for each node, it is calculated by summing all

activations arriving at that node). This activation is further updated

during one or more cycles through the network. Together with the

external input, this internal input determines the final pattern of

activation of the nodes, which reflects the short-term memory of

the network. Typically, activations and weights have lower and

upper bounds of �1 and �1.

In the linear version of activation spreading in the autoasso-

ciator that we use here, the final activation is the linear sum of

the external and internal input after a single updating cycle

through the network. In nonlinear versions used by other re-

searchers (McClelland & Rumelhart, 1986; Read & Montoya,

1999; Smith & DeCoster, 1998), the final activation is deter-

mined by a nonlinear combination of external and internal

inputs updated during a number of internal cycles (for mathe-

matical details, see McClelland & Rumelhart, 1988, pp. 161–

169). During our simulations, however, we found that the linear

version with a single internal cycle (see p. 167) often repro-

duced the observed data at least as well. Therefore, we used this

linear variant of the autoassociator for all the reported simula-

tions. We will discuss later why the linear variant might have

been so efficient.

After the first activation phase, the recurrent model enters the

second learning phase in which the short-term activations are

consolidated in long-term weight changes of the connections.

Basically, these weight changes are driven by the error between

the internal input received from other nodes in the network and

the external input received from outside sources. This error is

reduced in proportion to the learning rate that determines how

fast the network changes its weights (typically between .01 and

.20). This error-reducing mechanism is known as the delta

algorithm (McClelland & Rumelhart, 1988, pp. 165–166).

For instance, if the external input on group membership is

underestimated (e.g., because the internal input predicts a weak

or ambiguous member of the group although that person is

actually a very typical member), the connection weights with

the group unit are increased to reduce this discrepancy. Con-

versely, if the external input on group membership is overesti-

mated (e.g., because the internal input predicts an overly ide-

alized prototypical member), the weights are decreased. These

weight changes allow the network to better approximate the

external input. Thus, the delta algorithm strives to match the

internal predictions of the network as closely as possible to the

actual state of the external environment, and stores this infor-

mation in the connection weights.

Testing

To test the knowledge embedded in the connections of the

network, we applied a procedure analogous to measuring hu-

man responses, that is, where participants are cued with ques-

tions on the experimental stimulus material learned previously.

To accomplish this, some concepts in the network served as a

cue to retrieve related material in the network (e.g., a group

label may serve as a cue to estimate group attributes), by

turning the activation of the cue on to �1. A series of adjust-

ments by the learning algorithm during learning results in a

certain configuration of connection weights in the network.

This configuration determines how activation flows through the

network and activates related concepts. The degree to which

these other, related concepts are activated is taken as a measure

of retrieval in memory, and may be indicative of various re-

sponses such as estimation (e.g., of groups’ attributes) or rec-

ognition (of group member’s behaviors).

A Recurrent Implementation of Group Biases:

Illusory Correlation

To provide some background to our specific implementation

of group biases, we illustrate its major characteristics with the

phenomenon of illusory correlation. Illusory correlation occurs

when perceivers erroneously see a relation between categories

that are actually independent. For instance, minorities or out-

groups are often stereotyped with bad characteristics, although

these characteristics sometimes occur in equal proportions in

the ingroup. The earliest demonstration of illusory correla-

tion in a group context comes from a study by Hamilton and

Gifford (1976). Participants read about members of two groups

(A and B) that engaged in the same ratio of desirable to

undesirable behaviors (9:4), but twice as many behaviors re-

ferred to members of Group A than to members of Group B.

Although there was no objective correlation between group

membership and desirability of behavior, participants showed

greater liking for the majority Group A than for the minority

Group B. In sum, the typical finding in illusory correlation

research is decreased evaluation for minority Group B, together

with increased memory for undesirable Group B behavior (for

reviews, see Hamilton & Sherman, 1989; Mullen & Johnson,

1990).

Figure 1. Architecture of an autoassociative recurrent network.
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To account for these two distinct effects in illusory correlation,

we introduce a recurrent connectionist model that permits encod-

ing and retrieval of two types of information. One type of infor-

mation concerns some salient regularity or attribute about the

group (such as desirability) and is assumed to underlie the evalu-

ative (i.e., likability) judgments in illusory correlation. The other

type of information involves specific episodic knowledge about

the behavioral items and is assumed to account for the memory

effects.

We have chosen a “localist” encoding scheme, that is, each

piece of information (or concept) is represented by a single

node. Figure 2 shows how the two groups, A and B, are each

represented by a group node and how the implied attribute (i.e.,

desirable or undesirable) is represented by two separate at-

tribute nodes. Two separate unitary attribute nodes were taken,

rather than a bipolar attribute node (with positive and negative

activation to represent desirable and undesirable stimuli respec-

tively), because our evaluations about groups are not repre-

sented as a single point on a one-dimensional construct but are

probably more mixed and complex including both positive and

negative instances of the attribute (Wittenbrink, Judd, & Park,

2001). To explain memory for specific statements presented, we

also include episodic nodes that reflect the specific (i.e., be-

havioral) information contained in the statements. Episodic

memory refers to information about particular events that have

been experienced (Tulving, 1972). The important advantage of

episodic nodes is that they preserve information about discrete

events in the network. In sum, we assume that the unique

meaning of each behavioral statement in an illusory correlation

experiment is encoded at two levels: its evaluative meaning

(“the behavior is good”) and its unique episodic meaning

(“helps an old lady across the street”). By representing different

aspects (or features) of each piece of information over two

nodes, evaluative and episodic, this model in fact uses a semi-

localist encoding scheme.

It is instructive to note that although in principle, in an autoas-

sociative network, all interconnections between all nodes play a

role, to understand the present simulations, the reader should focus

mainly on the connections between different sets of nodes (e.g.,

between attribute nodes, episodic nodes, and group nodes) that are

of most relevance for explaining group biases, whereas the lateral

interconnections linking the same sets of nodes are less relevant

(contrary to spreading activation models of impression formation,

e.g., Hastie & Kumar, 1979). The connections between episodic

nodes and group nodes (in both directions) are collectively termed

episodic connections, whereas the connections between evaluative

attribute nodes and the group nodes (in both directions) are termed

evaluative connections.

The delta learning algorithm gives rise to a number of emer-

gent properties that are used to explain all the effects associated

with group biases. Below, we describe two of the most impor-

tant properties and illustrate their effect on the illusory corre-

lation bias.

Acquisition Property and Sensitivity to Sample Size

According to the delta algorithm, the more an attribute such

as an (un)desirable behavior is presented with information on

group membership, the stronger the connection between the

corresponding (un)desirability attribute node and group node

becomes. This illustrates an important property of the delta

learning algorithm, namely that as more confirmatory informa-

tion is received, the connections gradually grow in strength. We

call this the acquisition property. Thus, in the beginning phases

of learning (before asymptote is reached), the connection

weights reflect the amount of evidence, that is, the network is

sensitive to sample size.

The sensitivity to sample size of the delta algorithm has

already been exploited in the earlier associative learning models

that preceded connectionism, such as the popular Rescorla–

Wagner (Rescorla & Wagner, 1972) model of animal condi-

Figure 2. Recurrent network for simulations of group bias with two group nodes representing Groups A and

B, two attribute nodes representing the desirability and undesirability of the behavior, and several episodic nodes,

each representing the unique meaning of one behavioral statement. (It should be noted that not all lateral

connections between nodes at the same layer are drawn, to avoid cluttering the figure, but all are working during

the simulations.)
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tioning and human contingency judgments. This model predicts

that when a cue (i.e., conditioned stimulus) is followed by an

effect (i.e., unconditioned stimulus), the organism integrates

this information resulting in a stronger cue– effect association

and more vigorous responding when the cue is present. In

humans, this also results in stronger judgments of the causal

influence of the cue (see Baker, Berbier, & Vallée-Tourangeau,

1989; Shanks, 1985a, 1987, 1995; Shanks, Lopez, Darby, &

Dickinson, 1996; Van Overwalle & Van Rooy, 2001). Sample

size effects have also been documented in many areas of cog-

nition. For instance, when receiving more supportive informa-

tion, people tend to hold more extreme impressions about other

persons (Anderson, 1967, 1981), make more extreme causal

judgments (Baker et al., 1989; Shanks, 1985a, 1987, 1995;

Shanks et al., 1996), make more polarized group decisions

(Ebbesen & Bowers, 1974; Fiedler, 1996), endorse more firmly

an hypothesis (Fiedler, Walther, & Nickel, 1999), make more

extreme predictions (Manis, Dovalina, Avis, & Cardoze, 1980),

and agree more with persuasive messages (Eagly & Chaiken,

1993).

How does the acquisition property explain illusory correlation?

The mechanism is straightforward. Because of the larger sample

size in the majority Group A, its evaluative connections are stron-

ger at the end of learning than the corresponding connections for

the minority Group B. Thus, both the connections with desirability

and undesirability are stronger for Group A than for Group B. As

a result, the relative proportion of desirable versus undesirable

information is more clearly encoded in the evaluative connections

of the network for majority Group A than for minority Group B,

resulting in a more favorable impression overall for the majority

Group A. In addition, this also means that the mental representa-

tion of the majority Group A, in contrast to the minority Group B,

will consist of well-established connections between group mem-

bership and (un)desirability of behavior, so that the perceiver can

form a relatively correct impression of the majority group. It is

important to note, however, that when both groups become larger,

the relative advantage of the majority Group A will be lost as the

evaluative connections of both groups will reach their asymptote.

However, this is not typical of illusory correlation experiments,

where the number of statements is most often less than 20 for each

group.

Figure 3 depicts a simulated example of this process. We focus

here on the connections from the group nodes to the desirability

and undesirability nodes. We simulated the presentation of desir-

able and undesirable statements on the groups by activating, for

each statement, the respective desirability nodes and group nodes.

After each statement, we tested the strength of the evaluative

connections by cuing each group node and measuring how much

of the activation was spread to the desirability nodes. As can be

seen, the strength of the evaluative connections increases as a

function of the growing number of statements. The top half of

Figure 3 shows this for majority Group A, the bottom half for

minority Group B. Every time a statement is presented (e.g., “John

helps an old lady across the street”), the simulated evaluation

increases. Although the increase with each statement is equal for

both groups, the larger amount of statements (larger sample size)

for Group A results in stronger connections and a larger difference

between desirable and undesirable evaluations for the majority

Group A than for the minority Group B (Da � Db in Figure 3). As

a minor point, it should be noted that the evaluations after four

trials in Figure 3 differ between Groups A (.36) and B (.25)

because the lateral connections between the nodes also differ in

number between groups (these curves would have been exactly

similar if lateral connections were omitted such as in feedforward

network models, discussed later).

Competition Property and Discounting

To explain enhanced memory for negative behaviors and for

minority behaviors, we now turn to the episodic nodes that reflect

memory during illusory correlation. We propose that a memory

advantage for these infrequent behaviors in recognition measures,

where episodic nodes presumably serve as retrieval cues to re-

member the group, may in part be produced by what has been

termed the competition property of the delta learning algorithm

(Shanks, 1995; Van Overwalle & Van Rooy, 1998). The term

“competition” stems from the associative learning literature on

animal conditioning and causality judgments, where it is also

known as blocking (Rescorla & Wagner, 1972; Shanks, 1995), and

should not be confused with other usages in the connectionist

literature such as competitive networks (McClelland & Rumelhart,

1988).

The competition property favors features that are more diagnos-

tic than others, which are disfavored. A typical example is dis-

counting in causal attribution. When one cause acquires strong

causal weight, perceivers tend to ignore alternative causes. As

noted by several researchers (Read & Montoya, 1999; Van Over-

walle, 1998), competition in learning is also a hallmark of the

Rescorla–Wagner (Rescorla & Wagner, 1972) model. Competition

is a robust finding in empirical research on animal conditioning

(Kamin, 1969), human causal learning (Shanks, 1985b), and causal

attribution (Hansen & Hall, 1985; Kruglanski, Schwartz, Maides,

& Hamel, 1978; Read & Montoya, 1999; Van Overwalle & Van

Rooy, 1998; Wells & Ronis, 1982).

How does the competition property explain enhanced memory

in illusory correlation? The basic mechanism behind competition

is that only a limited amount of connection strength is available

during learning. In illusory correlation, this limitation is a function

of the external activation of a group node (limited to �1 in the

present case to reflect group membership) and of the internal

activation received from other evaluative and episodic nodes, and

affects the connections from the evaluative and episodic nodes to

the group nodes (see upward arrows in Figure 2). Because the delta

algorithm seeks to match internal with external activations, the

internal activation received from the evaluative and episodic nodes

(and hence also their connection weights) cannot grow out of

bounds, as their sum is limited by the upper value of the external

activation of the group node. Stated differently, given an upper

external activation of �1 of a group node, the internal activation

sent by episodic and evaluative nodes to that group node is limited.

To the extent that the sum of this internal activation approaches or

exceeds the upper bound, these nodes have to compete for con-

nection weights and the growth of their connections is blocked or

reduced. A consequence of this is that strong group3attribute

connections contribute much more in approaching or exceeding

the upper limit than weaker group3attribute connections, and so

tend to discount or block the further growth of the episodic3group

connections more.
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To take the acquisition example of Figure 3, the connection

weight from the desirable node to Group A at the end of

learning is 0.74, and hence leaves only 0.26 activation available

before the upper bound of the external activation (�1) of the

group node will be exceeded. Conversely, the same weight for

Group B is only 0.51, and there is thus much more room (0.49)

for increasing the weights of the desirability and other nodes.

Thus, because of the stronger attribute3group connections of

Group A, the episodic3group connections of Group A will be

much more discounted, resulting in reduced memory for behav-

ioral episodes (see schematic illustration in Figure 4, top panel).

In contrast, because of the weaker attribute3group connections

of Group B, the episodic3group connections of Group B will

be less discounted, so that they can gain more connection

weight resulting in enhanced memory (see Figure 4, bottom

panel). By the same mechanism, because the desirable3group

connections are larger than the undesirable3group connec-

tions, the episodic3group connections of positive behaviors

will be weaker than those of the negative behaviors, resulting in

an increased memory for negative behavior. In sum, the com-

petition property generates a memory advantage, not for paired

distinctive stimuli like the distinctiveness account would pre-

Figure 3. Simulated evaluative strength in an illusory correlation design in which two desirable and one

undesirable behaviors were alternately presented to the network. Da and Db � difference between desirable and

undesirable evaluation for Groups A and B, respectively.
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dict, but separately for undesirable and minority behaviors

because of their infrequency.1

Summary

The acquisition and competition properties of the delta learning

algorithm shape the connections between group nodes, attribute

nodes, and episodic nodes as information is provided about the

groups. Essentially, these properties describe different ways in

which a growing number of observations affect connections in the

network. The acquisition property describes how the attribute

connections grow stronger as a function of a growing sample size,

and so enables a preponderance of desirable behaviors in the

majority group much quicker than in the minority group. As a

consequence, no paired distinctive stimuli are necessary to produce

the illusion correlation effect. This implication has received em-

pirical support from recent studies (Shavitt, Sanbonmatsu, Smitti-

patana, & Posavac, 1999; Van Rooy, 2001) that have showed that

the effect is obtained without any negative behavioral information

on the minority group, contrary to the distinctiveness hypothesis.

The competition property describes how stronger attribute3group

connections inhibit the development of weaker episodic3group

connections. This latter property plays a role in the memory

advantage for infrequent behaviors.

Other Relevant Theories

Before applying our recurrent implementation to several group

biases of interest, we will first briefly compare the recurrent

approach with the two most relevant models that have been pro-

posed in the recent past to explain group biases such as the illusory

correlation effect.

Exemplar Models

Perhaps the most well-known theoretical approach to explain

group biases was inspired by recent exemplar models of memory

(Fiedler, 1996; Nosofsky, 1986; Smith, 1991; Smith & Zárate,

1992). According to exemplar models, perceivers store single

exemplars of behaviors in memory. To make a judgment about a

target stimulus (e.g., a group), perceivers form a composite esti-

mate of activated memory traces of the stored exemplars that are

highly similar to the target stimulus. Thus, group judgments are

based on specific exemplars that are retrieved from memory and

aggregated. In the exemplar models of Smith (1991) and Fiedler

(1996; Fiedler, Kemmelmeier, & Freytag, 1999) that provide the

most detailed accounts of social judgments, this aggregation is

based on a simple or weighted linear summation. Such an aggre-

gation process will cancel out unsystematic perceptual or encoding

errors between the exemplars, and will reinforce systematic vari-

ance. An important consequence is that less error variance is left in

the aggregate, the larger the amount of observations. This is

important, because as less error variance is left, then perceptions of

the group become more accurate, alleviating the tendency to make

biased judgments. Hence, exemplar theories essentially explain

many group biases by information loss or insufficient evidence,

and predict that increasing the encoding of actual group informa-

tion can alleviate judgmental shortcomings. Like the present re-

current network, they are thus sensitive to sample size differences.

One major difference with our recurrent approach is that in

exemplar models, information about behavioral episodes and their

trait or evaluative implication is solely encoded at the exemplar

level, whereas (aggregated) attributes are computed at retrieval. In

addition, because the evaluative attributes are computed from the

exemplars, it is predicted that there should be a positive correlation

between judgment and memory, that is, lower liking for minority

Group B should result in lower recall for the behavior exemplars

also (Fiedler, Russer, & Gramm, 1993). This stands in contrast to

illusory correlation research that shows increased memory for

Group B exemplars (for recent evidence, see Hamilton, Dugan, &

Trollier, 1985; McConnell, Sherman, & Hamilton, 1994; Stroess-

ner, Hamilton, & Mackie, 1992). This observed discrepancy be-

tween judgment (decrease) and memory (increase) was overcome

in the implementation of our recurrent network by encoding both

types of exemplar and attribute information, and by the competi-

tion property of the delta algorithm. Such competition mechanism

does not exist for exemplar-based models. Another difference is

that our model does not require random noise in the encoding of

the information to explain group biases, because the delta algo-

rithm is an acquisition device that in itself is sensitive to sample

size differences.

Tensor Product Model

Kashima et al. (2000) proposed a connectionist model of group

impression formation and change that they called the “tensor

product model.” It encodes different aspects of social information,

1 Because this is a recurrent network, competition may, in principle,

work also on the (downward) connections from the group to the attribute

and episodic nodes. For instance, strong group3attribute connections may

hamper development of episodic3attribute connections. However these

latter connections do not play a direct role in our testing procedures. Other

sources of competition that involve episodic connections are less likely,

because these connections are relatively weak and thus may have little

influence.

Figure 4. Graphical illustration of the mechanisms of competition. Filled

nodes are activated at a single trial, and empty nodes are not activated. Full

lines denote strong connection weights, broken lines denote moderate

weights, and dotted lines denote weak weights. A � Group A; B � Group

B; D � desirability; F � frequent behaviors; I � infrequent behaviors.
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including the person, the group to whom he or she belongs, as well

as the specific action or characteristics they express. Like our

model, it assumes that this information is encoded in memory as

connections between sets of nodes reflecting these different as-

pects. Thus, aggregation of episodic information takes place dur-

ing encoding rather than during retrieval, through the strengthen-

ing of the connections between nodes. The Hebbian learning

algorithm, which involves a weighted linear summation of infor-

mation, determines weight adjustments.

One of the most important differences with our recurrent model

is that the tensor product model does not say anything about recall

of specific behavioral information. In principle, all episodic infor-

mation is immediately aggregated in the connections and then lost

after activation fades away. Moreover, all connections between

two nodes are symmetric, although they can differ in the recurrent

model depending on the direction in which the activation is spread

between the nodes.

Another difference is that the Hebbian algorithm applied in the

tensor product model is not bounded or normalized, as it simply

keeps on accumulating the weights from previous learning, forcing

them beyond �1 and �1. Normalizing takes place only during

judgment, for instance, by retrieving appropriate low-end and

high-end anchors to calibrate the current judgment. Although

research has revealed that people shift their standards of judgment

as they think of members of different social groups (e.g., an

assertive person is judged “very assertive” as a woman but only

“mildly assertive” as a man; Biernat & Manis, 1994), this does not

necessarily imply that anchors are used during retrieval only.

Perhaps, anchors are also used during encoding. For instance,

group stereotypes and norms may act as a context against which

novel information about members is assessed. This latter anchor-

ing process is outside the scope of the model (although the delta

algorithm can address this through the competition property; for

more details, see Van Overwalle & Van Rooy, 1998). Perhaps, the

most important limitation of nonnormalized learning in the tensor

product model is that it does not allow limiting activation at each

learning trial, so that competition cannot take place. As a conse-

quence, the discrepancy between information loss and increased

memory cannot be accounted for.

Overview of the Simulations

In the next sections, we will describe a connectionist simulation

of several biases in group judgments. An overview of these sim-

ulations is given in Table 1, together with the major connectionist

property that drives the bias.

Model Parameters

For all simulations, we used the linear autoassociative recurrent

network described above, with parameters for decay and excitation

(for internal and external input) all set to 1, and with one internal

activation cycle. Node activation was determined by the linear sum

of all internal and external inputs received at a node (McClelland

Table 1

Overview of the Simulated Group Biases and the Property Creating the Bias

Bias Findings Property

Group impression formation

1. Size-based illusory correlation A minority group is seen as more negative despite the
fact that the proportion of positive and negative items
is identical to a majority group

Acquisition: Greater sample size of
opposite attributes in majority group

Better memory (assignment latencies) for items from a
minority category

Competition: Greater sample size of
attributes in majority group discounts
episodic weights

2. Expectancy-based illusory
correlation

More stereotyped judgments despite the lack of an actual
correlation

Prior acquisition of greater sample size of
stereotypical attributes in group carries
over to present acquisition

Group differentiation

3. Accentuation Perceived differences in attributes are pronounced if
group membership is correlated with attribute

Acquisition: Greater sample size of
correlated attribute

Better memory (of foils) in uncorrelated condition Competition: Greater sample size of
attributes in correlated condition
discounts episodic weights

Changing group impressions

4. Stereotype change Group stereotype changes more if stereotype-inconsistent
information is dispersed across many members rather
than concentrated in a few

Competition: Greater discounting of
inconsistent attribute concentrated in a
few members

Group variability

5. Group homogeneity Outgroup is seen as more homogeneous; however ingroup
is seen as more homogeneous when it is a minority

Acquisition: Greater sample size of ingroup
attribute, unless ingroup is minority
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& Rumelhart, 1988, p. 167). This effectively means that node

activation was solely determined by the sum of external and

internal activation received (after one internal cycle through the

network) and that activation decay does not play any role in the

simulations, nor do multiple cycles of activation updating. These

characteristics are identical to recent work by Van Overwalle and

colleagues (Van Overwalle & Labiouse, in press; Van Overwalle

& Siebler, 2003).

As noted earlier, the external input was typically bound between

�1 and �1, and this leads (with some small deviations) to a

similar limitation of the connection weights. Such a limit is not

only important to produce competition, but it is also instrumental

in preventing the connections growing without bound. The learn-

ing rate that determines the speed by which the weights of the

connections are allowed to change was set to 0.15. To generalize

across a range of presentation orders, each network was run for 50

different random orders, thus simulating 50 different “partici-

pants.” All connection weights were initialized at starting values of

zero. Unless otherwise stated, most of the effects are relatively

robust to changes in parameters and stimulus distributions. Con-

sequently, for simplicity of presentation, a smaller number of trials

were used in some of the simulations than is typically the case in

actual experiments.

Testing the Network

To test the judgments, categorizations, and memory arising from

the network, we measured how much some concepts in memory

are able to activate other concepts. Thus, we simply activated node

x and looked at the resulting internal activation of node y. For

instance, to measure the attributes associated with a group, the

group node that serves as a cue is primed by turning on its external

activation to 1. This activation then spreads to related nodes in

proportion to the weights of their connection, and the resulting

internal activation (or output activation) is then measured (i.e.,

read off) from the attribute nodes. This resulting activation can

acquire any value between approximately �1 and �1, depending

on the weight and direction of the connections. In addition, for

some judgments, the activation of some nodes was subtracted (i.e.,

got a negative sign) in the calculation of the overall assessment

(e.g., the activation of opposing valences was subtracted from each

other to obtain an overall evaluation measure). No external input

activation was provided to the “measurement” nodes, because zero

activation is considered a neutral resting activating level just in the

middle of the �1 and �1 bounds for activation. (Providing any

extra external activation to nodes that serve as measure would bias

the response in a given positive or negative direction, and that is of

course undesirable).

To simplify, one might think of this procedure as testing the

strength of the connection between nodes x and y, because the

lateral connections between the same types of nodes quite often

(but not always) play only a minor role. (In the section on model

comparisons discussed later, we demonstrate that feedforward

networks without such lateral connections often do as well as

recurrent networks.) It should be noted that if more than one output

activation was read off, we averaged the results so that the total

output activation remained between the �1 and �1 bounds.

We used the same basic cue and measurement nodes throughout

all the simulations. Unless stated otherwise, for central tendency

measures of the group (e.g., liking, frequency estimates), the group

nodes were turned on and the differential output activation of the

attribute nodes was read off. For instance, the resulting activation

of the undesirable attribute was subtracted from the resulting

activation of the desirable attribute to obtain an overall likability

estimate. For central tendency measures of exemplars (e.g., atti-

tude position of statements, typicality of members), we used ex-

emplar nodes as cues instead of group nodes. Recognition in the

assignment task was simulated by first activating each episodic

node, and reading off the resulting activation of the group node.

Finally, for measures of variance, the same cues and measurement

nodes were used as for the central tendency measure of the group,

but the resulting activation of the two opposing attribute nodes was

summed instead of subtracted. For more details, we refer to each

of the simulations and associated tables (where measurement

nodes are denoted by a question mark).

All the results of the simulations are presented together with

observed means from an illustrative experiment. Like many au-

thors in the associative learning domain (e.g., Nosofsky, Kruschke,

& McKinley, 1992; Shanks, 1991), we assume that the relationship

between the activation resulting from such a test and the judgments

by participants is monotonic. Hence, given that we are mainly

interested in patterns of the simulated values, the simulated means

per condition are estimated to fit as closely to the human data using

linear regression (i.e., we linearly regressed all simulation means

onto all human means and use that regression to compute human-

like values for the simulation). This procedure also enables us to

demonstrate visually the fit of the simulations.

Group Impressions

How do perceivers develop a stereotyped impression of a

group? Of the many processes that may contribute to a biased

group perception, we focus on illusory correlation as a conse-

quence of sample size differences (as introduced earlier) and as a

consequence of prior expectancies (to be discussed later).

As noted earlier, size-based illusory correlation refers to the

tendency to perceive minority groups as more negative than ma-

jority groups, despite an equal preponderance of desirable behav-

iors in the two groups (Hamilton & Gifford, 1976). This finding

has been replicated under different conditions and is very robust

(for an overview, see Hamilton & Sherman, 1989). An important

reason for the popularity of this concept lies in its practical

implications. The study of the illusion can give us an insight into

the processes underlying the formation of social stereotypes and

negative attitudes toward minorities in society.

An experiment that shows many of the typical findings in

illusory correlation research conducted by McConnell et al. (1994,

Experiment 2) will be used here to illustrate our simulation of the

bias. Before proceeding to the simulation, we first discuss the most

important empirical measures of the illusion and previous rival

explanations.

Evaluative Judgments

The majority of illusory correlation studies used the same set of

measures that were originally introduced by Hamilton and Gifford

(1976) and that were also used by McConnell et al. (1994). As
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noted earlier, in many studies these measures showed an evaluative

bias in favor of the majority group.

Likability ratings. McConnell et al. (1994, p. 416) asked their

participants to rate “how much they thought they would like

members of Group A and Group B” on a 10-point scale ranging

from strong disliking to strong liking, and found that Group A was

liked most.

Frequency estimates. For each group, participants were asked

“to estimate how many of [the behaviors] were undesirable” (Mc-

Connell et al., 1994, p. 416). The number of undesirable behaviors

performed by minority Group B members was overestimated rel-

ative to the number of undesirable behaviors performed by major-

ity Group A members.

Group assignment. Participants were given each behavior

without group assignment and then had to indicate “whether a

member of Group A or Group B performed the action” (p. 416). It

was found that disproportionately more undesirable behaviors were

attributed to the minority Group B than to the majority Group A.

Process Measures

The previous measures record the extent of the illusion, but

reveal little about the underlying encoding and memory processes

that may be responsible for it. To explore these processes in more

depth, researchers introduced additional process measures. Al-

though the results obtained with these measures are less robust

than those obtained with the traditional evaluative measures, they

avoid guessing strategies that may cloud memory measures. The

following results have been reported:

Free recall. Participants were instructed “to write down as

many of the behaviors as they could recall” (McConnell et al.,

1994, p. 416) without receiving any cue about behavior or group.

It was found that they remembered disproportionately more unde-

sirable behaviors of minority Group B than any other condition.

This may imply better encoding and memory of these undesirable

minority Group B behaviors.

Assignment latencies. In this process measure, the latencies in

the group assignment task (see above) are recorded. McConnell et

al. (1994) found that participants are fastest in assigning undesir-

able behaviors to the minority Group B (but see Klauer & Meiser,

2000). As this effect in group latencies shows the same pattern as

the free recall data, it was again interpreted as a result of better

encoding and memory of these behaviors.

Prior Theoretical Accounts

What are the theoretical explanations provided for this pervasive

bias? The first account of illusory correlation proposed by Ham-

ilton and Gifford (1976) was inspired by Chapman’s (1967) orig-

inal explanation that centered on the distinctiveness or salience of

stimuli that form a minority. Hamilton and Gifford argued that the

co-occurrence of two infrequent events, that is, undesirable behav-

iors from a minority group, are particularly attention getting and

distinct, and therefore received more extensive encoding, which in

turn leads to greater accessibility in memory. Because in typical

illusory correlation experiments undesirable behaviors are a mi-

nority, they become especially salient and memorable in the mi-

nority Group B. This memory advantage of undesirable Group B

behaviors was assumed to be the key factor causing the negative

group impressions of the minority Group B. The distinctiveness-

based explanation has gained quite a lot of empirical support (for

extensive reviews, see Hamilton & Sherman, 1989; Mullen &

Johnson, 1990) that was corroborated by recent studies in which

higher recall for the distinct undesirable minority group was doc-

umented (Hamilton et al., 1985; McConnell et al., 1994; Stroessner

et al., 1992). Despite the popularity and empirical support of the

distinctiveness account, however, alternative approaches to illu-

sory correlation have been put forward.

According to exemplar models of Smith (1991) and Fiedler

(1996), aggregation of more information reduces unsystematic

error and so leads to perceptions that are more accurate. As a

consequence, for majority Group A, which contains a large num-

ber of behaviors, the difference between desirable and undesirable

behaviors is more accurately perceived than for minority Group B,

where there are less behaviors. On the basis of these differences,

exemplar models predict an illusory correlation bias, that is, more

favorable liking of the majority group. Unlike the distinctiveness

account, these models posit that unequal frequencies are respon-

sible for the effect, not selective memory. Similarly, the tensor

product model (Kashima et al., 2000) proposes that the encoding

and aggregation of unequal frequencies by means of the Hebbian

learning algorithm drives the illusion. Thus, Kashima et al.

(2000) emphasized encoding rather than retrieval as the basis of

the illusion. However, the increased recall for infrequent and

undesirable behaviors noted earlier (Hamilton et al., 1985; Klauer

& Meiser, 2000; McConnell et al., 1994; Stroessner et al., 1992) is

currently problematic for both the exemplar and tensor product

account, as they do not address this memory advantage.

To resolve the discrepancy between increased evaluation and

decreased memory, alternative models have been put forward (e.g.,

Garcia-Marques & Hamilton, 1996) that emphasize a dual-

retrieval process in which likability and frequency estimates de-

pend on the spontaneous availability or ease of retrieval of the

episodic items, whereas free recall depends on an exhaustive

search guided by the number and direction of the links between

episodic nodes. However, such models are strongly limited by the

fact that they do not account for the development of group

impressions.

Simulation 1: Size-Based Illusory Correlation

Like the tensor product model, our connectionist account also

assumes that illusory correlation is created by differences in sam-

ple sizes that affect encoding rather than by memory retrieval

differences between behaviors. Because of the acquisition property

of the delta algorithm, the prevalence of desirable (relative to

undesirable) behavior is more clearly encoded in the evaluative

connections for the majority group, so that perceivers have a more

positive impression of the majority group compared with the

minority group. In addition, increased memory for undesirable

minority behaviors is driven by the competition property of the

delta algorithm as described earlier.

Table 2 represents a simplified simulated learning history of a

typical illusory correlation experiment as conducted by McConnell

et al. (1994, Experiment 2). Each line in the top panel of Table 2

represents a pattern of external activation at a trial that corresponds

to a statement presented to a participant. The first two cells

represent the group label present in each statement, the next two
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cells denote the valence of the statement, and the last cells repre-

sent episodic nodes reflecting the behavioral information

presented.2

In the simulation, to measure the traditional evaluative judg-

ments on the groups (i.e., likability ratings, frequency estimations,

and group assignments), the group nodes were turned on and the

resulting activation of the evaluative nodes was read off (denoted

by a question mark, see bottom panel of Table 2). As noted earlier,

no additional external activation was provided to the evaluative

nodes (or any other “measurement” node) because null activation

is a neutral resting activation state that allows an unbiased assess-

ment of the evaluative activation generated directly or indirectly

by the group nodes. In particular, we tested the resulting differen-

tial activation from the desirable and undesirable node. Although

it is also possible that the evaluative nodes are first primed and that

this activation then travels to the group nodes, this has little effect

on the network’s predictions. The reason is that the sample size

effect that drives the illusion is largely symmetric over opposing

directions of the evaluative connections.

As discussed earlier, episodic memory can be measured by a

group assignment task, preferably by measuring latencies that

avoid contamination by guessing strategies or response biases that

are driven by evaluative memory. In a group assignment task,

behaviors are presented and participants have to indicate as fast as

possible by which group member they were performed. To reflect

this measure, each episodic node from different sets of behaviors

(A�, A�, B�, B�) was activated one at a time (see bottom panel

of Table 2). This episodic activation spreads to the group nodes

and so determines response times. This testing procedure is based

on the assumption that awareness of group membership depends

on the crossing of a minimal activation threshold (Cleeremans &

Jiménez, 2002). By assuming that the time to spread the activation

through the network is proportional to the strength of the connec-

tion weights, stronger episodic3group connections will lead to

higher group activations and faster crossing of the awareness

threshold for group membership.3

Results. The 18 “statements” succinctly listed in Table 2 were

processed by the network for 50 “participants” with different

random orders. Figure 5 depicts the mean test activation for all

simulated dependent measures, together with the observed likabil-

ity and reaction time data from McConnell et al. (1994, Experi-

ment 2). The top panel of the figure shows the results of the

simulation of the evaluative measures, together with the likability

ratings from McConnell et al. (1994, Experiment 2). The simula-

tion shows that the majority Group A received higher evaluative

activations than the minority Group B, F(1, 49) � 39.05, p � .001,

mirroring the same pattern of the observed data (the perfect fit is

exceptional and simply due to the rescaling of the test activation of

the network to the observed data that consists here only of two data

points).

The bottom panel depicts the results of the memory simulation

together with the observed assignment latencies of McConnell et

al. (1994, Experiment 2). Although the observed differences be-

tween B� and B� are somewhat underestimated, as predicted, the

competition property resulted in stronger episodic connections for

minority behaviors, F(1, 49) � 425.44, p � .001, and undesirable

behaviors, F(1, 49) � 264.28, p � .001. These two main effects

indicate that it is not the combination of negative and minority

behaviors (i.e., B�) that might drive the illusion as the distinc-

tiveness account would predict, but rather two independent effects

of increased memory stemming from two minority categories

(behaviors from Group B and negative behaviors). As noted ear-

lier, these results also distinguish the present network from alter-

native exemplar-based and tensor product models that cannot

account for the increased memory for minority groups and unde-

sirable behaviors.

Simulation 2: Expectancy-Based Illusory Correlation

Although the differential sample size paradigm of Hamilton and

Gifford (1976) represents a very dramatic demonstration of illu-

2 More detailed information on the input coding for all simulations can

be obtained from Frank Van Overwalle.
3 An alternative procedure is based on the assumption that awareness

depends on convergence of activation into a stable “attractor” state for the

group node (Cleeremans & Jiménez, 2002). The time needed to settle in

such an attractor state can be simulated by recording the number of

activation updating cycles before an attractor is reached (McLeod et al.,

1998). As one might expect, this yielded very similar results. However, in

keeping with our general simulation methodology in which multiple cycles

are avoided, and because we are not specifically interested in response

times but rather more broadly in any measure of episodic memory, we do

not report this more elaborated procedure.

Table 2

Size-Based Illusory Correlation: Learning History (Based on the

Design and Procedure of McConnell et al., 1994,

Experiment 2)

Trial and frequency

Group Desirability Episodic behaviorsa

A B � � A� A� B� B�

Experimental phase

Group A �/#8 1 0 1 0 1 0 0 0
Group A �/#4 1 0 0 1 0 1 0 0
Group B �/#4 0 1 1 0 0 0 1 0
Group B �/#2 0 1 0 1 0 0 0 1

Test phase

Evaluation of A 1 0 ? �? 0 0 0 0
Evaluation of B 0 1 ? �? 0 0 0 0
Assignment latencies

A� ? 0 0 0 1 0 0 0
A� ? 0 0 0 0 1 0 0
B� 0 ? 0 0 0 0 1 0
B� 0 ? 0 0 0 0 0 1

Note. Cell entries denote external node activation. The order of the
experimental trials was randomized. A pound sign (#) represents the
number of times the trial is repeated; a plus sign (�) represents desirable;
a minus sign (�) represents undesirable; a question mark (?) represents
resulting test activations (without external activations), which are averaged
across each row; a minus sign before a question mark (�?) indicates that
the resulting test activations were subtracted from those without a minus
sign to obtain an overall measure.
a Each type of behavior is shown in a separate column that involves
multiple episodic nodes of which a different one is turned on (activation
�1) per trial (e.g., in the first trial the first episodic node is activated, in the
second trial the second node, and so on).
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sory correlation despite the lack of an actual relationship, very

often group stereotypes are created as a consequence of existing

relationships between attributes and a group. Once such group

conceptions are formed, however, these beliefs will bias judgments

on the basis of newly acquired information, even if that new

information does not contain an actual relationship. Thus, already

established stereotypes may produce illusory correlations through

the expectations that are associated with a group. Therefore, this

type of illusory correlation is termed “expectancy-based,” in con-

trast to the Hamilton and Gifford (1976) paradigm that we refer to

as “size-based.”

In an illustration of this expectancy-based illusory correlation,

Hamilton and Rose (1980, Experiment 1) presented their partici-

pants with a series of statements, each of which described a person

as a member of an occupational group such as accountants and

doctors. In addition, each member was described by two trait-

implying adjectives, some of which were stereotypically associ-

ated with the group whereas others were not. For instance, the

traits perfectionist and serious were stereotypical of accountants,

and the traits wealthy and attractive were stereotypical of doctors.

All these trait adjectives were presented in descriptions of all

occupational groups, so that there was no relationship between

occupational group and any particular attribute. Moreover, there

were always two members associated with each set of two adjec-

tives, so that sample size was kept constant. Nevertheless, when

asked to indicate “how many times each of these adjectives de-

scribed each occupational group” (Hamilton & Rose, 1980, p.

835), participants overestimated the frequency of traits that were

stereotypical of a group. For instance, they estimated the frequency

of perfectionist and serious accountants to be on average 2.7

(whereas the actual number was 2). In contrast, the frequency of

doctors having these traits was estimated to be 2 (which was the

actual number).

This finding cannot be explained by differences in sample size

in the information set. Apparently, preexisting expectancies about

these occupational groups had biased the frequency estimates of

co-occurrence. Subsequent studies have replicated these findings

(Kim & Baron, 1988; Slusher & Anderson, 1987; Spears, Eiser, &

van der Pligt, 1987).

Several explanations have been put forward to account for

expectancy-based illusory correlation, including facilitated encod-

ing of stereotypical traits or biases at retrieval. We propose a

connectionist explanation that builds on the suggestion by Hamil-

ton and Rose (1980) that “an associative basis for an illusory

correlation would exist whenever one’s previous experiences had

resulted in a perceived relationship between two stimulus vari-

ables. The perceiver would then have an expectation that the two

variables are related” (p. 833). Specifically, we assume that the

bias results from previous experiences with co-occurrences of

stereotypical traits with an occupational group, and so creates

preexisting stereotypical beliefs that are encoded in stronger

weights connecting the stereotypical traits with the group. Conse-

quently, when novel information is presented, the new weight

changes resulting from this information are “added” on these prior

weights, leading to a stereotypical weight advantage. These stron-

ger weights for stereotypical traits produce the illusory correlation.

More generally, the integration of old and new information in a

connectionist model by adding weight changes, explains how

expectancy-driven biases are created.

We used the same model architecture as depicted in Figure 2 for

size-based illusory correlation, with the exception that trait nodes

replace the desirability nodes. However, the present simulation is

driven by another property of the delta algorithm, the modification

of weights derived from old and new information. Specifically,

during a preexperimental phase, the model builds up an association

or expectancy about typical traits of each occupational group by

presenting five trials in which stereotypical traits co-occur with

their occupational group (without any episodic information on

specific trait adjectives, as this information is most probably lost

by the time the experiment starts). Next, during the experimental

phase, information is presented that was either consistent or in-

consistent with the stereotype (two trials each), leading to a zero

Figure 5. Simulation 1: Size-based illusory correlation. Observed data

from McConnell et al. (1994, Experiment 2) and simulation results. (It

should be noted that in the bottom panel, the scale is reversed so that higher

values reflect better memory and, consequently, faster latencies.) The

human data are from Tables 4 and 5 in “Illusory Correlation in the

Perception of Groups: An Extension of the Distinctiveness-Based Ac-

count,” by A. R. McConnell, S. J. Sherman, and D. L. Hamilton, 1994,

Journal of Personality and Social Psychology, 67, pp. 420–421. Copyright

1994 by the American Psychological Association. Adapted with permis-

sion of the author. RT � reaction time.
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correlation overall. At the end of learning, to simulate frequency

estimates that reflect “how many times each of these adjectives

described each occupational group” (Hamilton & Rose, 1980, p.

835), each group is primed and the resulting activation of each trait

node is read off (the reverse direction of testing from trait to group

nodes works equally well). Because we simulated single traits

(without the presence of opposing trait), simulation of the fre-

quency measure was tested by the resulting activation of a single

trait only (instead of the usual differential activation).

Results. Like the previous simulation, the network processed

all “trait adjectives” for 50 “participants” with different random

orders. The mean test activations for the simulated frequency

estimates are depicted in Figure 6, together with the observed

means for two occupational groups from the first experiment of

Hamilton and Rose (1980). As can be seen, the simulation repli-

cates the basic finding that stereotypical traits are overestimated in

frequency in comparison with nonstereotypical traits. A within-

subjects analysis of variance (ANOVA) revealed that, like in the

original study of Hamilton and Rose, the interaction between

group (accountants vs. doctors) and typicality (typical of accoun-

tant vs. doctor) reached significance, F(1, 49) � 5,554.86, p �

.001.

Group Differentiation

Several biases and stereotypes in group judgments such as

illusory correlation emerge from categorizing people or objects in

different groups. A factor that exacerbates the creation of stereo-

types is accentuation, or the tendency to exaggerate differences on

a feature that determines group categories (Tajfel, 1969). For

instance, differences between skin colors are exaggerated between

Blacks and Whites, but are seen as more similar among people

belonging to the same racial group. In a classic study, Tajfel and

Wilkes (1963) reported that when short and long lines were sys-

tematically associated with different categories, the perceived dif-

ference between the short and the long lines became more pro-

nounced while similarities of the items within each category were

increased (but see Corneille, Klein, Lambert, & Judd, 2002). Such

accentuation leads to less individuation and hence more stereotyp-

ical beliefs about social categories.

Early theories remained vague about the psychological process

underlying the accentuation effect. For instance, Tajfel and Wilkes

(1963) suggested that the main drive behind the effect is a desire

to maximize predictability. Cognitive explanations have also been

offered: Exemplar theories (Fiedler, 1996; Krueger & Clement,

1994) assume that in a correlated condition, attention to the group

label of an exemplar leads to the recruitment from memory of

more exemplars from the same group, which are then aggregated

into a composite evaluation that gives more weight to exemplars of

the same group than from other groups. This increases the per-

ceived similarity within groups and difference between groups.

The tensor product model of Kashima et al. (2000) proposed a

similar account. Because of the correlation between exemplars and

the category, all exemplars of the same category share a common

group label, and so become more similar to each other and more

different from other groups. In sum, both the exemplar and tensor

product model offer an account of the accentuation effect in terms

of the sample size of the group category.

Like the exemplar and tensor product theories, our recurrent

network also offers a sample size account. The idea is that accen-

tuation is produced by the group3attribute connections. Because

a correlated condition implies a greater sample size of the co-

occurrence of a group node and attribute nodes, on the basis of the

acquisition property, stronger group3attribute connections will

develop. For example, if eight pro-gay articles are all correlated

with one newspaper, strong associations will develop between the

newspaper source and this attitude position. In contrast, when four

pro-gay articles are correlated with one newspaper and another

four articles to another newspaper, the connections of each of the

newspaper sources with the attitude position will be much weaker.

For the group3attribute connections to have any effect on

judgment, we assume that when perceivers judge an exemplar, not

only the episodic trace but also the newspaper source is activated

to some degree. As noted earlier, this assumption was also made

by previous exemplar and tensor product theories. Moreover,

recent findings corroborate the idea that accentuation is more

likely to emerge when the task is sufficiently complex, suggesting

that especially under such conditions participants additionally rely

on categorical (i.e., source) information (Corneille et al., 2002;

Lambert, Klein, & Azzi, 2002). Because of the stronger

group3attribute connections in the correlated condition, this leads

to accentuation of differences with the other group that would not

occur if group labels were not correlated. For example, because the

connection between a newspaper source and the pro-gay attitude in

the correlated condition is stronger, activating this newspaper node

will result in higher activation of the pro-gay attitude node (and

almost no effect on the anti-gay node as this newspaper was

obviously not correlated with anti-gay articles), leading to in-

creased pro-gay ratings or accentuation. In contrast, because this

connection is weaker in the uncorrelated condition, activating the

newspaper node will result in relatively weaker activation on the

Figure 6. Simulation 2: Expectancy-based illusory correlation. Observed

data from Hamilton and Rose (1980, Experiment 1) and simulation results.

The human data are from Table 1 in “Illusory Correlation and the Main-

tenance of Stereotypic Beliefs,” by D. L. Hamilton and T. L. Rose, 1980,

Journal of Personality and Social Psychology, 39, p. 835. Copyright 1980

by the American Psychological Association. Adapted with permission of

the author.
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pro-gay attitude node, leading to less pro-gay ratings and loss of

accentuation. The reasoning is similar for anti-gay articles and the

anti-gay attitude node.

Novel Prediction and Initial Empirical Support

The present account makes a novel prediction that earlier ex-

emplar models (Fiedler, 1996) or the tensor product model

(Kashima et al., 2000) do not make. Given that the effect of

acquisition is largely symmetric over the evaluative connections,

not only the group3attribute connections should be weaker in the

uncorrelated condition than in the correlated condition as de-

scribed above, but also the attribute3group connections. By the

competition property, this should lead to less discounting of the

episodic3group connections (just as it was the case for minority

groups in illusory correlation). Hence, our recurrent model predicts

that the episodic3group connections should be stronger in the

uncorrelated than in the correlated condition, leading to better

recognition (assignment of source labels).

To verify this prediction, Vanhoomissen, De Haen, and Van

Overwalle (2001) explored the effect of classification on accentu-

ation of attitudes. Participants were presented with statements

reflecting favorable versus unfavorable attitudes toward homosex-

uality that came ostensibly from two newspapers (cf. Eiser, 1971).

In a correlated condition, the favorable statements were consis-

tently attributed to one newspaper and the unfavorable statements

to another newspaper. In contrast, in an uncorrelated condition,

statements were attributed equally often to each newspaper. After

reading the statements, the participants were requested to rate all

the statements on an 11-point scale ranging from very negative to

very positive. In line with the accentuation prediction, the differ-

ence between favorable and unfavorable statements was accentu-

ated in the correlated condition as compared with the uncorrelated

condition.

In addition, a newspaper assignment task was included. Partic-

ipants read the original statements as well as novel distracter

statements (foils) that contained the same material, but differed in

their evaluative meaning (i.e., switched from favorable to unfa-

vorable and vice versa), and they had to indicate from which

newspaper the statements came or whether it was not presented

earlier. The rationale behind the foils was that this would allow

unconfounding episodic memory from guessing on the basis of

evaluative memory. If the participants were (mis)led by the eval-

uative meaning of the statements, we would find worsened recog-

nition performance on the foils, in that they would not be suffi-

ciently rejected. However, if the participants were led by their

episodic memory of the statements, they should show improved

recognition performance on the foils, that is, they should reject

them more often.

Our novel recurrent prediction for the recognition task was

better (episodic) memory of the foils in the uncorrelated condition

than in the correlated condition. Consistent with this prediction, in

the recognition task, participants more often rejected distracter

foils in the uncorrelated condition than in the correlated condition.

This suggests that, compared with the correlated condition, these

participants were less often misguided by the evaluative implica-

tion of the foils and used their episodic memory for making correct

recognition judgments. Conversely, as one would expect, partici-

pants in the correlated condition more often accepted the original

items, indicating again that they were (in this condition) correctly

guided by the evaluative implication of these statements.

Simulation 3: Accentuation

A recurrent implementation of Vanhoomissen et al.’s (2001)

accentuation and assignment findings is given in Table 3. We used

the same semilocalist encoding of attribute (attitudes) and episodic

(articles) information as before. Again, we simulated 50 “partici-

pants” with different random orders. To measure accentuation,

participants were requested to give an estimate of the attitude

position of each stimulus (e.g., how much pro- or anti-gay each

statement was). Hence, in the network, we tested for accentuation

by cuing each episodic node representing an article as well as its

associated newspaper node. (To unconfound source from favor-

ability across the two correlation conditions, we activated only

four favorable and four unfavorable articles that consistently came

from the same newspaper in the two correlation conditions.) The

degree to which this activation spreads to the attitude nodes

determines the perceived attitude strength of the articles (see

bottom panel in Table 3). The best fit with the observed data from

Vanhoomissen et al. (2001) was obtained when the newspaper

nodes were activated only for .15 rather than the default value

(suggesting that belongingness to the newspaper was recruited

from memory not to its full degree; the same .15 activation value

provided the best fit in simulations of a similar study by Eiser,

1971).

In addition, we measured rejection of the foils in the newspaper

assignment task. We assumed that this rejection would follow as a

function of the conflicting group activations associated with (a) the

behavior described in the foils and (b) the reversed attitude posi-

tions. Therefore, we first tested recognition of the foils by mea-

suring how participants “falsely” recognized the foils as belonging

to the original group. Specifically, we activated the foils by prim-

ing each episodic statement together with the reversed attitude

position, and read off the resulting activation from the newspaper

group nodes (see last two rows in the bottom panel of Table 3).

Next, we measured the conflict with the group activation arising

from the reversed attitude position. To accomplish this, we did the

same test as before except that we only primed the reversed

attitude positions and then subtracted the resulting group activation

from that obtained for the foils. This difference score reflects the

experienced conflict arising from episodic and reversed attitude

information. The greater the conflict, the more likely the foil will

be recognized and rejected.

Results. Figure 7 shows the simulation results of 50 random-

ized “participants.” As can be seen on the top panel of the figure,

the simulation demonstrates a clear accentuation effect in that the

perceived attitude positions were more extreme in the correlated

condition compared with the uncorrelated condition, and the ex-

pected interaction was significant, F(1, 98) � 121.46, p � .001. In

addition, the bottom panel shows that our novel memory prediction

was also supported as episodic memory was higher in the uncor-

related condition than in the correlated condition, F(1, 98) �

438.83, p � .001.

This demonstrates that our recurrent network can model accen-

tuation and the associated effect of enhanced memory for uncor-

related attributes. We argue that the network’s ability to reproduce

the accentuation effect is due to sample size sensitivity of the
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acquisition property, whereas enhanced recognition (i.e., assign-

ment) is due to the competition property. Other theories such as the

exemplar-based model of Fiedler (1996) and the tensor product

model by Kashima et al. (2000) make the same accentuation

prediction, but are silent with respect to enhanced recognition.

Stereotype Change

So far, we have seen how cognitive processes in humans—as

modeled by a recurrent network—may shape distorted impressions

about groups. The important question then is how might we be able

to get rid of these biased impressions? Three tactics for providing

stereotype-inconsistent information have been proposed in the

literature to counter biased group perceptions (Weber & Crocker,

1983; for an overview, see Hewstone, 1994).

According to the conversion model, extreme group members

have an especially strong impact on perceptions of a group as a

whole, so that disconfirming behavior of these members is espe-

cially likely to change group stereotypes. However, this model has

received little empirical support. More evidence was found for the

bookkeeping model, which predicts a gradual modification of

stereotypes by the additive influence of each piece of disconfirm-

ing information. Thus, for instance, more frequent disconfirming

information will elicit more changes (Weber & Crocker, 1983).

This prediction is in line with the recurrent model, as the acqui-

sition property also predicts that more evidence leads to more

extreme judgments (see also, e.g., the sample size effects on

illusory correlation and accentuation, discussed earlier).

Perhaps the subtyping model has inspired the most promising

tactic. This model predicts that extreme group members will be

subtyped into subcategories and separated from the rest of the

group. This insulates the group from dissenting members, so that

the content of the existing group stereotype is preserved. Hence,

contrary to the conversion model, this model predicts that the best

tactic to change group stereotypes is to distribute disconfirming

information among as many group members as possible, so as to

avoid subtyping of extreme disconfirmers. Empirical evidence has

generally supported this prediction (Hewstone, Macrae, Griffiths,

& Milne, 1994; Johnston & Hewstone, 1992; Weber & Crocker,

1983).

For instance, Johnston and Hewstone (1992, Experiment 1)

provided stereotype-inconsistent information on occupational

groups that was either dispersed across many members or concen-

trated within a few members. When participants were asked how

characteristic several stereotype-consistent and inconsistent traits

were of the group in general, they showed a strong increase of

stereotype-inconsistent traits in the dispersed condition. Frequency

estimates of each type of information showed the same pattern,

that is, higher estimates of inconsistent information in the dis-

persed condition. When asked to rate the typicality of the confirm-

ers and disconfirmers in each group, it was found that the discon-

firmers were seen as much less typical in the concentrated

condition. This suggests that, as predicted by the subtyping model,

disconfirmers were probably subcategorized more in the concen-

trated condition than in the dispersed condition.

Table 3

Accentuation: Learning History for Correlated and Uncorrelated Conditions (Based on the

Design and Procedure of Vanhoomissen et al., 2001)

Trial and frequency

Newspaper Attitude Statements in articlesa, b

A B � � A�(A�) A�(B�) B�(A�) B�(B�)

Correlated (uncorrelated) condition

Favorable articlesa

#4 1 (1) 0 (0) 1 0 1 0 0 0
#4 1 (0) 0 (1) 1 0 0 1 0 0

Unfavorable articlesa

#4 0 (1) 1 (0) 0 1 0 0 1 0
#4 0 (0) 1 (1) 0 1 0 0 0 1

Test phase

Attitude position
FAs from A .15 0 ? �? 1 0 0 0
UAs from B 0 .15 ? �? 0 0 0 1

Recognition memory
FAs from A ? 0 0 1 1 0 0 0
UAs from B 0 ? 1 0 0 0 0 1

Note. Cell entries denote external node activation. The order of the learning trials was randomized. A pound
sign (#) represents the number of times the trial is repeated; a plus sign (�) represents favorable to a given
attitude position; a minus sign (�) represents unfavorable; a question mark (?) represents resulting test
activations (without external activations), which are averaged across each row; a minus sign before a question
mark (�?) indicates that the resulting test activations were subtracted from those without a minus sign to obtain
an overall measure; FAs � favorable articles; UAs � unfavorable articles.
a The episodic node types and activations for the uncorrelated condition are shown in parentheses. b Each type
of statement is shown in a separate column that involves multiple episodic nodes of which a different one is
turned on (activation �1) per trial.
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Can the recurrent model reproduce these changes? It can, by

simulating subtyping through the property of competition. We

again assume a semilocalist representation in which not only the

trait description is encoded in a stereotype-consistent or inconsis-

tent node, but also the person to whom the trait is attributed. When

stereotype-inconsistent information is concentrated in a few mem-

bers, this implies that after repeated presentation, the exemplar

nodes representing these disconfirming members develop their

own strong connection with the inconsistent node. (This is less the

case for confirming members, because their exemplar3consistent

connections are blocked by the strong group3consistent connec-

tion.) These strong exemplar3inconsistent connections compete

with the group3inconsistent connections, resulting in a discount-

ing of this latter connection. Psychologically, this leads to a

decreased impact of inconsistent information on the group as a

whole. In addition, because the disconfirming exemplar nodes

develop stronger connections with the inconsistent node as noted

above, this results in a greater impact of the few disconfirming

members on inconsistency ratings, resulting in these members

being recognized as more inconsistent compared with the majority

(i.e., subtyping).

In contrast, when the stereotype-inconsistent information is dis-

persed across members, these exemplar nodes do not develop

strong connections with the inconsistent node, so that no compe-

tition arises with the connections linking the group with the in-

consistent traits. Hence, no discounting of the inconsistent infor-

mation occurs and no subtyping appears. In sum, the connection

linking the group with the inconsistent node is more discounted by

disconfirming members in the concentrated condition than in the

dispersed condition, leading to a conservation of stereotypical

perceptions of the group as a whole. In addition, the stronger

connections of disconfirming members with the inconsistent node

in the concentrated condition results in more subtyping of discon-

firming members away from the rest of the group.

Simulation 4: Dispersed Versus Concentrated

Stereotype-Inconsistent Information

Table 4 lists a recurrent implementation of Johnston and Hew-

stone’s (1992, Experiment 1) study. As can be seen, the network

architecture consists of a group node, two trait nodes reflecting

stereotype-consistent and inconsistent traits, and several exemplar

nodes reflecting individual members. The representation of

stereotype-consistent and inconsistent traits as two unitary nodes is

similar to the representation in the illusory correlation network

(Simulation 1) of behaviors in desirable and undesirable nodes. In

contrast to the earlier simulations, however, the exemplar nodes

only represent members, and not their behaviors (which were not

simulated). To provide the network with prior expectancies on

stereotypical beliefs of the group, we provided 10 trials of stereo-

typical traits in a preexperimental phase. Next, in the concentrated

condition, all inconsistent information was concentrated in the

disconfirmers, whereas in the dispersed condition, inconsistent

information appeared in all members except the confirmers. The

overall amount of inconsistent information was identical (i.e., 12)

in the two conditions.

Again, we simulated “50 participants” with different random

orders. To measure stereotypical beliefs, participants are typically

requested to rate to what extent some stereotype-consistent and

stereotype-inconsistent traits describe the group (Johnston & Hew-

stone, 1992; Johnston, Hewstone, Pendry, & Frankish, 1994; We-

ber & Crocker, 1983). In the network, this was tested by cuing the

group node and reading off the resulting activation on the consis-

tent or inconsistent node. We assume that frequency estimates are

based on a similar testing procedure (see also illusory correlation,

discussed earlier). To measure subtyping, Park, Wolsko, and Judd

(2001) demonstrated that one of the more valid measures was to

request the perceived typicality of confirming and disconfirming

group members. In the network, this was tested by activating the

two members that were either confirmers or disconfirmers in both

conditions, and reading off the resulting trait activation (bottom

panel in Table 4).

Results. Figure 8 shows the simulation results of 50 random-

ized “participants” on the trait ratings (top panel) and the typicality

ratings (bottom panel). As can be seen in the top panel, the

simulation demonstrates no considerable difference for consistent

traits and, more importantly, a substantial effect of discounting of

Figure 7. Simulation 3: Accentuation. Observed data from Vanhoomis-

sen et al. (2001) and simulation results as a function of a correlated or

uncorrelated condition.
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inconsistent traits in the concentrated condition as opposed to the

dispersed condition. That is, the inconsistencies were less strongly

associated with the group in the concentrated condition than in the

dispersed condition, as in Johnston and Hewstone’s (1992) study.

A between-subjects ANOVA confirmed that the difference be-

tween the two conditions was significant for inconsistent traits,

F(1, 98) � 26.29, p � .001, but not for the consistent traits, F(1,

98) � 1, ns. In addition, the bottom panel shows lower typicality

ratings for disconfirmers in the concentrated than in the dispersed

condition (and, as one would expect, almost no differences for

confirmers). Again, this difference was significant, F(1,

98) � 1,572.17, p � .001. This suggests that disconfirmers in the

concentrated condition are more easily subtyped away from the

overall group stereotype.

This simulation demonstrates that a recurrent network can

model subtyping. The network’s ability to reproduce this effect is

due to the property of competition, which allows discounting of

inconsistent information concentrated in a few disconfirmers. To

be precise, disconfirmers are not discounted, but rather their im-

plications for the whole group are. Other theories such as the

exemplar-based model by Fiedler (1996) and the tensor product

model by Kashima et al. (2000) do not possess this property, and

hence cannot make this prediction except by adding auxiliary

assumptions. For instance, Kashima et al. assumed that the amount

of stereotype change is mediated by the extent to which inconsis-

tent group members are individuated away from the group’s rest-

ing state (p. 931), a process that was added to the model to

incorporate individuation in social judgments. In the recurrent

model, such additional individuation process was not necessary,

because the results came out naturally from the competition prop-

erty of the delta algorithm.

Very recently, Queller and Smith (2002) proposed another re-

current connectionist model to model subtyping processes. Al-

though many specifications and parameters of their model differ

from our network (i.e., distributed representation, symmetric

weights, contrastive Hebbian learning algorithm), the basic archi-

Table 4

Dispersed or Concentrated Stereotype-Inconsistent Information: Learning History (Based on the

Design and Procedure of Johnston & Hewstone, 1992, Experiment 1)

Trial and frequency Group

Traits Specific group membersa

Cons. Incons. Conf. Mixed Disconf.

Preexperimental phase

#10 1 1 0 0 0 0

Concentrated

Consistent
#4 1 1 0 1 0 0
#8 1 1 0 0 1 0

Inconsistent
#12 1 0 1 0 0 1

Dispersed
Consistent

#6 1 1 0 1 0 0
#4 1 1 0 0 1 0
#2 1 1 0 0 0 1

Inconsistent
#8 1 0 1 0 1 0
#4 1 0 1 0 0 1

Test phase

Trait ratings of group
Cons. 1 ? 0 0 0 0
Incons. 1 0 ? 0 0 0

Typicality
Confs. 0 ? �? 1 0 0
Disconfs. 0 ? �? 0 0 1

Note. Cell entries denote external node activation. The order of the learning trials was randomized within each
condition. Cons. � consistent; Incons. � inconsistent; Conf. � confirmer; Disconf. � disconfirmer; a pound
sign (#) represents the number of times the trial is repeated; a question mark (?) represents resulting test
activations (without external activations), which are averaged across each row; a minus sign before a question
mark (�?) indicates that the resulting test activations were subtracted from those without a minus sign to obtain
an overall measure.
a There were two group members who always confirmed the stereotype, two who always disconfirmed the
stereotype, and four who showed mixed traits. Each member type is shown in a separate column that involves
multiple nodes of which a different one is turned on (activation �1) per one to six trials (see Footnote 2).
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tecture and processing mechanisms are very similar. However, a

more important difference is that Queller and Smith focused on the

distribution of counterstereotypic information among behaviors

rather than persons. That is, their simulations do not reflect

whether discrepancies are concentrated among a few members or

dispersed among most, but instead reflect a difference between

moderate and extreme disconfirming members, differing only in

the number of counterstereotypic behaviors. This variation ade-

quately reflects their own experiment with human subjects (Ex-

periment 3; see also Weber & Crocker, 1983, Experiment 2), and

certainly has merit because it points to other mechanisms under-

lying subtyping.

On the basis of their simulations, Queller and Smith (2002)

concluded that earlier explanations of subtyping are not important.

However, it is invalid to generalize these conclusions to the more

typical case of subtyping when inconsistencies are concentrated

within a few members. Instead, as we claimed earlier, our simu-

lations confirm that in order to change stereotypes of a group, it is

essential that discrepant members are still seen as a member of the

group, so that the link between group membership and counter-

stereotypic attributes is not weakened. It is interesting to note that

in spite of these differences, our network can reproduce Queller

and Smith’s simulation, showing that subtyping is reduced when

counterstereotypic information is presented throughout with ste-

reotypic information (e.g., when learning about a novel unknown

group), instead of after an initial stereotypic phase (e.g., when

unlearning stereotypes of a known group for which one has already

developed strong stereotypes).

Moderating Factors

The present network can simulate other findings in the literature

that examined the effects of several moderating variables on

subtyping:

Sample size. Weber and Crocker (1983, Experiments 1 and 2)

reported more stereotype change in the dispersed condition when

more inconsistent information was provided. The model explains

this finding by sample size differences. A growing sample size

leads to more inconsistency information being incorporated in the

group schema for the dispersed condition, but being discounted

and subtyped in the concentrated condition. This can be simulated

in the network by increasing the number of inconsistent trials (e.g.,

by doubling their frequency).

Individual members. Gurwitz and Dodge (1977) reported that,

in contrast to group judgments, estimates of individual members

were seen as less stereotypical in the concentrated than in the

dispersed condition. However, Weber and Crocker (1983) did not

replicate this finding as they found the same pattern of results for

individual members as for the whole group. In line with their

finding, our simulation also predicts the same overall pattern for

individual group members as for group judgments (by placing 1s

on the member nodes instead of on the group node; see first two

lines in the bottom panel of Table 4).

Expectancy. Johnston et al. (1994, Experiment 3) documented

more stereotypical ratings when stereotypical beliefs about groups

were made explicit (high expectancy) than when they were not

made explicit (low expectancy). In addition, in what may appear a

ceiling effect, they also found less change when expectancy was

high rather than low. To reproduce Johnston et al.’s findings, low

expectancy can be simulated in the recurrent network by reducing

the preexperimental trials (e.g., 2) in comparison with the high

expectancy condition (e.g., 10).

Perceived Group Variability

Thus far, we discussed how categorization between groups may

distort how we perceive the central tendency of a group attribute

(e.g., likability, attitude, stereotype). However, the perceived ho-

mogeneity or variability of people is also strongly affected by

group categorization. On the basis of available evidence, Dijkster-

huis and van Knippenberg (1999) concluded that “variability judg-

ments are quite accurate (in the sense that they reflect the actual

stimulus variation quite well) and are being updated continuously”

Figure 8. Simulation 4: Dispersed versus concentrated stereotype-

inconsistent information. Observed data from Johnston and Hewstone

(1992, Experiment 1) and simulation results. The human data are from

Table 3 in “Cognitive Models of Stereotype Change: (3) Subtyping and the

Perceived Typicality of Disconfirming Group Members,” by L. Johnston

and M. Hewstone, 1992, Journal of Experimental Social Psychology, 28, p.

370. Copyright 1992 by Academic Press. Adapted with permission.
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(p. 529). This is consistent with a connectionist approach in which

group characteristics such as variability are updated online. The

concept of group variability is important, because high variability

implies inconsistencies in the relationship between a group and

some attributes, and this may help to dilute or change undesired

group stereotypes. However, in contrast to Dijksterhuis and van

Knippenberg’s claim, research has also documented a number of

shortcomings and biases in perceived group variability. Before we

turn to these biases, we first briefly discuss how variability is

measured in prior research and modeled in our network.

Simulation of Group Variability

A crucial question is how group variability is measured. Re-

search addressing this issue has used a plethora of measures. Park

and Judd (1990) analyzed these different measures and found that

two independent constructs account for perceived variability. The

first construct can be conceived as the dispersion of group mem-

bers around the mean of one attribute, whereas the second con-

struct reflects the degree to which the group as a whole is seen

stereotypically. We focus here on the first construct, involving

measures of perceived dispersion. Park and Judd reported that the

“perceived range” measure was the most valid of group variability.

Other measures inspired by an exemplar approach (Linville et al.,

1989) known as “perceived variability,” “probability of differen-

tiation,” or direct ratings of perceived similarity seemed less valid.

In a recurrent network, variability can be simulated by an

approximation of the range measure. In this measure, participants

are given a bipolar rating scale spanning the low to high ends of

the attribute and asked to indicate where the most extreme (oppo-

site) members would fall (Simon & Brown, 1987). To answer this

question, we suggest that participants consider the group and

estimate to what extent this group implicates each opposing at-

tribute. This is simulated during testing by priming the group node

and reading off the resulting activation on the attribute nodes, just

like in a central tendency measure. However, to measure the

distance or range between the attributes, these two resulting acti-

vations are then summed, rather than subtracted as in a central

tendency measure. (The reverse direction of testing by which first

the two opposing attributes are primed and then the activation of

the group node is read off gives very similar results.4)

We chose the implementation of the range measure for several

reasons. First, it is the most valid measure of group variability

(Park & Judd, 1990) and it reflects actual judgments by partici-

pants (of range) rather than experimenter-based calculations (of

variance). Second, it is cognitively least demanding because it

makes use of information that is already available in memory

under the form of group3attribute connections, and is thus more

likely recruited spontaneously when judging group variability.

Third, it is consistent with the finding (Park & Hastie, 1987) that

estimates of variance are constructed and stored online rather than

from retrieved exemplars, as the group3attribute connections on

which our range measure is based are developed during learning

(using the acquisition property).

To illustrate our implementation of variability as range measure,

we simulated an exemplary case. In this simulation, we wanted to

demonstrate that variability is sensitive to sample size. Therefore,

variability was created by taking for each block of four trials, three

group members that possessed the high end of an attribute and only

one member that possessed the low end. According to the incre-

mental acquisition property of the delta learning algorithm, given

its greater sample size, asymptote should be reached more quickly

for the high end of the attribute than for the low end. To demon-

strate this, we measured the results separately for the high and low

extreme of the attribute. A direct measure of variability can be

obtained by summing the two extremes of the attribute.

The results are depicted in Figure 9. As expected, the central

tendency of the high extreme of the attribute approached asymp-

tote much more quickly than the low extreme. This is due to

sample size differences, as there are three times more members

placed on the high extreme than on the low extreme. However, as

more information is provided, the high and low extreme are more

spread apart, resulting in more variability. This illustration sug-

gests that the variability measure is susceptible to sample size.

That is, when little information is available on group members, the

variability of the group is perceived as low. The more information

that is available, the more the group is seen as heterogeneous until

a maximum variability is attained that depends on the spread

between the central tendencies of both extremes.

Simulation 5: Outgroup and Ingroup Homogeneity

In group perception, there is a pervasive tendency to perceive an

outgroup as less variable than an ingroup, a bias known as the

outgroup homogeneity effect (Linville et al., 1989; Messick &

Mackie, 1989). Research revealed that outgroup homogeneity is

related to the fact that perceivers are more familiar with the

ingroup and therefore form a more differentiated impression on the

ingroup compared with an outgroup (Linville et al., 1989). This

explanation is also supported by the finding that ingroup hetero-

geneity is larger for real and enduring groups where everyone

knows each other very well than for artificial and laboratory-

created groups (Mullen & Hu, 1989). In line with this explanation,

many researchers provided an exemplar-based account of this

effect (Fiedler, 1996; Fiedler, Kemmelmeier, & Freytag, 1999;

Hamilton & Trollier, 1986; Linville & Fischer, 1993; Linville et

al., 1989; Park & Judd, 1990). Because perceivers have a richer

knowledge base of the ingroup, they tend to recruit more exemplar

information from memory about the ingroup than the outgroup,

leading to more differentiated ingroup judgments.

Our connectionist approach makes a similar prediction as the

exemplar approach. Because of the more extensive contact with

one’s ingroup, perceivers sample more information on the ingroup,

leading to more differentiated views of the ingroup. However,

contrary to exemplar theories, the connectionist approach assumes

that the effect of sample size occurs at encoding rather than

retrieval.

Clear support for the sample size account of outgroup homoge-

neity comes from the finding that the bias can be reversed when

the ingroup is not a majority. Under these conditions, the variabil-

4 Alternatively, in line with an exemplar approach (Linville et al., 1989),

one can also activate all group members and read off the resulting attribute

activation. This alternative gives very similar results, because the number

of members who typify an attribute act as proxy for the strength of the

group node with that attribute. Hence, the more members there are,

the stronger the group3attribute connection is, resulting in very similar

outcomes.
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ity of the ingroup is perceived as much smaller than that of the

outgroup (Simon & Brown, 1987; Simon & Hamilton, 1994;

Simon & Pettigrew, 1990; for an overview, see Mullen & Hu,

1989). In a well-known experiment by Simon and Brown (1987,

Experiment 1), children were arbitrarily assigned to one of two

groups (blue or green) depending on their capacity to correctly

categorize blue or green colors. Then they were given information

on the number of children in each group, indicating that the

ingroup was either a minority, a majority or equal in number to the

outgroup. Finally, they were asked to estimate the two scale values

that would bracket the values of all individuals in each group (i.e.,

range measure) in their ability to perceive blue and green colors.

The results demonstrated that ingroup variability was highest when

the ingroup was not a minority (either a majority or equal), and

outgroup variability was highest when the ingroup was a minority.

This finding was reproduced in the next simulation.

A simplified simulation of Simon and Brown’s (1987) Experi-

ment 1 is listed in Table 5. The network consists of an ingroup and

Table 5

Outgroup and Ingroup Homogeneity: Learning History (Based on the Design and Procedure of

Simon & Brown, 1987, Experiment 1)

Trial and frequency

Group Attribute

Episodic behaviorsaIngroup Outgroup High Low

Experimental phase

Ingroup (outgroup)b

#2 (1) 1 (0) 0 (1) 1.0 0 1
#2 (1) 1 (0) 0 (1) 0.8 0 1
#2 (1) 1 (0) 0 (1) 0.5 0.5 1
#2 (1) 1 (0) 0 (1) 0 0.8 1

Test phase

Variability as range
Ingroup 1 0 ? ? 0
Outgroup 0 1 ? ? 0

Note. Cell entries denote external node activation. The order of experimental trials was randomized. A pound
sign (#) represents the number of times the trial is repeated; a question mark (?) represents the resulting test
activation (without external activation).
a Each behavior involves multiple episodic nodes of which a different one is turned on (activation �1) per
trial. b The trial frequencies and activations for the outgroup are shown in parentheses.

Figure 9. Simulation of group variability in function of the high and low extreme of an attribute. The high

attribute is shown in the top half, the low attribute in the bottom half. The activation of the low attribute is reverse

scored to visualize that variability is measured by range, that is, the sum of the values obtained for the two

opposite attributes.
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an outgroup node, two nodes reflecting the high and low extremes

of the attribute (e.g., good or bad in perceiving blue), and several

episodic nodes. As can be seen, some variability in the group was

introduced by varying the degree to which members had one of the

attributes, that is, by varying the attribute node activation be-

tween 0 and �1, including intermediate values of .5 and .8. Of

importance, to reflect our assumption that perceivers typically

have more information on the ingroup than on the outgroup, the

ingroup was described by eight behaviors and the outgroup by four

behaviors. In contrast, to simulate ingroup homogeneity because of

the ingroup being a minority, we simply reversed the group labels

so that the ingroup had four behaviors and the outgroup eight

behaviors (not shown). Perceived group range was tested by acti-

vating the group node and reading off the (summed) activation of

the high and low attributes, as explained earlier.

Results. The network was run with 50 “participants” with a

different random order. As can be seen in Figure 10, the simulation

produced a larger variability for the ingroup compared with the

outgroup when more information on the ingroup is available

(nonminority), thus successfully replicating the outgroup homoge-

neity effect. In contrast, when the ingroup was a minority, the

effect was reversed just as in Simon and Brown (1987, Experiment

1). An ANOVA with Ingroup Size as a between-subjects factor

and Group (ingroup vs. outgroup) as a within-subjects factor

confirmed that the interaction was significant, F(1, 98) �

2,110.31, p � .001.

Fit and Model Comparisons

A summary of the simulations that we have reported together

with the major property responsible for generating the group biases

can be found in Table 1. All simulations replicated the empirical

data reasonably well. This can also be verified in Table 6, where

the correlations between simulated and observed data are listed.

However, it is possible that this fit is due to some procedural

choices of the simulations rather than conceptual validity. To

demonstrate that changes in these choices generally do not inval-

idate our simulations, we explore a number of issues, including the

localist versus distributed encoding of concepts, and the specific

recurrent network used versus a feedforward network. In addition,

we will also briefly discuss major differences with other relevant

models.

Distributed Coding

The first issue is whether the nodes in the autoassociative

architecture encode localist or distributed features. Localist fea-

tures reflect “symbolic” pieces of information, that is, each node

represents a concrete concept. In contrast, in a distributed encod-

ing, a concept is represented by a pattern of activation across an

array of nodes, none of which reflect a symbolic concept but rather

some subsymbolic microfeature of it (Thorpe, 1994). Moreover,

distributed coding usually implies an overlap of the concepts’

representations (i.e. an overlap of pattern activations coding for

different concepts). Although we used a localist encoding scheme

to facilitate our introduction to the most important connectionist

processing mechanisms underlying group biases, we admit that

localist encoding is far from realistic. Unlike distributed coding, it

implies that each concept is stored in a single processing unit and,

except for explicit differing levels of activation, is always per-

ceived in the same manner without noise. This may limit the

model’s capacity to simulate properties like pattern completion,

generalization, and graceful degradation.

For instance, in the semilocalist encoding of our simulations the

implied attributes in the statements were directly coded as given,

such as whether the behavior was desirable or undesirable, whether

the attitude was favorable or unfavorable, and so on. However,

participants were not literally told that the statements had these

attributes. Therefore, this material is more realistically represented

by a distributed encoding scheme, where attribute information is

embedded in a pattern of noisy activations that the recurrent

network must abstract from these patterns, just like real partici-

pants must do. Given the advantages of distributed coding, is it

possible to replicate our localist simulations with a distributed

representation?

To address this question, we ran all simulations with a distrib-

uted encoding scheme in which each concept was represented by

five nodes that each reflect some microfeature of the concept. We

maintained the same level of overlap between concepts that was

already introduced in the semilocalist encoding, that is, the overlap

consisted of the attribute nodes shared by the exemplars. Although

it would perhaps be more realistic to add even more overlap

between concepts, this was not done here because that would

require ad-hoc assumptions on how much additional differential

pairwise overlap there should be between different concepts. We

also added random noise to the activation of these nodes to

simulate the imperfect conditions of perception (see Table 6 for

details). All simulations were run with 50 “participants” with

different distributed representations and random noise for each

participant. As can be seen, all distributed simulations attained a

Figure 10. Simulation 5: Simulation of ingroup–outgroup homogeneity

in function of (non)minority status of ingroup. Observed data from Simon

and Brown (1987) and simulation results. The human data are from the top

panel of Figure 1 in “Perceived Homogeneity in Minority–Majority Con-

texts,” by B. Simon and R. J. Brown, 1987, Journal of Personality and

Social Psychology, 53, p. 708. Copyright 1987 by the American Psycho-

logical Association. Adapted with permission of the author.
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good fit to the data and, in all cases, the relevant pattern of results

from the localist simulations was reproduced. These findings sug-

gest that the underlying principles and mechanisms that we put

forward as being responsible for the major simulation results can

be obtained to the same degree not only in the more contrived

context of a localist encoding, but also in a more realistic context

of a distributed encoding.

Feedforward Model

We claimed earlier that the connections between attributes,

exemplars, and group nodes were presumably most responsible for

replicating the phenomena of interest. This claim can be partly

tested by using a feedforward network model, in which only the

feedforward connections from attributes and exemplars to the

group play a role (i.e., the upward connections in Figure 2).

However, this leaves out the important lateral connections between

attribute and episodic nodes, such as the ones involved in the

attitude ratings of accentuation (between attitude positions and

exemplary statements; Simulation 3) and the typicality ratings of

stereotype change (between traits and specific group members;

Simulation 4). Thus, except for these two latter cases, we expect a

feedforward network to do about equally well as the autoassocia-

tive network. To explore this, we ran all simulations with a

feedforward pattern associator (McClelland & Rumelhart, 1988)

that consists only of feedforward connections (with additional

backward spreading of activation from the group node during

testing if necessary; see Van Overwalle, 1998). As can be seen in

Table 6, for all simulations except those mentioned above, a

feedforward architecture did almost equally well as the original

simulations. This confirms that feedforward connections are cru-

cial to reproduce many phenomena in group bias. Nevertheless, it

is necessary to incorporate lateral connections of a recurrent net-

work to explain all findings of interest.

Nonlinear Recurrent Model

We also claimed earlier that a recurrent model with a linear

updating activation function and a single internal updating cycle

(for collecting the internal activation from related nodes) was

sufficient for reproducing the group biases. This contrasts with

other researchers who used a nonlinear activation updating func-

tion and more internal cycles (McClelland & Rumelhart, 1986;

Read & Montoya, 1999; Smith & DeCoster, 1998). Cycling in a

recurrent network has some advantages. For instance, it would

allow measuring response latencies in an alternative manner by the

number of cycles needed to converge on a stable response. (Recall

that we simply assumed that the strength of the connection is

proportional to the time to spread the activation.) Are such acti-

vation specifications necessary? To answer this question, we ran

all our simulations with a nonlinear activation function and nine

internal cycles (or 10 cycles in total).5 Our model specifications

were identical to those of Read and Montoya (1999; see also

McClelland & Rumelhart, 1988, pp. 168–169).

As can be seen from Table 6, although the nonlinear model

yielded an adequate fit, most simulations did not improve substan-

tially the fit compared with the original simulations. This suggests

that the present linear activation update algorithm with a single

internal cycle is sufficient for simulating many phenomena in

group judgments. This should not come as a surprise. In recurrent

simulations of other issues, such as the formation of semantic

concepts, multiple internal cycles were useful to perform “clean-

up” in the network so that the weights between, for instance, a

perceptual and conceptual level of representation were forced to

eventually settle into representations that had preestablished con-

ceptual meaning (McLeod et al., 1998). Such a distinction between

perceptual and conceptual levels was not made here, and, as a

result, multiple internal cycles seem unnecessary. Nevertheless,

nonlinear recurrent activation made it possible to simulate accen-

tuation without providing external activation to the source nodes.

Whether doing away with this external activation might better

reflect real psychological processes is unclear, because research

5 To make sure that the nonlinear activation adjustments settled on a

stable state, we also conducted simulations with 49 internal cycles (or 50

cycles in total). The results were very similar.

Table 6

Fit of the Simulations, Including Alternative Encoding and Models

No. Bias
Empirical
measure

Original
simulation Distributed Feedforward

Nonlinear
recurrent

1 Size-based illusory correlation Likabilitya 1.00 1.00 1.00 1.00
Assignment RT .94 .88 .88 � 0b

2 Expectancy-based illusory correlation Frequency .97 .95 .97 .96
3 Accentuation Attitude 1.00 1.00 .76b .96

Memory (foils) .95 .99 .95 � 0b

4 Stereotype change Trait .99 .99 .95 .98
Typicality 1.00 1.00 � 0b 1.00

5 Group homogeneity Range 1.00 1.00 1.00 1.00

Note. Cell entries are correlations between mean simulated values (averaged across randomizations) and empirical data. For the distributed encoding, each
concept was represented by five nodes and an activation pattern drawn from a normal distribution with M � activation of the original simulation and SD �

.20 (five such patterns were run and averaged), and additional noise at each trial drawn from a normal distribution with M � 0 and SD � .20, and with
learning rate � .03 (except .05 for Simulation 1). For the nonlinear autoassociative model, the parameters were E � I � decay � .15 and internal cycles � 9
(McClelland & Rumelhart, 1988), with learning rate � .20. RT � reaction time.
a The correlations in this row are trivial as only two data points are compared and thus necessarily yield only �1 or �1; the correlations in the other rows
involve four data points. b Predicted pattern was not reproduced.
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has shown that accentuation does not always occur, and depends

on reliance to source categories when the task is ambiguous

(Corneille et al., 2002; Lambert et al., 2002).

Perhaps more importantly, the nonlinear activation algorithm

tends to abolish the effects of competition in the memory and

latency measures (Simulations 1 and 3). The reason is that the

nonlinear updating algorithm forces the activations automatically

to the �1 and �1 default levels. Hence, if two features are

activated together and overpredict a category, then the overly high

output activation of the category tends to restore to the normal �1

ceiling level. This reduces discounting of the connections with the

features.

Exemplar and Tensor Product Models

As mentioned in the introduction, there are a number of differ-

ences between the present recurrent network and exemplar

(Fiedler, 1996; Fiedler, Kemmelmeier, & Freytag, 1999; Smith,

1991) and tensor product (Kashima et al., 2000) models. These

differences allow the recurrent model to explain more biases in a

more parsimonious manner with less assumptions.6 We discuss

these differences in function of the properties that create the biases

in the recurrent model.

Acquisition. Exemplar (Fiedler, 1996; Smith, 1991) and tensor

product (Kashima et al., 2000) models explain many group biases

by aggregation over samples of different sizes, as does our con-

nectionist approach. Consequently, these models can explain bi-

ases such as illusory correlation, accentuation, and group homo-

geneity (Simulations 1, 3, and 5). However, in exemplar models,

sample size differences appear only when noise in perception and

encoding is assumed, whereas this assumption is unnecessary in

our and Kashima et al.’s (2000) connectionist approach. The

reason is that aggregation in a connectionist network is performed

during encoding by a learning algorithm that is in itself sensitive to

sample size. However, these differences are minor because noise

and information loss seem quite plausible, also from a neuropsy-

chological perspective (and they were also used in our distributed

simulations).

Competition. Perhaps the most important limitation of exem-

plar and tensor product models is that the competition property is

absent. The reason is that aggregation in these models is un-

bounded and has no asymptote. Multiple inputs do not compete

against each other for weight but add to the aggregated output in

equal amounts. Although these models often use some sort of a

normalization function that limits the overall activation (Fiedler,

Kemmelmeier, & Freytag, 1999, p. 12; Kashima et al., 2000, p.

918), as we understand it, this function has a global effect that does

not cause competition between the summed activation received

from multiple inputs like in the delta error-reducing algorithm.

Consequently, these models cannot explain enhanced memory for

minority behaviors (in illusory correlation) or for uncorrelated

conditions (in accentuation), or the effect of dispersed versus

concentrated distribution in stereotype change (Simulations 1, 3,

and 4). These biases were not discussed in the exemplar models of

Fiedler (1996; Fiedler, Kemmelmeier, & Freytag, 1999) and Smith

(1991; Smith & Zárate, 1992). We see no immediate remedy for

the lack of competition in exemplar models. In the tensor product

model, these biases were explained by individuation processes that

require additional elaboration and controlled processing. As stated

by Kashima et al. (2000), “the individuation process involved in

stereotype change and group differentiation was explained in terms

of the construction of a person representation. Some mechanism is

needed to control . . . the construction process for a person repre-

sentation” (p. 935). In contrast, our model assumes that these

effects are a natural consequence of the competition property of

the delta learning algorithm without any need for a control mech-

anism. The tensor product model can avoid such controlled pro-

cesses by adopting an error-reducing learning algorithm such as

the delta algorithm.

Group variation. All previous approaches modeled mostly the

central tendency of the attribute (e.g., liking) in group perception,

and did not address variability in stereotyping, with the exception

of Fiedler, Kemmelmeier, and Freytag (1999). In this approach,

variability was measured by cuing memory with a gradually de-

graded pattern of activation reflecting the ideal attribute features,

to instantiate the different scale points spanning the high to low

ends of the attribute (Fiedler, Kemmelmeier, & Freytag, 1999, p.

15). In our approach, group variation was based on the range

measure and modeled by adding the aggregates of the two opposite

attributes of the groups (rather than differentiating between them

like in central tendency measures). Both approaches are able to

model ingroup–outgroup homogeneity (Simulation 5). However,

our approach seems preferable because it appears simpler and

more direct by using existing memory traces and because it is

based on the more reliable range measure (Park & Judd, 1990).

In summary, the present model seems to be better equipped to

deal with a number of important issues in group judgments. How-

ever, this does not deny the merits of earlier alternative models. In

particular, Fiedler’s (1996) exemplar model has great historical

and conceptual value, as it was the first to point out that simple

aggregation processes could explain most basic effects of group

biases. It was also an important inspiration in developing our

connectionist network model. In addition, these models, and par-

ticularly the tensor product model (Kashima et al., 2000), could be

more adequate on other issues or simulations for which they were

originally designed.

General Discussion

The simulations in this article illustrate that a recurrent connec-

tionist model is able to account for biases and shortcomings in

judgments about groups under diverse conditions. The perspective

presented here offers a novel view on how perceivers process

social information, by describing how knowledge structures are

learned through the development of associations between social

concepts. This clearly distinguishes it from earlier associationist

approaches that used static networks (with nonadjustable links) to

represent logical relationships or constraints between concepts

(Kunda & Thagard, 1996; Read & Marcus-Newhall, 1993; Read &

Miller, 1998; Shultz & Lepper, 1996). An important advantage of

6 The recurrent model was also able to reproduce attenuation of recency

and response dependency in serial position weights as documented by

Kashima et al. (2001). More generally, the delta learning algorithm on

which the recurrent model was built is well designed to handle most basic

forms of category learning (e.g., Estes, Campbell, Hatsopoulos, & Hurwitz,

1989; Gluck & Bower, 1988). However, because of space limitations, these

issues and simulations are not discussed further.
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the dynamic and adaptive nature of the present recurrent network

compared with these previous models as well as other connection-

ist models like the tensor product model (Kashima et al., 2000) is

its computational power. This power comes from the delta learning

algorithm that generates a number of important emergent proper-

ties responsible for a wide range of group biases (see Table 1).

The acquisition property accounted for sample size effects in

(the evaluative bias of) illusory correlation, accentuation of group

differences, and group homogeneity. The competition property

accounted for decreased accessibility and lower recall of frequent

events in illusory correlation and correlated exemplars in accen-

tuation, and the greater discounting of inconsistent information

concentrated in a few group members. Our emphasis on these

sometimes neglected properties of the delta algorithm distin-

guished the present approach from other implementations of the

autoassociator (McClelland & Rumelhart, 1988; Smith & De-

Coster, 1998) that used properties related to distributed represen-

tation (e.g., pattern completion, generalization) to explore cogni-

tion. It is also different from other distributed connectionist models

of group processes (Kashima et al., 2000) that use the Hebbian

learning rule that is unable to reproduce the competition property.

We also presented unique predictions by the recurrent model on

illusory correlation and accentuation. Some of these predictions

received already some initial evidence. Van Rooy (2001) demon-

strated in a series of experiments that the typical illusory correla-

tion in likability ratings and other measures of group evaluation are

exacerbated given an increasing smaller sample size, and more

importantly, that this effect occurs even in the absence of unde-

sirable minority behaviors (see also Shavitt et al., 1999). This

poses clear problems for competing models of illusory correlation

such as the distinctiveness account that situate the origin of illu-

sory correlation at an enhanced memory of these infrequent unde-

sirable behaviors (Hamilton & Gifford, 1976; McConnell et al.,

1994). Other novel findings demonstrated that memory is en-

hanced for undesirable behaviors (Van Rooy, 2001) as well as for

behaviors that are uncorrelated with a group attribute (Vanhoom-

issen et al., 2001). These results are problematic for exemplar-

based approaches (Fiedler 1991, 1996; Fiedler, Kemmelmeier, &

Freytag, 1999; Fiedler et al., 1993, Smith, 1991) that claim that

impaired—rather than increased—information aggregation of rare

events is the key factor of illusory correlation and other group

biases.

By bringing together biases from traditionally different fields of

group research, the presented connectionist approach can contrib-

ute to a more parsimonious theory of biases in judgments in

several ways. First, simply integrating these findings in this man-

ner invites for looking at possible further parallels between them.

Second, a connectionist approach makes predictions at a more

precise level of detail than these previous approaches. Third, Van

Overwalle and colleagues (Van Overwalle & Labiouse, in press;

Van Overwalle & Siebler, 2003)—using the same network

model—demonstrated that this approach was also able to account

for many phenomena in social cognition, including categorization,

person impression, assimilation, generalization, contrast, causal

attribution, and attitude formation (see also Read & Montoya,

1999; Smith & DeCoster, 1998). These authors also reported that

the recurrent model with delta algorithm integrates earlier alge-

braic theories of impression formation (Anderson, 1981), causal

attribution (Cheng & Novick, 1992), and attitude formation

(Ajzen, 1991). In addition, our recurrent network parallels basic

associative learning principles applied in a growing tradition of

studies using associationist theories to human learning (for re-

views, see Shanks, 1995; Van Overwalle & Van Rooy, 1998). The

revival of associative learning models is largely due to the devel-

opment of models using error-correcting learning mechanisms

such as the delta algorithm, which has been used widely in the

connectionist literature (McClelland & Rumelhart, 1986). In sum,

the present connectionist approach places group biases in the wider

perspective of the larger field of learning and cognition.

Connectionist models paint a different picture of information

processing compared with many earlier models in cognition. They

describe the ability of humans to dynamically adjust associations

between concepts (e.g., groups, attitudes, behaviors,) in a variety

of settings (e.g., social, personal). In particular, they assume that

automatic and local updating algorithms update these associations,

requiring little conscious effort or awareness and without the

necessary control of a supervisory device such as a central exec-

utive. Hence, the connectionist approach provides an answer as to

how we are able to form quick impressions of social agents

effortlessly in the rush of everyday life (Bargh, 1996). This is in

line with research on stereotyping that shows that prejudiced

responses often occur on implicit measures that participants have

limited conscious control over (Greenwald & Banaji, 1995; Whit-

ney, Davis, & Waring, 1994). This distinguishes the present re-

current approach also from the tensor product model of Kashima et

al. (2000) that, as the authors admitted themselves, “cannot do

away with a control mechanism [to explain] . . . the individuation

process involved in stereotype change and group differentiation”

(p. 935). In our model, it is assumed that some control could occur,

for instance, at the time the information is integrated to produce an

explicit answer or judgment.

In addition, it is important to stress that the connectionist learn-

ing process on groups is not inherently biased. Many earlier

theories of cognition suggested that to cope with the strong de-

mands of the environment, human perceivers resort to biased

processes including heuristics (Tversky & Kahneman, 1974), se-

lective attention (Hamilton, 1981), overgeneralizations (Tajfel &

Wilkes, 1963), and so on. In contrast, within the current frame-

work, this learning process is seen as essentially unbiased. For

reasons of evolutionary survival, humans should be capable at

detecting at least simple relationships between features in their

environment (Wasserman, Elek, Chatlosh, & Baker, 1993). Biases

arise mainly because of lack or abundance of evidence (e.g.,

sample size effect), competition between different types of infor-

mation (evaluative vs. episodic), or instructions and motivational

factors that direct the perceiver’s attention toward or away from

some particular information.

Limitations and Directions for Future Research

Although we believe we have shown that a connectionist frame-

work can potentially provide a parsimonious account of a number

of disparate phenomena in group judgment, we are not suggesting

that this is the only valid means of modeling cognitive phenomena.

On the contrary, we defend a multiple-view position in which

connectionism would play a key role but would coexist alongside

other viewpoints. We think that a strict neurological reductionism

is untenable, especially in personality and social psychology,
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where it is difficult to see how one could develop a connectionist

model of high-level abstract concepts such as existing personality

differences, motivation, love, and violence, which obviously re-

main far beyond the current scope of connectionist modeling.

The strong overlap in the basic architecture and learning algo-

rithm of the present recurrent model of group biases with similar

models of social cognition in general (Read & Montoya, 1999;

Smith & DeCoster, 1998; Van Overwalle & Siebler, 2003; Van

Overwalle & Labiouse, in press) opens a lot of interesting avenues

for future research. One such topic might be the differences be-

tween group and person perception, which is now a topic of

increasing interest (e.g., Hamilton & Sherman, 1996; Welbourne,

1999). Within the recurrent framework, group and person percep-

tion are based on the same learning process during which perceiv-

ers form online connections between features (traits, characteris-

tics) and targets (individuals, groups). We suggest that differences

between group and person perception arise because information

concerning individuals (or groups perceived as highly entitative)

directs attention to general attributes in the information that might

reveal the presence of a trait, whereas less entitative groups invite

less to search for such consistencies (Hamilton & Sherman, 1996;

Wyer & Srull, 1989). This increased attention can be implemented

in the model by higher activation levels. Because of the raised

activation of general regularities such as evaluative meaning and

social categories, the recurrent model predicts greater speed of

learning of general attribute information and, as a consequence,

more discounting of episodic traces. This might result, respec-

tively, in weaker illusory correlations for individuals than for

groups, but in worse memory for specific episodes related to

individuals than to groups.

Our model can be very flexibly applied to accommodate other

relevant findings. Differential attention to some aspects of social

information at the expense of other aspects may be relevant for

other moderating factors of illusory correlation. For instance,

decreased activation and a resulting decrease of learning may

explain loss of illusory correlation under increased or incongruent

mood (Kim & Baron, 1988; Mackie et al., 1989; Stroessner et al.,

1992) or when one’s attitude position is already consistent with a

majority (Spears, van der Pligt, & Eiser, 1985). Conversely, in-

creased activation may explain increases in perceived variability of

a group, such as when low status members set themselves apart

from a group (Doosje, Ellemers, & Spears, 1995). However, as

noted earlier, the mechanism that produces attentional differences

is not modeled in the present network, and presumably requires the

inclusion of additional modules in the network dealing with con-

trolled processes. Even without additional activation assumptions,

our model can produce other biases such as Simpson’s paradox

(Fiedler, Walther, Freytag, & Stryczek, 2002; Meiser & Hewstone,

2002).

Another direction for future research might be an integration of

research on group stereotype change and attitude change. Typi-

cally, these two research topics have been conducted almost inde-

pendently. Group research has typically emphasized immutable

characteristics like race and gender or artificial categorizations like

Groups A and B. In contrast, attitude research often focuses on

thematic issues that unite or divide people in real-life groups.

There is considerable research inspired by dual-process models of

attitude formation (Chaiken, 1980; Petty & Cacioppo, 1986) that

describe how the content of arguments as well as other contextual

information may help to change people’s attitudes. This research,

however, has often neglected the robust finding in group stereo-

type research that inconsistent information received from a few

group members is less effective in changing stereotypical beliefs

than that same information received from many group members

(Weber & Crocker, 1983). The present recurrent model was capa-

ble to model both processes of distributed inconsistent information

(Simulation 4) as well as attitude change (Van Overwalle &

Siebler, 2003). Perhaps, by taking a similar integrative approach,

social research might become more successful in changing peo-

ple’s stereotypes and attitudes with respect to devaluated minority

groups in society.
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