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A Recurrent Network Mechanism of Time Integration in
Perceptual Decisions

Kong-Fatt Wong and Xiao-Jing Wang
Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454

Recent physiological studies using behaving monkeys revealed that, in a two-alternative forced-choice visual motion discrimination task,
reaction time was correlated with ramping of spike activity of lateral intraparietal cortical neurons. The ramping activity appears to
reflect temporal accumulation, on a timescale of hundreds of milliseconds, of sensory evidence before a decision is reached. To elucidate
the cellular and circuit basis of such integration times, we developed and investigated a simplified two-variable version of a biophysically
realistic cortical network model of decision making. In this model, slow time integration can be achieved robustly if excitatory reverber-
ation is primarily mediated by NMDA receptors; our model with only fast AMPA receptors at recurrent synapses produces decision times
that are not comparable with experimental observations. Moreover, we found two distinct modes of network behavior, in which decision
computation by winner-take-all competition is instantiated with or without attractor states for working memory. Decision process is
closely linked to the local dynamics, in the “decision space” of the system, in the vicinity of an unstable saddle steady state that separates
the basins of attraction for the two alternative choices. This picture provides a rigorous and quantitative explanation for the dependence
of performance and response time on the degree of task difficulty, and the reason for which reaction times are longer in error trials than
in correct trials as observed in the monkey experiment. Our reduced two-variable neural model offers a simple yet biophysically plausible

framework for studying perceptual decision making in general.
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Introduction

A large body of psychological literature tells us that the time it
takes for a choice to be made provides valuable information
about decision processes in our mind (Donders, 1868/1969; Pos-
ner, 1978; Luce, 1986). Thus, a challenge of considerable interest
to neurobiologists is to elucidate the neuronal basis, at the bio-
physical and circuit levels, of psychophysical reaction times,
which are typically many hundreds of milliseconds in nontrivial
cognitive tasks. Recently, physiologists using behaving nonhu-
man primates have begun to reveal firing activities that are cor-
related with simple decisions (Romo and Salinas, 2001; Schall,
2001; Shadlen and Gold, 2004). In a reaction time paradigm of
visual motion discrimination, spike firing of cells in the lateral
intraparietal (LIP) cortex of monkeys was found to be correlated
with the response time and choice (Roitman and Shadlen, 2002;
Huk and Shadlen, 2005). From the onset of a random dot motion
stimulus until the time the monkey produces a choice response
by a rapid saccadic eye movement, spike activity of LIP neurons
selective for a particular saccadic target slowly increases for hun-
dreds of milliseconds. Both this increase in neuronal activity, and
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the monkey’s behavioral response time, were longer when the
percentage of random dots moving coherently (motion strength)
was lower. This suggests that LIP neurons could be a candidate
system for accumulating uncertain visual information before a
perceptual decision is made.

The ramp-to-threshold dynamics is reminiscent of the “diffu-
sion” model (Ratcliff, 1978; Luce, 1986; Smith and Ratcliff, 2004;
Palmer et al., 2005), a popular mathematical model used in the
study of reaction time tasks. The diffusion model consists of a
one-dimensional system that integrates over time the difference
between two noisy stimulus inputs. When it reaches one of two
thresholds, the choice is made and the decision time is recorded.
An important characteristic of the model is that it integrates sen-
sory evidence without any “leakage” (i.e., it is a perfect integra-
tor). The diffusion model fits well to many psychophysical data, is
mathematically tractable for analysis, and thus has been a
benchmark for other models. Furthermore, it has been shown
that the diffusion model can be approximately realized by
“connectionist models,” which may include a leak term; time
integration becomes nearly perfect when fine-tuning of pa-
rameters cancels out the leakage by network recurrent dynam-
ics (Brown and Holmes, 2001; Usher and McClelland, 2001;
Bogacz et al., 2003).

Although the diffusion-type model has also been applied to fit
neuronal as well as behavioral data (Shadlen and Newsome, 2001;
Mazurek et al., 2003; Ratcliff et al., 2003), its abstract nature does
not permit a direct exploration of the cellular and circuit mech-
anisms that give rise to long integration times in decision pro-
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cesses. In contrast, Wang (2002) investigated a biophysically
based cortical microcircuit model for decision making. The
model is endowed with slow excitatory reverberation between
spiking neurons that produces attractor dynamics, and recurrent
feedback inhibition via interneurons underlies winner-take-all
behavior. The model replicated most of the psychophysical and
physiological results in Shadlen and Newsome (2001) and Roit-
man and Shadlen (2002).

However, the biologically realistic model consists of thou-
sands of spiking neurons that interact with each other in a highly
nonlinear manner. It is difficult to thoroughly analyze the model
and understand how it works. For this reason, we have con-
structed a reduced version of the model in Wang (2002) through
a mean-field approach. The simplified model has only two dy-
namical variables, yet it reproduces much of the behaviors of the
original spiking neuron model. The objective of this paper is to
present this simplified model and use it to investigate the follow-
ing biological and conceptual questions. First, a dynamical sys-
tem with a time constant 7 usually can exhibit linear ramping
over a timescale limited by 7. Given that the longest biophysical
time constant in the model is 100 ms, that of the NMDA receptor
(NMDAR)-mediated synaptic current, how does the recurrent
dynamics give rise to a much longer integration time 7¢ Is this
slow linear ramping a consequence of a network with slow recur-
rent excitation? Second, can the model still work when recurrent
excitation is solely mediated by the much faster AMPA receptors
(AMPARSs)? Third, is it necessary that neurons subserving inte-
gration during stimulation also show persistent activity during
working memory? Finally, what is the relationship, at the math-
ematical level, between our neuronal model and the diffusion
model? Answers to these issues will help to elucidate the cortical
circuit mechanisms of perceptual decision process.

Materials and Methods
Model reduction
Simplified mean-field approach
Details of the original network of spiking neurons used for making binary
decisions (Wang, 2002) can be found in supplementary information A
(available at www.jneurosci.org as supplemental material). Here, we
used a “mean-field” approach to reduce the model. This approach has
been used to analytically study spiking neuronal network models com-
prised of integrate-and-fire types (Amit and Brunel, 1997a,b; Brunel and
Wang, 2001; Renart et al., 2003). Briefly, the net input to a neuron in a
large homogeneous population is treated as a Gaussian random process.
Then, it can be shown that the mean activity of a (homogeneous) popu-
lation can be represented by a single unit (Fig. 1). The population firing
rates depend on the input currents, which in turn depend on the firing
rates. Thus, the population firing rate (or the firing rate of a representa-
tive neuron) must be determined self-consistently. These calculations are
computationally extensive, taking into account realistic synaptic dynam-
ics (Wang, 1999; Brunel and Wang, 2001) and higher order corrections
(Fourcaud and Brunel, 2002). In this work, we propose to use a more
simplified approach. First, the driving force of the synaptic currents are
assumed to be constant as in Brunel (2000). Second, we assume that the
variance of the membrane potential of the cell is mainly contributed by
the external input to each neuron, while the contributions from the
recurrent connections are averaged out because of the all-to-all connec-
tivity (Renart et al., 2003) and by the averaging effect of the long time
constant of NMDA receptors. The SD of fluctuations ¢ does not vary
significantly and thus are fixed as constant.

Moreover, the firing rate r of a leaky integrate-and-fire (LIF) neuron
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receiving a noisy input current is given by the first-passage time formula
(Ricciardi, 1977; Amit and Tsodyks, 1991; Renart et al., 2003):

Vih ™ Vss

r= ¢y = (T + 1w | 7 1+ erfl0)do) ™, (1)

Vreset — Vss

oy

where ¢ is a function of the total synaptic input current I ,,. 7,, is the
membrane time constant. V, is the spiking threshold for the membrane
voltage, V.. is the reset voltage, 7, is the refractory period, o, is the
membrane potential SD, and V; = V; + I /g;. Instead of using this
formula, we adopted a simplified input—output function from Abbott

and Chance (2005) as follows:

CE,IIsyn - IE,I
1- exp[_gb',l(cl:',l]syn - Il:',l)].

d(Lyn) = (2)
In this equation, the subscripts E and I are labels for a pyramidal neuron
and an interneuron, respectively. I, , is the total synaptic input to a single
cell, and ¢ ; is the gain factor. g, is a noise factor that determines the
shape of the “curvature” of ¢. If g ; is large, ¢ would act like a linear-
threshold function with I, /c as the threshold current (supplemental Fig.
1, supplementary information B, available at www.jneurosci.org as sup-
plemental material). These parameters were obtained by fitting the
model to the first-passage time formula Equation 1 of a single-cell LIF
model driven by AMPA receptor-mediated external Gaussian noise (cor-
responding to a Poisson input at 2.4 kHz) (supplemental Fig. 1, supple-
mentary information B, available at www.jneurosci.org as supplemental
material). The resulting parameter values are, for pyramidal cells, I, =
125Hz, g, = 0.16s,and ¢z = 310(VnC) ~ ! and for interneurons, I,=177
Hz, g; = 0.087 s, and ¢; = 615(VnC) ~'. The fit by Equation 2 is partic-
ularly accurate when the cells receive large noise and achieve moderate
firing rates.

With these simplifications, we can reduce the spiking neural network
to a system with 11 variables, describing the mean firing rates and the
output synaptic gating variables of four different neural populations (two
selective and one nonselective excitatory cell populations, and one inhib-
itory cell population). The mean-field theory is a framework for calcu-
lating steady states but does not provide a systematic recipe for describing
temporal dynamics. We assume that the population firing rate of each
population can be described by the Wilson—-Cowan type of equations
(Wilson and Cowan, 1972, 1973) with a fast time constant (7, = 2 ms) in
noisy networks (van Vreeswijk and Sompolinsky, 1998; Brunel et al.,
2001; Fourcaud and Brunel, 2002; Renart et al., 2003). The 11 dynamical
equations are as follows:

dr;
TrE =" + d)(Isyn,i) (3)
dr,
TYE =n + (b([syn,l) (4)
dSanpa,i Sampa,i
e TAMPA T (%)
dSampa,i S\MDA,i
dr = P + (1 = Sxmpai) F((r;) (6)
dScapa Scasa
a _TGABA *m )

where i = 1, 2, 3 denotes the two selective, and one nonselective excita-
tory populations, and I is the inhibitory population. ,(¢) is the instanta-
neous mean firing rate of the presynaptic excitatory population i, and
r,(t) is the mean firing rate of the inhibitory population. S and its associ-
ated T are the average synaptic gating variable and its corresponding
decay time constant, respectively, with their receptor type denoted by their
subscripts. F({;) = Y/ (Tampal(l — U;)), and ¢, is the steady state of S,.

The dynamics of the NMDA gating variable is characterized by a fast
rise followed by a slow decay (Wang, 1999). Given that the presynaptic
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inputs at the recurrent synapses are described by a train of delta-like
spikes, and assuming the interspike intervals to be nearly Poisson, the
average gating variable can be fitted by a simple function (supplemental
Fig. 2, supplementary information C, available at www.jneurosci.org as
supplemental material):

YrTs

1+ yrrg (8)

llfl’oisson = <S>Poisson =
where y = 0.641 and r is the presynaptic firing rate. It can be easily shown
by simple algebra that F(ys(r)) = +yr [but see Brunel and Wang (2001) for
a more rigorous treatment].

Phase-plane reduction
The model can be further reduced to a two-variable system. This is done
through the following three approximations.

(1) Constant activity of nonselective cells. Under a wide range of condi-
tions, the firing rate of the nonselective population changes only by a
modest amount. Thus, we assume that the nonselective populations fire
at a constant mean rate of 2 Hz. This reduces the system to three popu-
lations (Fig. 1). A consequence of this approximation is that the overall
excitatory drive is no longer normalized and that the spontaneous state of
the nonselective population does not equal that of the selective ones
(Amit and Brunel, 1997b). Nevertheless, the difference in spontaneous
firing rates between them is small (1 Hz). Another consequence of this
assumption is that the extra inhibition on the selective populations con-
tributed by the slightly elevated activity of the nonselective population
(through the interneurons) would be neglected.

(2) Linearization of the input—output relation of the interneuron. In
principle, the inhibitory population rate depends on itself (via inhibito-
ry—inhibitory coupling) as well as the excitatory firing rates (via excita-
tory—inhibitory coupling) and hence is not given explicitly. This compli-
cation, however, can be eliminated by a linear approximation of the
input-output transfer function of the inhibitory cell. Unlike the excita-
tory cells, in the network in Wang (2002), the interneurons have a higher
spontaneous firing rate of ~8 Hz. The mean firing rate of the inhibitory
population typically falls between the range of 8—15 Hz. Within this
range, the single-cell input—output relation is almost linear (supplemen-
tal Fig. 1 B, supplementary information B, available at www.jneurosci.org
as supplemental material), fitted by the following:

(b(Isyn) = gl(CIIsyn - II) + o5 (9)

where g, =2 and r, = 11.5 Hz.

With the linearity in the response of the inhibitory population, the
self-inhibitory term can now be easily absorbed into the factors g, and 7.
In particular, if we define J;; as the self-inhibitory synaptic coupling, then
self-inhibition is expressed as a term —Jy¢ in I .. Grouping the two ¢
dependent terms together, it is clear that self-inhibition term effectively
lowers the mean firing rate of interneurons, rj, by a factor of 1 + (¢,;/g,) ;.

<«

Figure 1. Reduction of a biophysical neuronal decision-making model. The original model
(top) is endowed with strong recurrent excitation between neurons with similar stimulus se-
lectivity, and effective inhibition between them via shared inhibition. NS and | denote the
nonselective excitatory (black) and inhibitory (green) pools of cells, respectively. Arrows, Exci-
tatory connections; circles, inhibitory connections. /; and /, are inputs from external stimulus to
selective neural populations 1 (blue) and 2 (red). Brown arrows, Background noisy inputs. w .
denotes enhanced excitatory connections within each selective neural pool. The numbers on the
right displays the total number of dynamical equations involved in the model. First step, Mean-
field approach reduces 2000 spiking neurons into four neural units (with a total of 11 dynamical
variables). Second step, Simplify the linear input— output relation (F—/ curves) of the cells: (1) fit
the input—output relation (F—/ curve) of the spiking neuronal model with a simple function
(Abbott and Chance, 2005); (2) linearize F—/ curve for | cells; and (3) assume constant activity of
NS cells. The final step involves the assumption that all fast variables of the system reach steady
states earlier than that of NMDAR. The final reduced two-variable model (bottom) consists of
two neural units, endowed with self-excitation and effective mutual inhibition.
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This helps to simplify the calculations by removing self-consistency cal-
culations for the inhibitory population (Fig. 1).

(3) Slow dynamics of NMDA gating variable. Our model involves mem-
brane time constants of neurons and those of synaptic gating variables.
For the LIF neuron model driven by filtered noisy inputs, it has been
shown that the firing response to a stimulus is instantaneous (Brunel et
al., 2001; Fourcaud and Brunel, 2002). Hence, the membrane time con-
stant of the single cell can be neglected. Furthermore, among the synaptic
transmissions mediated by AMPA, NMDA, and GABA, receptors, the
synaptic gating variable of NMDA receptors has the longest decay time
constant (100 ms). Therefore, we can assume that all other variables
achieve their steady states much faster than the NMDA gating variable
Samba> Which dominates the time evolution of the system. Specifically,
we define the two dynamical equations of the system as follows (Wang
and Rinzel, 1992; Ermentrout, 1994; Renart et al., 2003):

ds ; SNMDA

% = *% + (1 — Sxwpad) F),
where i = 1, 2 labels the two excitatory populations (selective for left or
right motion directions). The AMPA and GABA , gating variables reach
their steady states much faster than that of NMDA receptors, which
means that the average gating variables of AMPA and GABA , receptors
become proportional to the average firing rates of presynaptic cells
(Brunel and Wang, 2001):

Siampa(t) = Tanpari(t) = Tanpahi(?)

Scasalt) = Toapari(t) = TanpaPi(1).

Dynamical equations

In summary, we have reduced a network model with two thousand spik-
ing neurons into a two-variable system (Fig. 1) described by the dynam-
ical equations as follows:

asi_ S
P (1 =S)yn (10)
as_ S
T (1= 8)yr, (11)

where the two excitatory neural populations (selective for rightward and
leftward motion directions) are labeled by 1 and 2, and, for the sake of
convenience, we denote S for Sy ipa and 7g for Typa- The firing rates r,
and r, are given by Equation 2:

1= $Lgn) (12)
ry = ¢(Iy2) (13)

Loy = InnSt = InaeSe + Tt = Jaors + Iy + I + Lgisen
(14)

Tina = InnS: = InnSy + Jaars = Jan + 1o + L + Ligise.2»
(15)

where I; represents the visual motion stimulus to the population i and
depends on the motion strength (see Results). I, ;. ; is a noise term, and
I, is the mean effective external input common to both populations.
Because of the background input into nonselective excitatory cells and
interneurons, I, includes not only direct background input to a selective
population but also indirect background inputs from these nonselective
cells. I, ; is the total synaptic current from both recurrent connections
and inputs fed from outside the local network. The coefficients Jy; and
Ja,;j are effective coupling constants from neuron j to i mediated by
NMDAR and AMPAR, respectively. The negative sign in front of J; -,
Jnav Ja1 and J, 5, indicates that the overall effective connectivity be-
tween the two selective populations is inhibitory. This is because the
inhibitory cell population (I) receives inputs from both excitatory neural

populations ( E); hence its output (proportional to input) is of the form
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Ini—elg—-i(S1 +Sy)and J, p gJp . (r; + 15). Thus, for example, in I

syn, 1>
the S,-dependent term is of the form (Jyp.p — ]N,IQF]EHI)SZYE
“In2So with Iy 1o = Inioilsor = Ine—e Inow Jage and Jy 5, are
defined similarly.

Note that, in solving Equations 10-15, a practical difficulty resides in
the fact that the firing rates are not given explicitly: r; = (I, ;), where
I, ; depends on both r; and r,. This problem was solved by finding an
effective single-cell input—output relation H (for details, see supplemen-
tary information D, available at www.jneurosci.org as supplemental ma-

terial). Thus, Equations 12-15 are rewritten as follows:

r = H(x, x,) (16)
r, = H(x,, x,) (17)
x; = InSt = IneSy T I + 1+ Lgisen (18)
Xy = NSy = InanSi + Lo+ L+ Lgisen - (19)

Combining Equations 1619 with Equations 10 and 11, we have finally a
self-contained two-variable system for S, and S,:

ds, S,
dr =Gy(S), S) = ——+ (1 = S)yH(x;, x,) (20)
Ts
ds, S,
E = G,(S,, Sl) = _? +(1- Sz)VH(x2)x1)~ (21)
s
Parameter values

In our model, the decision (1 = right; 2 = left) is made when one of the
two competing neural populations reaches a fixed threshold, for exam-
ple, 6 = 15 Hz. The decision time is defined as the time it takes for the
activity of the “winning” population to travel from its initial (spontane-
ous) state to the decision threshold 6. The sum of the decision time and a
fixed nondecision time constant (reflecting a combination of sensory
input latency and motor response), which we chose to be 100 ms (but see
Mazurek et al., 2003), yields the reaction time. Unless otherwise men-
tioned, the standard set of parameters for the two-variable model is as
follows: Jy;; = 0.1561 nA = ]y, Jn.o = 0.0264 nA = [y, J4p) =
9.9026 X 10 ~*nC = J, 55, J41, = 6.5177 X 10 >nA+Hz '=],, and
I, = 0.2346 nA. These values are deduced from the parameters of the
original spiking neural network model and are slightly adjusted so that
the model reproduces the reaction times observed in the monkey’s ex-
periment (Roitman and Shadlen, 2002). (Note that this set of parameters
may not be optimal in fitting the experimental data.)

Simulations

The mean-field approach does not include time-varying noise that plays
a critical role in the spiking neural network. To amend this, we added a
noise term I, ;.. implemented as a white noise filtered by a short (AMPA
synaptic) time constant. This is thus described by an Ornstein—Uhlen-
beck process (Uhlenbeck and Ornstein, 1930) (for example, see Destexhe

et al., 2001):

dlnoise(t)

TAMPA dt

= —Lie(t) + (1) \,TAMPAUZ

noise >
where o7, is the variance of the noise, and m is a Gaussian white
noise with zero mean and unit variance. Unless specified, o is
fixed at 0.007 nA.

Simulation codes were written in Matlab, run on a Linux workstation.
Because the reduced rate model does not require a high temporal reso-
lution, Euler’s method with an integration time step of 0.1 ms was used
for numerical integration of the dynamical equations. Simulation results
were checked and confirmed using smaller time steps (down to 0.01 ms).
The instantaneous population firing rates were calculated by averaging
over a time window of 50 ms, slided with a time step of 5 ms. For com-
putation of the psychometric and chronometric functions, each data
point was obtained from a block of 2000 trials.

noise
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Figure2.  Time course with two different motion strengths. Motion coherence of 0% (black
traces) and 51.2% (light gray traces) each with 10 sample trials. Firing rates that ramp upward
(bold traces) are for saccades made toward the RF of the neuron, whereas downward (dashed
traces) are for saccades away from RF. Ramping is steeper for higher coherence level. The
prescribed threshold is fixed at 15 Hz. Once the firing rate crosses the threshold, a decision is
made, and the decision time is the time it takes from stimulus onset (0 ms) until the threshold
is crossed. The reaction time s defined as the decision time plus a nondecision latency of 100 ms.
The bold horizontal line at the top of the figure denotes the duration, at zero coherence, where
the firing rates toward and away from RF are indistinguishable.

Phase-plane and bifurcation analyses of the reduced model were per-
formed using XPPAUT (Ermentrout, 1990).

Results
Comparison between model and experiment
The inputs to our LIP model neurons should mimic the output of
upstream neurons in middle temporal (MT) area that encode the
visual motion stimulus. Following Britten et al. (1993) and Wang
(2002), the firing rate of an MT cell is a linear function of the
motion strength (percentage coherence) ¢’, increasing or de-
creasing with ¢’ depending on whether the motion stimulus is in
the preferred or nonpreferred (null) direction of the cell. The
(absolute) stimulus strength, w,, is the input received when there
is no bias (¢’ = 0%). Note that we do not include noise in the
stimulus input because it was found that trial-by-trial stimulus
variability is not the primary source of stochasticity in decision
choices (Britten et al., 1996).

Specifically, if the stimulus is biased, favoring population 1
with a nonzero coherence level ¢’, then the synaptic currents
attributable to the stimulus alone are as follows:

C/
I, = ]A,extMO(l + 100%)

C/
I, = ]A,ext"l‘()(l - T()%)’

where ] o = 0.2243 X 10 ° nA - Hz ' is the average synaptic
coupling with AMPARSs.

In Figure 2, we show sample time course for two different
coherence levels ¢’. We can see that as ¢’ increases, the ramping
activity of the neural population, whose response field (RF) is the
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Figure 3.  Performance and reaction time of models and the experiment of Roitman and

Shadlen (2002). First column, Psychometric data from experiment and the models (data are fit
with a Weibull function). Second column, Reaction time from experiment and the models. Open
circles joined by dashed lines, Mean reaction of error trials; filled circles, correct trials. 07 g;ce =
0.008 nA. Experimental data are adapted from Mazurek et al. (2003).

saccadic target, becomes steeper. Therefore, the decision time is
shorter for higher ¢’. This is an expected result because the higher
the overall external inputs, the steeper will be the ramping activ-
ities, and the faster will be the accumulation of sensory evidence
before a decision is made. Note that during motion viewing of
lower coherence levels, there is an initial time epoch lasting for
hundreds of milliseconds (denoted by a black horizontal bar)
when the two traces of activity are indistinguishable before they
eventually split apart. This biphasic phenomenon will be ex-
plained in later analysis.

The two-variable model replicates fairly well the psychometric
function (behavioral performance) and chronometric function
(reaction time of correct and error trials) of both the original
large-scale spiking neuronal network model (Wang, 2002) and
the monkey experiment (Roitman and Shadlen, 2002) (Fig. 3).
The psychometric and neurometric functions in Figure 3 are fit-
ted with a Weibull function (Quick, 1974):

p=1-05¢ ",

where p is the probability of a correct choice, « is the discrimina-
tion threshold at which the performance is 82% correct, and 3
describes the slope of the psychometric function. With the set of
parameters that we used, the reduced model has a threshold « of
7.2% and a slope B of 1.25. These values are comparable with the
experimental values of 7.4% and 1.3, and that of the full spiking
network model of 8.4% and 1.6.

Decision space analysis of time integration and

categorical choice

Random decision with unbiased external stimulus

To investigate how the network model responds to, and inte-
grates over time, a stimulus, we performed a phase-plane analysis
of the model system. This is done by first setting the dynamical
equations dS,/dt = G,(S,, S,) = 0 and dS,/dt = G,(S,, S,) = 0,
and then plotting these two lines in the (S;, S,) phase (decision)
space. These two lines are called nullclines, and their intersections
are steady states of the system. Furthermore, the stability of the
steady states is determined by how the nullclines intersect with
each other (Strogatz, 2001). Because the average S; of population
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Using Equation 8, a threshold at 15 Hz would correspond to § = 0.49in phase space. B, With an
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state disappear, and a new symmetric unstable steady state is formed. The black line with
arrows toward (away) from the saddle point is the stable (unstable) manifold of this saddle
point. The stable manifold is exactly the boundary between the two basins of attraction of the
two choice attractors (when there is no noise). Superimposed are two typical single-trial trajec-
tories (blue and red lines) of the state of the system from simulations. Color labeling is the same
as in Figure 1. ¢, Schematic diagram of a generic saddle-like steady state (gray circle) and the
local flows (arrows) around it. The lines directly toward (magenta) and away (brown) the steady
state (gray) are its stable and unstable eigenvectors, respectively, with an exponential temporal
dynamics determined by 7., (brown) and 7, .. (Magenta). D, A diagram of how a one-
dimensional decision “landscape” changes with stimulus inputs in a single trial, illustrating
decision computation and working memory by the same network. See Results for detailed
description.

iis amonotonic, increasing function of the population firing rate
r; and their steady states are related by the simple monotonic
Equation 8 (see Materials and Methods), we expect the nullclines
in the (r, r,) space to be qualitatively similar.

In the absence of a stimulus, the two nullclines intersect with
each other five times, producing five steady states, of which three
are stable (attractors) and two are unstable (Fig. 4A). In the absence
of stimulation, the network is unbiased and lies at the lower-left
symmetrical attractor state, corresponding to the spontaneous state
where both populations fire at a low rate. The two (upper left and
lower right) asymmetrical attractors correspond to mnemonic per-
sistent states in which one of the neural populations exhibit self-
sustained elevated spike activity. Thus, our model can subserve
working memory: a transient input can bring the system from the
resting state to one of the two stimulus-selective persistent activity
states, which can be internally maintained across a delay period.

When a stimulus (e.g., with pw, = 30 Hz and ¢’ = 0%) is
applied, the phase space of the model is reconfigured. The spon-
taneous state vanishes. At the same time, a saddle-type unstable
steady state is created that separates the two asymmetrical attrac-
tors (Fig. 4B). In Figure 4 B, two lines emanate from this saddle
point (Fig. 4C). One of them is called the stable manifold. The
system starting at any point on this curve eventually converges to
the saddle point. The stable manifold forms a boundary that
separates the two basins of attraction: if the (noiseless) system

J. Neurosci., January 25, 2006 - 26(4):1314-1328 + 1319

starts within a basin of attraction (left or right from the stable
manifold), it will be attracted toward the associated asymmetric
attractor. The other, unstable, manifold extends from the saddle
point to the attractors. The system starting at a point on this
manifold is repelled to one of the two competing attractors. Al-
though the phase space is symmetrical, the addition of noise can
perturb the system to move away from the diagonal line, and
toward one of the two competing attractors, so that a categorical
choice is made by the model. Therefore, this picture offers a
mathematical description of a two-alternative forced-choice
computation, even when at zero coherence the average sensory
input is the same for each of the two neural populations. More
specifically, as illustrated by the simulation results from two in-
dividual trials (Fig. 4 B, red and blue lines), the temporal dynam-
ics of decision making consists of two steps: the system initially
wanders along the diagonal line (when the two population rates
are about the same), before it converges to one of the two asym-
metrical attractor states (when one of the populations increases,
while the other decreases) corresponding to a categorical choice.
Interestingly, there is evidence that LIP neurons recorded from
behaving monkey during the visual motion discrimination ex-
periment also exhibit such biphasic time courses (Roitman and
Shadlen, 2002; Huk and Shadlen, 2005). This characteristic will
also be important when we compare our model with the diffusion
model.

In a delayed response version of the task (Shadlen and New-
some, 2001), the motion stimulus is shown for a fixed duration,
and the monkey is required to withhold the response across a
delay period of a few seconds when the choice must be main-
tained actively in working memory. Our model is able to perform
the delayed response task, because after the stimulus offset the
phase-space configuration of the system reverts to that of Figure
4A, in which the choice (1 or 2) is stored in one of the two
asymmetric attractor states, and that information can be re-
trieved at the end of the delay to produce a motor response (left-
ward or rightward saccade). Another transient input can bring
the system back to the resting state, erasing the memory trace. We
shall discuss later in more detail the relationship between deci-
sion making and working memory.

This phase space depiction is to be contrasted with a schematic
view of the decision-making dynamics in terms of a one-
dimensional “energy landscape” (Fig. 4D). In it, a hypothetical
“energy function” is plotted as function of a single dynamical
variable of the system (in our case, S, — S, or r; — r,). The energy
always decreases as the system evolves in time, and each local
minimum of the energy function is an attractor (Amit, 1992). The
local maxima are the unstable saddle points that separate the
basins of attractions. The instantaneous state of the system is
indicated by a ball. Red, blue, and black portions of the landscape
denote the basins of attraction of the two competing attractors
and the spontaneous state, respectively. Black arrows denote the
most likely direction of motion of the ball. When an unbiased
stimulus is presented, the spontaneous state disappears and a
saddle point emerges.

This instability, coupled with noise, forces the network to ap-
proach one of the attractors. After the stimulus offset, the system
can store the choice in short-term memory by virtue of the asym-
metrical attractor states (see details below). Although instructive,
Figure 4 D is purely illustrative. In particular, it assumes that the
dynamics is one-dimensional, although we have seen that the
dynamics of the model should be understood in the two-
dimensional phase space. Below, we will address the question of
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Figure 5.  Basins of attraction with stimulus at nonzero coherence (¢ > 0%). A, Phase-
plane without stimulus as in Figure 4 A. B, The stable manifold is tilted away from the sponta-
neous state and toward the less favored attractor when ¢’ is nonzero (6.4%). As a result, at the
onset of stimulus, the system starts in a resting state that has a higher chance of falling in the
basin of attraction of the favored attractor state. The blue and red lines are typical single-trial
trajectories for correct and error choices, respectively. €, Stronger bias between the basins of the
two competing attractor states with a larger ¢’ (=51.2%). D, When ¢’ is sufficiently large, the
saddle steady state annihilates with the less favored attractor, leaving only one choice attractor.
¢’ =100%.

whether the system can be reduced to a one-dimensional dynam-
ics under certain conditions.

Decision with nonzero coherence: biased basins of attraction

We have seen in Figures 2 and 3 that by increasing ¢’, we can have
a steeper ramping activity and a corresponding shorter decision
time. In Figure 5, A and B, we show how the phase space changes
when a weak motion stimulus (¢’ = 6.4%) is presented. The
phase space is no longer symmetrical: the attractor state 1 (correct
choice) has a larger basin of attraction than attractor 2. This is
because the neural population 1 receives a stronger external in-
put, raising its nullcline (green) higher than that of population 2.
At the onset of a biased external input, the spontaneous state of
the system already lies within the basin of attraction of the fa-
vored choice attractor 1 (for a clearer example at a higher coher-
ence, see Fig. 5C). This leads to a higher percentage of correct
choices above the chance level. Shown in Figure 5B are also the
dynamical trajectories of the system in one correct trial and one
error trial. In an error trial, because the system is initially in the
basin of attractor 1, it has to travel across the stable manifold of
the saddle to reach the basin of attractor 2. In doing so, the system
has a tendency to stay close to the stable manifold and move
toward the saddle point, then diverging from it along the unstable
manifold (Fig. 5B, trajectory in red). Recall that a saddle point is
asteady state, and the dynamics near it is very slow. Specifically, at
adistance 6 away from the saddle point, the time for the system to
stay around that area is ~log(1/6) (Hubbard and West, 1995),
which goes to infinity as & approaches zero. (This will become
clearer when we discuss the local dynamics near a saddle point.)
Thus, the time it takes for the system to reach one of the choice
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attractors is on average longer in error trials than in correct trials
(Fig. 3). This provides a rigorous mathematical explanation as to
why in our model the decision times in error trials are generally
longer than in correct trials, a salient behavioral observation in
the monkey experiments (Roitman and Shadlen, 2002; Mazurek
et al., 2003) that is reproduced by our model.

As ¢’ increases, the basin of attraction of the favored attractor
increases at the expense of its competitor (Fig. 5B, C). This results
in a higher probability of making correct choices. The correct
decisions are made more quickly at higher ¢’ because the sponta-
neous state (the starting point of the system at the onset of stim-
ulation) lies deeper into the favored attractor’s basin, and the
saddle point is remote from the trajectory of the system in correct
trials. With a sufficiently large ¢’ (Fig. 5C, ¢’ = 51.2%), the dis-
tance from the stable manifold to the spontaneous state is so large
that fluctuations attributable to noise are insufficient to bring any
trajectory across the stable manifold to the less favored attractor.
Hence, the system only makes correct choices. Varying the noise
level will affect how large ¢’ must be for the performance to be
100%. However, there is a critical ¢’ level (~70%), above which
the less favored attractor annihilates with the saddle point, so that
only the favored attractor exists and the system always make the
correct choice regardless of the noise level (Fig. 5D).

Integration time and local dynamics near the saddle point

A central issue of the present study is to understand how a deci-
sion is made at very low or zero motion strength, and what de-
termines the integration time much longer than the biophysical
time constants inherent in the model. We have seen in Figures 4
and 5 that, at the onset of a stimulus, the system is in the resting
state that is either on the stable manifold (if ¢’ = 0%) or very close
to it (if ¢’ is small). Therefore, the system evolves toward the
saddle point along the stable manifold, before diverging from it
(because of noise in the case of ¢’ = 0%) along the unstable
manifold and eventually reaching one of the two choice attractor
states. The dynamics in the vicinity of the saddle point is slow,
and thus is expected to contribute greatly to the integration time
of the system.

Near the saddle point the dynamics of the system can be lin-
earized so that the difference AS = S — S 441- between S = (S,
S,) and the saddle S, 44;. can be written as follows:

As(t) = av, eXp(_t/Tstab]e) + aZVZeXp(t/Tunstab]e)7 (22)
where v, and v, are the “eigenvectors” of the saddle, which are the
same as the tangents of the two manifolds at the saddle point
(Strogatz, 2001) (Fig. 4D); — 1/Tyupie and 1/7y, 1o are the stable
and unstable eigenvalues of the saddle. The coefficients a, and a,
are given by the initial condition of the system. For example,
suppose the system starts on the stable manifold toward the sad-
dle point, so that a, = 0. The distance between the initial state of
the system to this steady state after a time interval ¢ decreases as
~exp(—t/Tyapie)- In contrast, if the system moves along the un-
stable manifold, a, = 0, it is repelled away from the saddle with
the distance increasing as ~exp(#/ T, qapie)- 10 general, a trajec-
tory in a single trial would be a linear combination of these two
exponentials (Eq. 22). Note that, if the system is at a distance &
from the saddle, then the time for AS to become large (of order 1)
is given by 1 = 8exp(fyay/Tunstable)> Which yields ¢,
1-unstablelog( 1/8)

As w, is decreased, neurons take longer time to accumulate
information from a weaker stimulus, and the decision time in-
creases monotonically (Fig. 6 A, B). We found that 7,1 Of the

tay’ tay



Wong and Wang e A Network Mechanism of Perceptual Decision Time

A B
’g3000 =20
Y =3
E 2000 gls
2 g
S 1000 5
g g
m g
ol ‘ ‘ ‘ o
10 20 30 40 0 500 1000 1500 2000
Lo (Hz) Time (ms)
20001
/g 10000 — Tunstabld g — Tunstable
v Tstable = 1500F Tstable
z z
g E
g Z 1000k
£ 1000 g 1000
3 3}
Q 2 s00f
g T~V E
a =
100 ) 20 30 0 10
Wo (Hz) Coherence index, ¢’ (%)
Figure 6.  Decision time and local dynamics in the vicinity of a saddle point. Zero coherence

level from A to C. A, Longer reaction time for smaller stimulus strength p,. Error bars indicate
SD. B, Typical time courses: ramping is faster for larger stimulus strength, w,. €, Time constants
of saddle-like unstable steady state with different pu,. For iy > 17 Hz, 7, is larger than
Tynstabler Whereas the opposite is true for p, << 17 Hz. D, Time constants of the unstable saddle
as function of coherence level ¢’ (., fixed at 30 Hz). The unstable time constant is essentially
constant up to ¢’ ~ 70%. The sudden increase in 7,,,.;,. happens just before the bifurcation
point at which the saddle coalesces with the less favored attractor and disappears (see Fig. 5).

saddle point increases in parallel with the decision time (Fig. 6C).
Note that 7,11 diverges to infinity as w, approaches a bifurca-
tion point at pug = 7 Hz (see Figs. 10 and 6C), but the decision
time remains finite (Fig. 6A). Moreover, at small g, T,sapie 1S
significantly larger than 7., in which case one can qualitatively
reduce the model to a one-dimensional diffusion like system
(supplementary information E, available at www.jneurosci.org as
supplemental material). Quantitatively, however, this is not a
good approximation. To describe the system only in terms of the
difference S, — S, (along the unstable manifold of the saddle),
one must disregard the initial phase of the decision dynamics
along the stable manifold, which, with a time constant of ~200—
300 ms, contributes greatly to the decision time and should not be
neglected.

In contrast, for a reasonably large w, (e.g., 30 Hz), Ty is
longer than 7,y (Fig. 6C); therefore, the system definitely
cannot be described by a one-dimensional dynamics along the
unstable manifold. In fact, as we have seen in Figures 4 B and 5B,
noise often perturbs the system away from the stable manifold,
before the trajectory gets close to the saddle point, so that the
system never approaches the unstable manifold of the saddle and
Tunstable €21 N0 longer be critically important. Moreover, because
Tyable A0 Ty apie are relevant only if the system passes through
the vicinity of the saddle point, they have an increasingly weak
effect on the decision time with a larger .

This is also true with an increased coherence level ¢’ (for a
fixed p, = 30 Hz), in which case the system rarely gets a chance to
be close to the saddle point (Fig. 5C). We found that, whereas the
decision time of the system monotonically decreases with in-
creasing ¢’ (Fig. 3), the two characteristic time constants of the
saddle point do not vary significantly with ¢’ (Fig. 6 D), except for
¢’ > 70% where the divergence of T, . is associated with the
disappearance of the saddle point (compare Fig. 5D).

Slow decision time with NMDA receptors
An important finding from the above analysis is that integration
time of many hundreds of milliseconds are realized robustly
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Figure 7.  Dependence of decision-making behavior on the AMPA:NMDA ratio at recurrent
synapses. A, Typical time courses: faster ramping neural activity at larger AMPA:NMDA ratios.
Top black (gray) horizontal bar denotes the duration where the firing rates are not distinguish-
able [i.e., the trajectory lies along the stable manifold of the saddle point, when AMPA:NMDA is
35:65(0:100)1. B, Reaction time s shorter with a higher AMPA:NMDA ratio. C, The performance,
however, becomes less accurate. Accuracy data are fitted by a Weibull function. D, For ¢’ = 0%,
a higher AMPA:NMDA ratio decreases the reaction time for the entire range of stimulus
strengths . x-axis, Difference between w1, and g, which is the bifurcation point at which
the saddle steady state appears and whose value depends on the AMPA:NMDA ratio. C and D
have the same symbolic notations as in B. Error bars indicate SD.

without the need of fine-tuning parameters (such as w,) (Fig.
6A). Previous simulation results (Wang, 2002) indicated that this
desirable feature critically depends on the NMDAR:s at recurrent
excitatory synapses. To assess whether NMDARs are required, it
is necessary to incorporate the AMPARSs and consider the time
integration of the system as the AMPA/NMDA ratio is varied. To
this end, we could no longer use the two-variable model, which
does not take into account the fast AMPA dynamics. Instead, we
investigated the full, 11-variable, dynamical system (Eqs. 3-7).

We calculated the AMPA:NMDA ratio from their relative
contributions to the unitary synaptic current at recurrent con-
nections, defined by the charge (time integral of current) elicited
at —65 mV by a single presynaptic spike (Compte et al., 2000).
With our standard parameter set, the AMPA:NMDA ratio is 15:
85. To vary this ratio, the maximum synaptic conductances,
Zamra and gumpa, at all recurrent excitatory connections were
changed at the same time, with the total (summated) unitary
charge conserved. (Note that, because the NMDA conductance is
voltage dependent and summates over time, the effective AMPA:
NMDA ratio varies with the postsynaptic firing rate and thus
cannot be fixed by our method.)

We found that, with an increased AMPA:NMDA ratio at the
recurrent synapses, the activity becomes much faster (Fig. 7A).
Steeper ramping activity results in a shorter decision time (Fig.
7B). At the same time, the decision performance significantly
deteriorates (Fig. 7C). When the psychometric function was fit-
ted by a Weibull function, we found that the threshold («) in-
creases with an increased AMPA:NMDA ratio. Their values are
4.79,6.11,and 9.37% with 0, 25, and 50% AMPA at the recurrent
connections. In contrast, the slope () is 1, 1.38, and 1.32 respec-
tively. The shorter reaction time holds true not only as function of
the coherence level (Fig. 7B) but also as function of the stimulus
amplitude (Fig. 7D).

For an AMPA:NMDA ratio larger than 50:50, we found that
the network became dynamically unstable leading to large-
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Figure8.  Decision time with only AMPA at recurrent synapses (¢’ = 0%). A, A sample time
course with very fast dynamics (t = 0 is stimulus onset). w, = pg + 15 Hz, where g is
the value of w, when the saddle point is just created. Bottom horizontal bar denotes the
duration where the firing rates are indistinguishable; trajectory lies near the stable manifold of
the saddle point. B, Reaction time as a function of , — w. Note that reaction times longer
than 200 ms can hardly be realized even with parameter fine-tuning. Error bars indicate SD.

amplitude oscillations (supplemental Fig. 4, supplementary in-
formation F, available at www.jneurosci.org as supplemental ma-
terial). This is because, when recurrent excitation is dominated
by the AMPA receptors, the interplay between fast positive feed-
back (T5\pa = 2 ms) and slower negative feedback (mediated by
the GABA,, synapses, Tgapa, = 5 ms) naturally gives rise to oscil-
latory instability (Wang, 1999; Compte et al., 2000; Tegner et al.,
2002; Brunel and Wang, 2003). To assess time integration solely
mediated by AMPA receptors, we considered the artificial case
where Tgapa = Tampa = 2 ms. (To preserve the same steady-state
behavior, the term v, in Equation 7 is multiplied by a factor of
Taana/ Tampa- L0 compensate for the loss in NMDA synaptic cur-
rents, the peak synaptic conductances for AMPA, g,.. anpa> De-
tween excitatory cells and excitatory-to-inhibitory connections
were changed to 0.000237 and 0.000289 uS, respectively. The
recurrent strength w, was also raised to 2.4.)

Figure 8 displays simulations with 100% AMPA at recurrent
synapses. We found that because of the very fast dynamics (Fig.
8A), it is virtually impossible to achieve an integration time of
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Figure9. Neural firing activity in delayed-response task in which a motion stimulus presen-

tation is followed by a memory period. A, Sample time courses within a trial with different
coherence levels. Black and dashed lines are for saccades moving toward and away from the
response field of the neuron, respectively. The coherence level is shown at the top of each panel.
Shaded regions, Motion viewing period. The black horizontal line at the bottom indicates the
time epoch when the two firing rates are indistinguishable. B, Dependence of neural activity on
motion strength in different epochs. Opened and filled circles, Saccades toward and away from
the response field of the neuron. The largest dependence on the motion strength, as well as the
greatest difference in the two neural responses, correspond to the late phase (0.5—1s epoch) of
stimulus presentation. In the third epoch (early delay period), there is a still a residual effect of
the dependence of neural response on motion strength. Figures are calculated using correct
trials only and averaged over 2000 trials.

>200 ms, even when the parameter u, was fine-tuned to be very
close to the bifurcation point w (Fig. 8 B).

These results show that the NMDA receptors at recurrent syn-
apses are important to slow time integration in the model.

Decision making and working memory

Time integration with a mnemonic delay period

We have mentioned previously that, like the original model
(Wang, 2002), our reduced model can also simulate the delayed
response version of the visual motion discrimination task
(Shadlen and Newsome, 2001) in which the monkey is required
to withhold the response across a delay period of a few seconds
when the choice must be maintained actively in working mem-
ory. As shown in Figure 9, the model neuronal activities are com-
parable with the observations from LIP cells (Shadlen and New-
some, 2001). In particular, in response to a 1 s motion stimulus
presentation, the ramping of the neural activity is faster at higher
coherence levels (Fig. 9A). After removal of stimulus, a sustained
persistent activity of the decision is stored in working memory.
Neurons whose response fields are opposite to that of the saccadic
target eventually show a ramping down activity. This is expected
because of the effective mutual inhibition between competing
neural groups. Note that, similar to the reaction time simula-
tions, the time courses of the two neural populations are initially
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Figure 10.  Bifurcation diagram of a selective population with stimulus strength ., as pa-

rameter (¢" = 0%). Bold lines, Stable steady states; dashed lines, saddle steady states. Spon-
taneous state before stimulus presentation is denoted by the filled square. With a .y = 30 Hz
stimulus, the spontaneous stable state loses stability, and a saddle steady state appears (open
square). The state either goes toward the upper or lower stable state (filled circles). The popu-
lation wins the competition if the upper branch is chosen, and loses otherwise. When stimulus
is removed, hysteresis of the upper stable branch allows the activity to persist (memory storage
of a decision choice). Arrow with an asterisk, Point where spontaneous state loses stability.
Arrow with double asterisks, Saddle point turns into an attractor.

indistinguishable for a hundred of milliseconds, before they
eventually split apart.

In Figure 9B, we show the neural response for each coherence
level averaged over a duration of 0.5 s. Similar to the physiological
observations [Shadlen and Newsome (2001), their Fig. 9], the
difference of the firing rates between the two choices is small in
the initial epoch, and becomes the largest later, during stimulus
presentation. It is also the second time epoch, 0.5-1 s after mo-
tion onset, that shows the greatest sensitivity of the neural re-
sponse to the coherence level. During the delay period, the input
is withdrawn and the system is approaching a steady state of
persistent activity; hence there is a decrease in the difference in
neural responses with respect to coherence levels. Interestingly,
like LIP neurons, the firing activity of our model during the early
epoch (1-1.5 s) of the delay period still shows a slight residual
dependence on motion strength (Fig. 9B), which disappears later
(1.5-2 s) when the mnemonic steady state is reached.

Effect of external input on network behavior

We have seen that the model system has different steady states of
high neural activities in the presence or absence of an external
stimulus. To gain intuition about how these two steady states are
related, we computed the steady states of the system as a function
of a stimulus parameter, such as the amplitude of an unbiased
input p, (Fig. 10). In this “bifurcation diagram,” the middle
curve corresponds to symmetric steady states (when S; = S,),
whereas the upper and lower branches correspond to asymmetric
states (when S, is high and S, is low, or vice versa). Solid and
dashed lines denote stable and unstable (saddle-like) steady
states, respectively. It is immediately clear that the steady states do
not simply vary quantitatively and gradually. Instead, they can
change their stability, disappear, or emerge, as p, is varied.
Briefly, the network goes from being monostable to bistable (co-
existence of a resting state and mnemonic persistent states) as
is increased (Fig. 10). Additional increase of w, to a critical value
of ug =~ 7 Hz causes the spontaneous steady state to lose stability
and becomes a saddle point, a bifurcation of the system.
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Figure 11.  Dependence of integration time on the relative strength of recurrent excitation.
A, Sample time courses: faster ramping activity with stronger recurrent strengths, w , . B, The
unstable time constant of a saddle point dominates the dynamics when recurrent strength w
is weak. , Reaction time decreases with increasing w, . Error bars indicate SD. D, Accuracy of
performance decreases with increasing w . Data are fit with a Weibull function.

At u$* ~ 47 Hz, another bifurcation occurs where the saddle
point changes stability and is changed to a symmetric stable
steady state with high S. In contrast, the asymmetric attractor
states exist only for a finite range of ., values: a sufficiently large
unbiased input u,, either negative or positive, would lead to the
disappearance of the asymmetric attractor dynamics, hence the
loss of the ability of the system to compute a categorical choice
through winner-take-all competition.

The model dynamics that was shown in Figure 4, A and B, can
be alternatively viewed as follows. At rest, the system is in the
symmetric state (filled square) at w, = 0. When a sufficiently
large external stimulus is presented, the system is suddenly
brought to another pointin the bifurcation diagram (e.g., at u, =
30 Hz), where this symmetric steady state is unstable (open
square). Because of this instability, the population activity is at-
tracted to either the upper or lower stable branch. If the system
goes to the upper branch, then this population “wins” while the
other population “loses” (filled circles). Furthermore, when the
external stimulus is removed from the network, the state of either
population stays at the same upper or lower stable branch (filled
triangles) because the two branches still exist at w, = 0. This
hysteresis phenomenon acts as a short-term memory of the
decision/choice.

Two distinct regimes of decision-making dynamics

We have shown that, with a strong self-excitation within the net-
work, both decision making and working memory can be
achieved. In particular, we saw that they are related to the same
“branch” of stable steady states in a bifurcation diagram. We will
now gradually decrease this self-excitatory component, in the
form of w,, and study how time integration is affected by it.

To some degree, we expect the effect of varying the recurrent
strength w, would be similar to that with varying the stimulus
Wo. Given the same stimulus w,, the lower w, is, the slower the
ramping neural activity, and the longer the decision time (Fig.
11A). This can be explained by the fact that both w, and w, have
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a direct influence on the two competing neural populations.
Thus, lowering either w, or u, causes the saddle point to ap-
proach the spontaneous state, slowing the trajectories and thus
the integration time (Fig. 11 B). We also assessed quantitatively
how w, affects the speed and accuracy of decisions over a range of
¢’. We found that, with a larger w,, the decision became faster
across all values of ¢’ (Fig. 11C). Note that for large ¢’, the decision
time is less sensitive to w,, as the system is strongly attracted
toward the correct attractor. At the same time, the performance
was worse (Fig. 11 D) with a larger w, . Quantitatively, when w
was increased (1.68, 1.7, or 1.72), the threshold of the psychomet-
ric function («) increased (4.10, 5.50, or 8.52% coherence) while
the slope (B) was 1.31, 1.25, and 1.36.

We have demonstrated how the reaction time and perfor-
mance can be affected by the recurrent strength w, and, earlier
on, the stimulus input strength w,. To further study how the
combined interaction between w, and p,, can affect time integra-
tion, we constructed a state diagram of the reduced decision-
making model in the space of both parameters w, and pw, (Fig.
12). We found that this parameter plane is divided into three
regions: monostability (with only one symmetric steady state),
competition (with only asymmetric attractor states), and bist-
ability (coexistence between one symmetric and two asymmetric
attractor states). Depending on the recurrent wiring property
(w, value), the system behaves as function of a stimulus w, in
four different ways. On one hand, in a network with weak recur-
rent connections (w, < 1.58), the network cannot serve working
memory because of the lack of bistability, nor can it perform
decision-making computation, because no input can bring it into
the competition region of the state diagram (Fig. 12, inset, regime
I). On the other hand, in a network with sufficiently strong re-
current connections (1.6 < w, < 1.86), the network behaves the
same way as with the standard set of parameters that we have
observed before; by increasing w,, (to within a suitable range), we
can bring the network from a spontaneous state in the bistable
(left red) region to a competitive (blue) region where only two
competing choice attractors exist. And when stimulus is re-
moved, hysteresis in the same bistable region, allows the decision
to be stored in short-term memory (Fig. 12, inset, regime III, or
Fig. 10). Hence, the same network can subserve both decision-
making computation and working memory. In the extreme case
when w, is very high (w, > 1.86) (Fig. 12, inset, regime IV),
there is no competition in the sense that, for any u,, there is
always a stable symmetric state that coexists with the asymmetric
attractors. This regime will not be considered further in the
present study.

In a network with moderate recurrent connections (1.58 <
w, < 1.6), with a suitable range of u,, the network can also be
brought to a region of competition conducive for decision mak-
ing. An example is shown in Figure 13. However, on the removal
of stimulus, the network lies outside the bistable region and thus
does not display hysteresis (Fig. 12, inset, regime II). As a result,
the network is unable to sustain any persistent activity without
stimulus (Fig. 13A,B), and there is no memory storage of the
decision.

Thus, our model in regime II can perform decision computa-
tion (Fig. 13 A, C) without working memory function, similar to
previously studied connectionists models (Brown and Holmes,
2001; Usher and McClelland, 2001). Furthermore, we found that,
for the whole range of w,, the unstable time constant of the saddle
point is of a few seconds, an order of magnitude greater than the
stable time constant (Fig. 13D). Time integration is then domi-
nated by the unstable manifold (Fig. 13B). Thus, qualitatively, the
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Figure 12.  Distinct modes of operation in the two parameter space with zero coherence. In

general, there are three types of regions. Bistable (red) region, A symmetric and two asymmet-
ric attractors coexist; blue competition region, one saddle with two asymmetric competing
attractors; monostable region, only one attractor. Depending on the strength of recurrent exci-
tationw ,_, the network responds to a stimulus (of suitable intensity p, ) in four different ways,
shown as regimes |, II, Ill, IV in insets. Regime | and Il do not support working memory (of
decision). Regime I, No decision making nor memory. Regime II, The network can produce a
binary decision during stimulation but cannot store it in working memory. Regime Ill, The
network is capable of both decision-making computation and working memory (our standard
parameter set). Regime IV, Forany w,, there is always a stable symmetric stable state. Dark and
dashed branches denote loci of stable and unstable steady states, respectively. A and AS are
labels for branches with symmetric and asymmetric steady states, respectively.

network dynamics may be approximated by a picture in which
the system initially collapses onto the unstable manifold, fol-
lowed by a one-dimensional diffusion-like dynamics for the dif-
ference S, — S, (Brown and Holmes, 2001). However, quantita-
tively, the dynamics along the stable manifold is still slow (a few
hundreds of milliseconds) (Fig. 13 A, D), and thus cannot be ne-
glected. Moreover, with the parameter values explored, the activ-
ities are very low (Figs. 12, inset II; 13A), and reaction times are
too long (Fig. 13A) in comparison with the monkey behavioral
data. Finally, it is worth noting that regime II is realized in our
model with a relatively small range of w, values (between 1.58
and 1.6). For these reasons, we conclude that, although our
model in regime II can mathematically be reduced to a diffusion-
like model, it does not quantitatively reproduce the reaction
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Figure 13.  Decision making without short-term memory in a network with low recurrent

strength (w, = 1.59). A, A typical trial showing slow ramping up activity for both neural
populations. Note that the two firing rates are indistinguishable for many hundreds of millisec-
onds (indicated by the black horizontal bar), before they separate by a modest difference.
Stimulus is applied from time 0—2 s (gray region). B, Phase-plane without stimulus has only
one low stable attractor. , The response of the system to a stimulus with zero coherence, in two
trials, plotted as trajectories in the decision space (red and blue). Stimulus intensity is v, = 45
Hz lasting for 2 5. D, Comparison between stable and unstable time constants of the saddle-type
unstable steady state (w, = 45 Hz).

times and firing rates observed in the experiment of Roitman and
Shadlen (2002).

Discussion

A dynamical system approach to decision making

To elucidate the wiring properties and neural dynamics of a cor-
tical microcircuit subserving decision making, we developed a
two-variable model that was derived from a biophysically based
cortical network model of decision making, consisting of thou-
sands of spiking neurons. This was done using a mean-field ap-
proach and through a number of approximations. Such a reduc-
tion represents a significant step in bridging the gap between the
biologically based model of Wang (2002) and abstract mathemat-
ical models, and allow for a comparison between our model and
previously proposed models of decision making. Like other mod-
els (Usher and Cohen, 1999; Brown and Holmes, 2001; Usher and
McClelland, 2001; Machens et al., 2005), our model is a nonlinear
dynamical system that can be conceptualized as a circuit of neural
populations coupled effectively by mutual inhibition. However,
it is important to emphasize that recurrent excitation plays an
indispensible role in producing reverberatory dynamics underly-
ing winner-take-all competition in our model. Furthermore, the
recurrent excitation is dominated by a slow (and saturating) re-
current synaptic dynamics (of NMDA receptors). Reciprocal in-
hibition between choice-selective neural pools is mediated by
feedback inhibition in the local circuit, rather than through cross-
inhibition along feedforward input pathway as assumed in a pre-
vious model (Shadlen and Newsome, 2001; Mazurek et al., 2003).
A prediction from the local inhibition architecture, but not by the
feedforward model, is that, if an excitatory perturbation is ap-
plied to neural pool 1 during sensory stimulation, not only will it
accelerate the decision time for choice 1, but also slow down the
decision time for choice 2. This was indeed found to be the case in
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a recent study where microstimulation was applied to LIP neu-
rons in the reaction time task of visual motion discrimination
(Hanks and Shadlen, 2004).

Our reduced model not only reproduces salient experimental
findings of Roitman and Shadlen (2002) and simulations of the
original model of Wang (2002), it also provides a neurodynami-
cal framework for a deeper understanding of time integration and
categorical choice computation in the decision process. In partic-
ular, the phase-plane analysis sheds insights into how the system
works in several ways. First, it shows how, in response to a stim-
ulus, the network changes its configuration into a mode for
winner-take-all competition. Second, it revealed that local dy-
namics in the vicinity of a saddle point plays a key role in control-
ling the slow temporal course of stimulus integration, especially
when the stimulus is weak and the coherence is low or zero.
Third, it offers a precise explanation as to why decision times are
slower in error trials than in correct trials, as in the monkey
experiment (Roitman and Shadlen, 2002). Fourth, we found that
when the coherence is above a critical value (~70%), one of the
competing attractor states disappears, so that the system is forced
to go to the other attractor. Interestingly, in simulations of the
original model in which the sign of the input was reversed during
stimulation (Wang, 2002), it was found that a decision made by a
stimulus presentation can always be reversed by a second stimu-
lus with opposite sign, if the reversing signal strength was above ¢’
= 70%, no matter how late the reversing signal was applied after
stimulus onset. Here, this observation is nicely explained by the
fact that, in the presence of a stimulus with sufficiently strong
motion strength ¢’, only one attractor exists in the phase space so
that the choice by the system is unique in all trials.

Slow recurrent dynamics underpinning integration time

An important result of this work is that when recurrent excitation
has a significant NMDA component, temporal integration is gen-
erally slow, leading to accurate decisions. We asked ourselves
whether this is necessarily the case, by gradually substituting
NMDARs by faster AMPARs at recurrent synapses. Consistent
with previous observations in such a network model (Wang,
1999; Compte et al., 2000; Tegner et al., 2002), we found that the
network becomes highly unstable when the local reverberation is
largely mediated by AMPARs. Moreover, when we artificially
prevented oscillatory instability (under the assumption that
AMPA current and GABA, receptor-mediated inhibitory cur-
rent have a similar decay time constant), the model cannot repro-
duce long decision times comparable with behavioral data, even
with fine-tuning of parameters to maximize the integration time
of the system. This results suggests that NMDARs at recurrent
synapses in a decision circuit may be critically important. Exper-
imentally, it would be interesting to see whether motion discrim-
ination becomes more impulsive and less accurate when
NMDAR antagonists are applied to LIP in behaving nonhuman
primates.

Future work is needed to examine quantitative properties of
the NMDAR-mediated synaptic current, such as the temperature
dependence of the current kinetics (Hestrin et al., 1990) or sub-
unit composition of NMDARs (McBain and Mayer, 1994), and
their influence on time integration of a cortical circuit. Moreover,
other slow cellular processes, like calcium-dependent inward
current (Egorov et al., 2002; Durstewitz, 2003; Major and Tank,
2004) or short-term synaptic plasticity (Abbott and Regehr,
2004) may contribute to time integration as well as persistent
activity. It would be interesting to incorporate these biophysical
processes in a decision-making network model.
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Neuronal versus diffusion-like models

Previous work has shown that connectionist models with mutu-
ally inhibitory neural pools can be reduced to a one-dimensional
diffusion model, under two conditions. First, the system can be
approximately described by a single dynamical variable, the firing
rate difference between the two neural populations. Second, the
time constant for this dynamical variable is arbitrarily long,
which typically requires fine-tuning of parameters (Brown and
Holmes, 2001; Usher and McClelland, 2001). Our biophysically
based spiking neuron network model provides an opportunity to
assess whether, or how, these conditions can be satisfied in a
realistic cortical circuit. We found that the first condition breaks
down into two requirements: (1) that time integration is domi-
nated by dynamics near an unstable saddle point and (2) that the
stable time constant of the saddle is negligible.

For our model, we found that (1) holds true for stimuli with
very low or zero coherence ¢’, which are the most interesting
situations where time integration is crucial. In general, with a
reasonably strong stimulus intensity (), the stable time con-
stant (T,,p1) 1s larger than the unstable one (7,,4.11e) Of the sad-
dle. This is reflected by a biphasic time course of neural popula-
tion firing rates in response to stimulation. With weak (o, Tynsable
becomes longer than 7., but even in that case 7, is ~200—
300 ms, so quantitatively its contribution to integration time can-
not be ignored. Therefore, (2) is generally not satisfied in our
model. As to the second condition, fine-tuning amounts to ad-
justing the system to a bifurcation point, where a time constant
(Tunstable I our model) diverges to infinity. However, we found
that this is unnecessary. Our model endowed with slow reverber-
ation (primarily mediated by the NMDARs) can reproduce the
decision times of many hundreds of milliseconds up to a second
robustly, without fine-tuning of parameters.

One may argue that the condition (2) for 7,y to be negligibly
short could be fulfilled when the recurrent excitation is domi-
nated by AMPARSs rather than NMDARSs (see supplementary in-
formation E, available at www.jneurosci.org as supplemental ma-
terial) (Figs. 7A, 8 A). If so, then 7,1 could indeed dominate
the network dynamics. However, because in this scenario the
system does not have intrinsically slow time constants, long inte-
gration time is impossible without fine-tuning of parameters. In
fact, despite our efforts, we were hardly able to realize reaction
time of >200 ms even when the system is extremely fine-tuned to
a bifurcation point. For these reasons, we are in favor of a two-
dimensional dynamical system model that robustly performs
NMDAR-dependent time integration.

Our model naturally explains the observation that longer re-
action times in error trials compared with correct trials in the
monkey experiment of Roitman and Shadlen (2002) as well as in
most human reaction time studies (Ratcliff, 1978; Luce, 1986), a
feature that cannot be reproduced by the diffusion model unless
some additional ingredients are added to it (Ratcliff and Rouder,
1998; Mazurek et al., 2003). Neurophysiologically, there is evi-
dence that LIP neurons recorded from behaving monkeys also
exhibit biphasic temporal dynamics similar to our model
(Shadlen and Newsome, 2001; Huk and Shadlen, 2005). For a
comparison, the two neural population activities of our model
would correspond in physiological data to spike activities of LIP
cells pooled over trials according to the animal’s choice (toward
or away from the response field of the cell). Qualitatively consis-
tent with our model, after the stimulus onset these two time
courses are initially indistinguishable (for 100 ms or more) before
diverging from each other (one increases while the other declines
over time). This observation remains preliminary, and it would
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be desirable to analyze it in more detail. It is hoped that additional
experiments will be performed to further test our two-
dimensional neuronal model versus the one-dimensional model
both behaviorally and neurophysiologically.

Distinct modus operandi of the model

We mapped out a two-parameter (o, w, ) state diagram of the
decision-making model and found that there is a finite parameter
region suitable for competition, where a categorical decision
must occur because the only stable attractors are the choice at-
tractors. This range of w, values is finite and preliminary obser-
vations (data not shown) indicate that it can be enlarged with a
higher AMPA:NMDA ratio at the recurrent synapses.

Aslongas w, is not too small, a suitable stimulus (u, # 0) can
bring the network into the competition region. This is the case
whether our network at rest (with w, = 0) is either monostable
(regime II) or bistable (regime III), depending on the strength of
w,.. Inregime II, our network is capable of decision computation
without working memory, but the corresponding range of w,
values is small. Also, in this regime neuronal firing rates are fairly
low compared with LIP data, with the parameters we have used. A
possible way of increasing the firing rates is by having a higher
proportion of AMPA at the recurrent connections. It remains to
be determined, in future work, whether this regime can be real-
ized in a more robust manner, for example with parameter
changes or by adding new ingredients into the model. Experi-
mentally, it is an important and still open question of whether the
LIP local circuit is capable of sustained persistent activity by itself,
and operates as an attractor network.

Wang (2002) and the present study show that a single local
network can naturally serve both working memory and decision
making. The same conclusion was reached by Machens et al.
(2005), in a modeling work concerned with a delayed somatosen-
sory discrimination experiment (Romo et al., 1999). In that task,
two stimuli presented separately in time must be compared, for
the animal to reach a categorical perception. Thus, there is no
explicit need for slow time integration of sensory stimulus. In
contrast, the first stimulus must be held in short-term memory
across the delay, as an analog quantity, which is encoded mono-
tonically and stored by a line attractor in the model (Miller et al.,
2003; Machens et al., 2005). This is different from the visual
discrimination experiment of Shadlen and Newsome (2001), and
our model, in which a sensory information is accumulated over
time and a categorical decision is reached before a mnemonic
delay period. Therefore, whereas the integrated information is an
analog quantity, the stored information is discrete (binary
choice). It is conceivable that a different design of the visual mo-
tion discrimination task may require integration of analog sen-
sory data across “temporal delays,” which could be substantiated
by a continuous attractor network.

Our results, in consonance with those of Machens et al.
(2005), show that an attractor dynamical system is readily re-
configurable by external inputs. So far, we have viewed p, as
representing sensory information conveyed from the MT neu-
rons to the LIP neurons. The value of w, may depend on contrast
or speed of motion stimulus. But because u,, is a generic input to
the LIP network, we need not restrict the interpretation of it to
bottom—up input. We can also think of w, as partly originating
from top—down modulatory pathways. For instance, “executive
control” signals from the prefrontal cortex can bring an LIP net-
work in and out of the bistability regime, so that the system can
operate as an attractor network, or not, depending on behavioral
demands.
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Future directions
The attractor model in Wang (2002) and the present reduced
model are incomplete in several aspects. First of all, instead of
having ~2-3 Hz spontaneous firing rate in the models, the firing
rates before stimulus presentation in Shadlen and Newsome
(2001) and Roitman and Shadlen (2002) are much higher (>15
Hz). This might be attributable to the presence of the two target
stimuli that signal the two alternative choices to the monkey in
the experiment. We have tested, and confirmed, this idea by add-
ing a strong input that is symmetrical to both neural populations,
before a motion stimulus is presented. Detailed results are be-
yond the scope of this paper and will be reported elsewhere.
Second, both our model and the diffusion-type model as-
sumes that the event of threshold crossing in a decision network,
can be read out by a downstream system leading to a motor
response. How this is instantiated in the brain remains unknown
[for a possible biological mechanism, see Lo and Wang (2004)].
Third, our model does not capture effects of previous trials on
the performance of the present trial (Brown and Holmes, 2001;
Bogacz et al., 2003), which may be caused by priming (Carpenter
and Williams, 1995; Fecteau and Munoz, 1999; Yang and
Shadlen, 2004, 2005) or reflect an optimization of overall rewards
(Glimcher, 2003; Brown et al., 2005; Sugrue et al., 2005). The
cellular mechanisms underlying trial-by-trial choice correlations
presumably involve learning at the synaptic level (Fusi et al.,
2005), which should thus be incorporated and explored in a more
complete neural network model of perceptual decision making in
reaction time tasks.

Appendix

Reduced two-variable model without AMPA at

recurrent synapses

The reduced two-variable model is in its simplest form if we
assume that there is no AMPA at the recurrent synapses. In this
case, the system can be completely described by the following
equations:
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where i = 1, 2 labels the selective population. Parameter values
for the input—output function are a = 270(VnC) ~', b = 108 Hz,
and d = 0.154 s. The kinetic parameters are y = 0.641, ¢ = 100
ms, and T,;p, = 2 ms. The synaptic couplings are Jy;; = [0 =
0.2609 nA, Jy.1 = Jno1 = 0.0497 nA, and J, . = 5.2 X 10 ~*
nA - Hz ™', The overall effective external input is I, = 0.3255 nA,
noise amplitude is 0,,;c = 0.02 nA, and the stimulus is w, = 30
Hz. The value of 0, is chosen such that the psychometric and
chronometric functions are close to that of Roitman and Shadlen

(2002). A Matlab code for simulation and an XPPAUT code for
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phase-plane analysis can be obtained from the authors on
request.
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