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A recursive adaptive method of impulse response measurement using a new measurement
signal, i.e., a CSN-SS (constant-SNR swept-sine) signal is proposed. In the method, the spec-
trum of a measurement signal is shaped, adapting to not only the background noise spectrum
but also the recursively estimated transfer function of the system itself. The measurement re-
sults show a constant SNR independent of frequency over the target frequency band, in which
the system response can be properly identified.

0 INTRODUCTION

Impulse response is one of the most important charac-

teristics of acoustic systems. Since most acoustic systems

can be considered to be linear systems, the output of acous-

tic systems is represented as the convolution of an input

signal and the impulse response. On the basis of this prop-

erty, impulse response is widely used in the simulation of

acoustic systems. Moreover, the frequency response (trans-

fer function) of an acoustic system can be obtained by

applying a Fourier transform to the impulse response. Fre-

quency response is the most basic characteristic of acoustic

equipment such as loudspeakers, microphones, and various

acoustic systems. In architectural acoustics, various char-

acteristics of rooms, such as reverberation time, can be

derived from the impulse response [1].

Impulse response is defined as the output obtained when

an impulse signal is input to a system. However, we can-

not obtain an impulse response with a high signal-to-noise

ratio (SNR) because the practical impulse signal has a low

energy. Therefore, maximum-length-sequence (MLS) sig-

nals [2]-[6] and swept sine (SS) signals [7]-[9], both of

which have high energy, have been used as measurement

signals (signals input to a target acoustic system for the

measurement of impulse response).

MLS signals are binary white noise composed of –1 and

1, and can be synthesized using simple hardware. The cost

of the calculation required to obtain the impulse response

from the MLS response is small. On the other hand, SS

signals are sine signals whose frequency monotonically in-

creases (or decreases) with time. Although several sweep-

ing methods have been proposed to obtain SS signals, the

most basic method is linear sweeping, in which the fre-

quency of the sine signal increases proportionally with time.

The linear SS signals are also called time-stretched pulse

(TSP) signals [7], [8] and have been widely used because

of their simple structure.

The problems in impulse response measurement are (a)

measurement errors due to the nonlinearity of the system

to be measured and (b) those due to noise (acoustic and

electric noise) mixed into the response signal during mea-

surement. Differences among various measurement signals

are characterized by the effect of these errors.

SS signals with a frequency that exponentially increases

with time are called exponential swept sine (ESS) signals;

they are also called logarithmic SS (Log-SS) signals be-

cause their logarithmic frequency increases proportionally

with time. Recently, ESS signals have been widely used be-

cause of their desirable feature that the harmonic distortion

components generated by the nonlinearity of a system can

be separated and removed [10]-[13]. However, the effect

of errors due to nonlinearity in a linear response cannot be

removed even by using ESS signals [14], [15]. Therefore,

the errors due to nonlinearity still remain as a problem, and

we should avoid excessively high signal amplitudes.

Stationary noise present in rooms, such as the noise from

air conditioners, has many low-frequency components. The

effect of such acoustic noise can be reduced when ESS

signals are used because their energy is high in the low-

frequency region; thus, the SNR in the low-frequency re-

gion can be increased. On the other hand, the SNR in the

high-frequency region decreases when using ESS signals.

To solve this problem, the use of signals that are loga-

rithmically swept in the low-frequency region and linearly
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swept in the high-frequency region has been proposed [16].

However, these signals can increase the SNR only in the

low-frequency region and their optimality is not assured.

If the power spectrum of the stationary noise can be

measured in advance, a more sophisticated measurement

result can be obtained by adapting a measurement signal

spectrum to the noise spectrum. When the signal power

spectrum is determined so that it is proportional to that

of noise, the noise power spectrum is whitened [17]. On

the other hand, Moriya and Kaneda proposed another SS

signal by which the energy of noise components included in

measurement results is minimized, i.e., a minimum-noise

SS (MN-SS) signal, using the known power spectrum of

noise [18], [19]. However, it is still difficult to observe the

characteristic of a frequency response with low response

levels, even when the noise energy is reduced by these

methods.

In this study we propose the concept of an SS signal that

maintains a constant SNR regardless of the frequency, i.e.,

a constant-SNR SS (CSN-SS) signal [20], [21]. Here, the

SNR refers to the power ratio of the frequency response of

a system to the noise components included in the measure-

ment result of the frequency response. We also propose a

recursive measurement algorithm to realize the constant-

SNR measurement. In the measurement results obtained

using CSN-SS signals, a constant SNR can be achieved

even in the frequency band of an unknown system in which

response levels are small, enabling the observation of the

characteristics in this frequency band.

In Section 1, the problems of conventional measurement

methods are pointed out. We explain our new measurement

method to solve these problems in Section 2. The valid-

ity of the proposed method is experimentally verified in

Section 3, and the conclusions of this study are described in

Section 4.

1 PROBLEMS IN CONVENTIONAL IMPULSE

RESPONSE MEASUREMENT METHODS

1.1 Principle of Measurement

In this study we focus on the measurement of the fre-

quency response H (ω) of a linear system, which is the

frequency domain representation of the impulse response

h(t). Fig. 1(a) shows the principle of frequency response

measurement for an unknown system. For simplicity, the

variable ω is omitted from the figure. First, a measurement

signal with a spectrum S(ω) is input to an unknown sys-

tem with a frequency response H (ω). The output of the

unknown system is H (ω) · S(ω). When this output signal

is filtered through an inverse filter 1/S(ω), H (ω) of the un-

known system can be obtained. The impulse response h(t)

can be obtained by applying an inverse Fourier transform

to H (ω).

When a measurement based on the above principle is car-

ried out in an actual environment, noise N (ω) (including

ambient and electric noise) is added to the system out-

put H (ω) · S(ω), as shown in Fig. 1(b), resulting in the

measured signal H (ω) · S(ω) + N (ω). When this signal is
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Fig. 1. Measurement principle of frequency response H. (a) Ideal
system. (b) Actual measurement system into which noise is added.

filtered through an inverse filter, the measurement result

(estimated H (ω)) is obtained as

Ĥ (ω) = H (ω) + N (ω)/S(ω). (1)

Thus, noise components with the spectrum N (ω)/S(ω)

are included in the measurement result.

1.2 Measurement Signals and Noise

Components

The power spectrum of noise components included in the

measurement result Ĥ (ω) is

E[|N (ω)/S(ω)|2] = PN (ω)/|S(ω)|2, (2)

where E[•] represents expectation and PN (ω) is the power

spectrum of the added noise.

PN (ω) = E[ |N (ω)|2] (3)

Eq. (2) indicates that the noise components depend on

the power spectrum of the measurement signal, i.e., |S(ω)|2.

Typical measurement signals, such as TSP signals and MLS

signals have a flat spectrum (|S(ω)|2 = const.). Upon sub-

stituting this into Eq. (2), the power spectrum of the noise

components included in the measurement results obtained

using these signals becomes proportional to that of added

noise, i.e., PN (ω).

Fig. 2 shows a schematic diagram of the power spectrum

of noise components included in the measurement result

obtained using a signal with a flat spectrum. In this figure,

the bold line represents the power response of an unknown

system |H (ω)|2, and the gray area represents the power

spectrum of noise components. As indicated by the dotted

circles, the response is hidden by noise (a) in a frequency

band where the noise components are large and (b) in a

frequency band where the response levels of the system

are small, which makes it difficult to observe the response

characteristics.

To overcome this problem, Moriya and Kaneda proposed

the MN-SS signal, as described in Section 0 [18], [19]. The

MN-SS signal has a power spectrum proportional to the

root square of the power spectrum of noise, i.e., |S(ω)|2 ∝√
PN (ω), and minimizes the noise components. On the

other hand, Weinzierl et al. whitened the noise components
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Fig. 2. Power spectrum of noise components (gray area) included
in measurement result obtained using signal with flat spectrum.
The power spectrum of noise components is proportional to that of
the added noise, PN (ω). Dotted circles indicate frequency bands
where the desired response is poorly observable.
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Fig. 3. Power spectrum of noise components (gray area) included
in measurement result obtained using MN-SS signal. Large noise
components are reduced.

by matching the power spectrum of a measurement signal

to that of the noise, i.e., |S(ω)|2 ∝ PN (ω) [17]. When these

measurement signals were used, large noise components

were reduced and the effect of noise was alleviated, as

shown in Fig. 3. However, the frequency response was still

affected by noise components in the frequency band where

the power response |H (ω)|2 was small, as indicated by the

dotted circles in Fig. 3, and this has remained a problem.

In this study we propose a CSN-SS signal, a measure-

ment signal that maintains a constant SNR in the measure-

ment result regardless of the frequency, as shown in Fig.

4. The CSN-SS signal shapes the power spectrum of noise

components into the power response |H (ω)|2 of the system.

Although the measurement result includes a frequency band

in which the noise energy is higher than that in Fig. 3, the

noise energy is lower in frequency bands where the power

response |H (ω)|2 is small. Thus, the CSN-SS signal makes

it possible to observe the characteristics of the frequency

response in a wider frequency band with equal quality.

2 MEASUREMENT METHOD USING CSN-SS

SIGNAL

2.1 Spectrum of CSN-SS Signal

From Eqs. (1) and (2), the SNR of the measurement result

Ĥ (ω) for each frequency component is the ratio of |H (ω)|2

2
)(ωH

Noise

Frequency

P
o
w

er

Fig. 4. Power spectrum of noise components (gray area) included
in measurement result obtained using CSN-SS signal. The power
spectrum of the noise components is shaped into the power re-
sponse |H (ω)|2. Thus, the SN ratio becomes constant regardless
of the frequency, enabling the observation of the response in a
wider frequency band.

Fig. 5. Block diagram of proposed measurement algorithm.

to PN (ω)/|S(ω)|2. Assuming that the SNR is a constant C2

that is independent of frequency, the following relationship

holds.

SN R(ω) =
|H (ω)|2

PN (ω)/|S(ω)|2
= C2 (4)

By solving Eq. (4) for |S(ω)|2, we obtain

|S(ω)|2 = C2 · PN (ω)/|H (ω)|2. (5)

Therefore, when a measurement signal has a power spec-

trum of |S(ω)|2 given by Eq. (5), the SNR can be maintained

constant regardless of frequency.

2.2 Measurement Algorithm

When the measurement noise is assumed to be station-

ary, it is possible to estimate PN (ω) in Eq. (5) in advance.

However, the power response of the system to be measured,

|H (ω)|2, is unknown before measurement. In our proposed

method, |S(ω)|2 is calculated from Eq. (5) using the es-

timated H (ω), i.e., Ĥ (ω). The measurement is repeated

iteratively using Ĥ (ω) to increase measurement accuracy.

Fig. 5 shows the measurement algorithm in our pro-

posed method. This algorithm is explained below with num-

bers corresponding to those in Fig. 5. Here, the signal and
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spectrum are assumed to be those of a discrete system, and

the discrete frequency number is denoted as k. The subscript

n in the figure represents the number of iterations.

1) The noise power spectrum, PN (k) (variable k is omit-

ted in the figure), of a target frequency band is estimated.

One way to estimate PN (k) is to apply a discrete Fourier

transform (DFT) to the autocorrelation function of the mea-

sured noise.

2) An initial estimate of H (k), which is denoted as Ĥ0(k),

is given. For example, when H (k) can be roughly estimated,

the estimated characteristic should be given; otherwise,

Ĥ0(k) = 1, which whitens noise components in the mea-

surement result, or |Ĥ0(k)|2 =
√

PN (k), which minimizes

noise components.

3) A measurement signal with a power spectrum given

by

|Sn(k)|2 = C2
n · PN (k)/|Ĥn−1(k)|2 (6)

is synthesized, where n = 1 for the first iteration. Outside of

the target frequency band, |Sn(k)|2 is set to a small constant

value.

When C2
n , which is a constant that controls the signal

amplitude, increases, the SNR also increases. In practice,

however, nonlinear distortion is induced by, for example, a

loudspeaker when the amplitude of the measurement signal

is excessively increased; the amplitude of the measurement

signal should thus be restricted to a certain level. In this

method, the signal energy (the sum of the power spectra

over the frequencies) is restricted to a constant value Es as

follows:

L−1
∑

k=0

|Sn(k)|2 = ES. (7)

Here, L represents the length of the DFT (= signal

length). By substituting Eq. (6) into Eq. (7), we obtain

C2
n ·

L−1
∑

k=0

{

PN (k)
/
∣

∣Ĥn−1(k)
∣

∣

2
}

= ES. (8)

Therefore, C2
n is given by

C2
n = ES

/

L−1
∑

k=0

{

PN (k)/
∣

∣Ĥn−1(k)
∣

∣

2
}

. (9)

Although there are several possible signals with a power

spectrum given by Eq. (6), we adopt an SS signal with

constant amplitude because of its small crest factor. The

details of the method used to synthesize an SS signal are

explained in Appendix 1.

4) The synthesized measurement signal is input to an un-

known system, and the observed signal is filtered through

an inverse filter to obtain the measurement result (estimated

response) Ĥn(k). Here, the circular convolution of the in-

put signal sn(t) and the impulse response in the unknown

system must be assumed so that 1/Sn(k) acts as the inverse

filter of the discrete system. To this end, sn(t) for two pe-

riods is input and the output signal in the second period is

extracted.

kk

kk
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Fig. 6. Model figures showing convergence process. (a) Power
response of unknown system |H (k)|2 and power spectrum of
added noise PN (k). (b) Measurement result after first iteration
with Ĥ0(k) = 1. Spectrum of noise components (gray area) is
whitened. (c) Measurement result after second iteration. The SN
ratio becomes constant in the frequency band where the SN ratio
is high in (b). (d) Measurement result after nth iteration. SN ratio
becomes almost constant regardless of the frequency.

The extracted signal is subjected to a DFT, and the result

is multiplied by the inverse filter characteristic 1/Sn(k).

Here, attention must be paid into the division by the very

small Sn(k). Regularization, that is, adding a small quantity

to the denominator, prevents the reciprocal from taking an

extremely large value.

Then, the result is subjected to an inverse DFT to obtain a

system impulse response of length L. The impulse response

is windowed for its duration to improve the SNR. Finally,

the windowed impulse response is zero-padded to be of

length L and subjected to a DFT to obtain Ĥn(k).

5) Whether a constant SNR characteristic is achieved

satisfactorily is evaluated by calculating the SNR in each

frequency band. When it is evaluated to be insufficient,

steps (3)–(5) are repeated using Ĥn(k). When it is evalu-

ated to be satisfactory, the above iteration is ended and the

obtained result is considered to be the final measurement

result.

2.3 Convergence Characteristics of Algorithm

When the proposed algorithm is used, the following mea-

surement results are obtained depending on the number of

iterations.

� First iteration

When the initial Ĥn(k) is 1, i.e., Ĥ0(k) = 1, we ob-

tain |S1(k)|2 = C2
1 PN (k). Therefore, the power spectrum

of noise components included in the first estimation,

PN (k)/|S1(k)|2, is whitened. Fig. 6 shows schematic di-

agrams of the convergence process. Fig. 6(a) shows the

power response of an unknown system |H (k)|2 and the

power spectrum of the added noise PN (k). Fig. 6(b)

shows the first measurement result, where the power

spectrum of noise components (gray area) is whitened.
� Second iteration
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Fig. 7. Room impulse response measured when major noise
sources were turned off.

In the frequency band where SNR higher than 0 dB was

obtained in the first measurement, the SNR becomes al-

most constant in the second measurement result, |Ĥ2(k)|2
(Fig. 6(c)). In this frequency band, the SNR is C2

2 .
� Third and subsequent iterations

In the frequency band where the SNR becomes constant

in Ĥ2(k), the SNR also remains constant in the third and

subsequent measurements. The frequency band with the

constant SNR is widened with increasing number of it-

erations. In contrast, the SNR decreases with increasing

width of this frequency band (Fig. 6(d)). The constant

SNR can be expected to be C2
n before the nth measure-

ment.

Although the above results were experimentally

obtained, some of them are proved in Appendix 2.

3 EXPERIMENTS

3.1 Measurement of Room Impulse Response

To verify the validity of the proposed method in an ac-

tual environment, we measured the impulse response of

a small laboratory room. The room volume was about

60 m3 (7 × 3.2 × 2.7 m) and its reverberation time was

300 ms. The environmental noise was the stationary mixture

noise of an air conditioner, PC fans, and machines. The sam-

pling frequency was 48 kHz and the measurement signal

duration was 215 samples (about 0.7 second). A full-range

loudspeaker was used for the measurement. The distance

between the loudspeaker and the microphone was about

2 m. Figs. 7 and 8 show the room impulse response and

its frequency response, which were measured when major

noise sources were turned off. The target frequency band

was set in the range from 80 Hz to 16 kHz.

3.2 Experimental Results

First, the measurement was carried out using a TSP sig-

nal (an SS signal with a white spectrum, i.e., |S(k)|2 =
const.). Fig. 9 shows the measured frequency (power) re-

sponse |Ĥ (k)|2, and the noise components included in the
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Fig. 8. Room frequency response measured when major noise
sources were turned off.

measurement result. In the figure, the thin line represents

the frequency response, |Ĥ (k)|2, and the bold line repre-

sents the noise components. The noise components were

calculated from the received sound signal that contains only

room noise.

As explained in Section 1.2, the spectrum of the noise

components obtained using a TSP signal is in agreement

with that of room noise. Fig. 9 indicates that room noise

has a higher power at lower frequencies and that the mea-

sured frequency response is degraded in the low-frequency

band. Fig. 10 shows the SNR in the 1/3 octave frequency

band corresponding to Fig. 9. This figure shows that below

200 Hz, SNR is below 10 dB.

Next, the measurement results obtained by the pro-

posed method are demonstrated. In the first measurement,

|Ĥ0(k)|2 = 1 was assumed, and from Eq. (6), a measure-

ment signal with a power spectrum proportional to that of

room noise PN (k) was used. Fig. 11 shows the measure-

ment result, which indicates that the noise components are

whitened, as explained in Section 2.3. Because the noise

components are whitened, the SNR is improved in the low-

frequency band where the original noise power is high.

However, in the frequency range below 100 Hz, the SNR

is still low. In addition, in the high-frequency band above

13 kHz, in which the response level of |Ĥ1(k)|2 is small,

the SNR becomes worse. Thus, in those frequency bands,

the measurement result, |Ĥ1(k)|2, is affected by noise and

fluctuates. Fig. 12 shows the 1/3 octave band SNR corre-

sponding to Fig. 11. We can see the SNR is below 10 dB in

those frequency bands.

Fig. 13 shows the second measurement result obtained

using a measurement signal, S2(k), with a power spectrum

calculated from Ĥ1(k) using Eqs. (6) and (9). In the figure,

noise components were shaped proportionally to the power

response |Ĥ2(k)|2 at almost all frequencies. This means a

constant SNR was realized.

Comparing Fig. 13 with Fig. 9, which is the measurement

result obtained by using the conventional signal that has a

white spectrum, we found that the frequency response be-

comes clearly observable in the low-frequency band. Com-

paring Fig. 13 with Fig. 11, which is the first measurement
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Fig. 9. Measurement result obtained using TSP signal and noise
components included in the result.
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Fig. 10. 1/3 octave band SNR corresponding to Fig. 9.
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Fig. 11. Result of first measurement by proposed method. Noise
components are whitened.
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Fig. 12. 1/3 octave band SNR corresponding to Fig. 11.
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Fig. 13. Result of second measurement by proposed method. An
almost constant SNR is realized over the target frequency band,
80 Hz–16 kHz.
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Fig. 14. 1/3 octave band SNR corresponding to Fig. 13.

652 J. Audio Eng. Soc., Vol. 61, No. 9, 2013 September



PAPERS A RECURSIVE ADAPTIVE METHOD OF IMPULSE RESPONSE MEASUREMENT

0.2 0.4 0.6 0.8 1 1.2
-0.2

-0.1

0

0.1

0.2

Time (s)

Fig. 15. Waveform of CSN-SS signal used in the second measure-
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Fig. 16. Time-frequency characteristics of CSN-SS signal used in
the second measurement.

result obtained by the proposed method but at the same time

the result obtained by the conventional noise-whitening sig-

nal, we found that the frequency response is less affected by

the noise in the low-frequency and high-frequency bands.

Fig. 14 show the 1/3 octave band SNR corresponding to Fig.

13. From the figure, it is observed that the SNR is almost

constant at 20 dB over the target frequency band. Thus, the

constant SNR characteristic of the proposed method was

verified.

Fig. 15 shows the time waveform of the CSN-SS signal

used in the second measurement. Fig. 16 shows the time-

frequency characteristics (corresponding to the group delay

characteristics) of the CSN-SS signal in Fig. 15. The CSN-

SS signal takes a long time to sweep the low-frequency

band where the SNR is very low. In contrast, it takes a short

time to sweep the high-frequency band where the SNR is

high.

To simply improve SNR, we can adopt another method,

an “averaging method.” However, the averaging method

takes time. Let us assume we need an SNR of more than

17 dB over the target frequency band. As seen in Fig. 14,

the proposed method achieved this in two measurements.

However, Figs. 10 or 12 show that for the results derived

from the conventional signals, their SNR should be im-

proved by more than 10 dB in low-SNR frequency bands.

To achieve this, more than 10 repetitions of measurements

by the averaging method are required.

4 CONCLUSIONS

In this study we proposed a new recursive adaptive

method of impulse response measurement using a new mea-

surement signal, i.e., a CSN-SS (constant-SNR swept-sine)

signal. The spectrum of the CSN-SS signal is determined

to adapt itself to the noise power spectrum and the fre-

quency response of a system. The measurement result of the

frequency response of the unknown system by the proposed

method has a constant SNR in the target frequency band.

We first discussed the spectrum of the measurement sig-

nal required to maintain the SNR in a measurement result at

a constant value regardless of the frequency using the noise

power spectrum, PN (ω), and the frequency response of the

system to be measured, H (ω). When the noise is station-

ary, it is possible to estimate PN (ω) in advance. However,

H (ω) is generally unknown before its measurement. Then,

we proposed an iterative measurement algorithm that re-

cursively estimates the frequency response, H (ω).

To verify the validity of our proposed method, we mea-

sured the room impulse response in a noisy environment and

calculated a room frequency response. The experimental re-

sult showed a frequency response with an almost constant

SNR was obtained by two iterations of measurements. As

a result, we confirmed that our method enabled the obser-

vation of the frequency response with less influence of the

noise in frequency bands where the original NSR was low

than when using conventional measurement signals.

Thus, we experimentally confirmed the constant SNR

characteristic by the proposed method. The constant SNR

characteristic ensures the equal quality of measured fre-

quency response over the target frequency band. In addi-

tion to that, the constant SNR characteristic is expected

to be useful in reverberation time measurement because it

provides a reverberation curve of the constant SNR quality

independent of the frequency.

The signal that achieves a constant SNR characteristic is

not restricted to the SS signal. We can also choose other

signals such as pseudo random noise that has the same

power spectrum as the CSN-SS signal. Performance studies

of other types of signals that have a CSN spectrum are left

for future work.

5 ACKNOWLEDGMENT

The authors would like to thank Professor Tatsuya Hira-

hara of Toyama Prefectural University, Japan, for the dis-

cussion that motivated us to start this work.

6 REFERENCES

[1] H. Kuttruff, Room Acoustics (London, Elsevier Sci-

ence Publishers, 1973), pp. 231–243.

[2] J. Borish, “An Efficient Algorithm for Measuring the

Impulse Response Using Pseudorandom Noise,” J. Audio

Eng. Soc., vol. 31, pp. 478–488 (1983 July/Aug.).

[3] J. Borish, “Self-Contained Crosscorrelation Program

for Maximum-Length Sequences,” J. Audio Eng. Soc.,

vol. 33, pp. 888–891 (1985 Nov.).

[4] D. D. Rife and J. Vanderkooy, “Transfer-Function

Measurement with Maximum-Length Sequences,” J. Audio

Eng. Soc., vol. 37, pp. 419–444 (1989 June).

[5] J. Vanderkooy, “Aspects of MLS Measuring Sys-

tems,” J. Audio Eng. Soc., vol. 42, pp. 219–231 (1994 Apr.).

J. Audio Eng. Soc., Vol. 61, No. 9, 2013 September 653



OCHIAI AND KANEDA PAPERS

[6] C. Dunn and M. O. Hawksford, “Distortion Immu-

nity of MLS-Derived Impulse Response Measurements,”

J. Audio Eng. Soc., vol. 41, pp. 314–335 (1993 May).

[7] N. Aoshima, “Computer-Generated Pulse Signal Ap-

plied for Sound Measurement,” J. Acoust. Soc. Am., vol. 69,

no. 5, pp. 1484–1488 (1981 May).

[8] Y. Suzuki, F. Asano, H. Kim, and T. Sone, “An Op-

timum Computer-Generated Pulse Signal Suitable for the

Measurement of Very Long Impulse Response,” J. Acoust.

Soc. Am., vol. 97, no. 2, pp. 1119–1123 (1995 Feb.).

[9] S. Muller and P. Massarani, “Transfer-Function Mea-

surement with Sweeps,” J. Audio Eng. Soc., vol. 49,

pp. 443–471 (2001 June).

[10] T. Fujimoto, “A Study of TSP Signal Getting

Higher SNR at Low Frequency Bands,” Proc. Autumn Meet.

Acoust. Soc. Jpn., pp. 433–434 (1999 Sept.) [in Japanese].

[11] A. Farina, “Simultaneous Measurement of Impulse

Response and Distortion with a Swept-Sine Technique,”

presented at the 108th Convention of the Audio Engineering

Society (2000 Feb.), convention paper 5093.

[12] A. Farina, “Advancements in Impulse Response

Measurements by Sine Sweeps,” presented at the

122nd Convention of the Audio Engineering Society (2007

May), convention paper 7121.

[13] G. B. Stan, J. J. Embrechts and D. Archambeau,

“Comparison of Different Impulse Response Measurement

Techniques,” J. Audio Eng. Soc., vol. 50, pp. 249–262 (2002

Apr.).

[14] N. Moriya and Y. Kaneda, “Study of Harmonic Dis-

tortion on Impulse Response Measurement with Logarith-

mic Time Stretched Pulse,” Acoust. Sci. & Tech., vol. 26,

no. 5, pp. 462–464 (2005 Sept.).

[15] A. Torras-Rosell and F. Jacobsen, “A New Interpre-

tation of Distortion Artifacts in Sweep Measurements,” J.

Audio Eng. Soc., vol. 59, pp. 283–289 (2011 May).

[16] M. Morise, T. Irino, H. Banno and H. Kawahara,

“Warped-TSP: An Acoustic Measurement Signal Robust

to Background Noise and Harmonic Distortion,” Electron-

ics and Communications in Japan (Part III: Fundamen-

tal Electronic Science), vol. 90, no. 4, pp. 18–26 (2007

April).

[17] S. Weinzierl, A. Giese, and A. Lindau, “Gener-

alized Multiple Sweep Measurement,” presented at the

126th Convention of the Audio Engineering Society(2009

May), convention paper 7767 .

[18] N. Moriya and Y. Kaneda, “Impulse Response Mea-

surement that Maximizes Signal-to-Noise Ratio against

Ambient Noise,” Acoust. Sci. & Tech., vol. 28, no. 1, pp.

43–45 (2007 Jan.).

[19] N. Moriya and Y. Kaneda, “Optimum Signal for Im-

pulse Response Measurement that Minimizes Error Caused

by Ambient Noise,” J. Acoust. Soc. Jpn., vol. 64, no. 12,

pp. 695–701 (2008 Dec.) [in Japanese].

[20] H. Ochiai and Y. Kaneda, “A Study of Impulse

Response Measurement with Constant SN Ratio over All

Frequency Bands,” in Proc. Spring Meet. Acoust. Soc. Jpn.,

pp. 879–880 (2010 Mar.) [in Japanese].

[21] H. Ochiai and Y. Kaneda, “Impulse Response Mea-

surement with Constant Signal-to-Noise Ratio over a Wide

Frequency Range,” Acoust. Sci. & Tech., vol. 32, no. 2,

pp. 76–78 (2011 Mar.).

APPENDIX 1

METHOD OF SYNTHESIZING SS SIGNAL

A method of synthesizing an SS signal that has the de-

sired power spectrum is explained below.

When the phase characteristic of a signal is differentiated

with respect to angular frequency, a group delay character-

istic is obtained. For an SS signal with a constant amplitude,

the power spectrum of the SS signal is obtained when the

group delay characteristic is differentiated with respect to

frequency. In contrast, the group delay characteristic of the

SS signal with the desired power spectrum can be obtained

by integrating the desired power spectrum over frequency

[9].

Therefore, the group delay characteristic of a signal with

the desired power spectrum |S(k)|2, i.e., D(k), is obtained

by integrating |S(k)|2 over frequency as

D(k) = α1 ·

{

k
∑

i=0

|S(i)|2 − |S(0)|2
}

, (10)

where i and k (i, k = 0, 1, 2, . . . , L/2, 0 ≤ i ≤ k) are the

discrete frequency numbers and L is the length of the DFT

(and also the length of the SS signal). Because a discrete

system is assumed, this integration over frequency is ex-

pressed as a sum of |S(i)|2 up to k. The term |S(0)|2 is a

constant, ensuring that D(0) = 0. α1 is a constant that con-

trols the effective length of the SS signal to be T (1 ≦ T ≦ L).

It satisfies

D(L/2) = α1 ·

{

L/2
∑

i=0

|S(i)|2 − |S(0)|2
}

= T . (11)

Therefore,

α1 = T

/{

L/2
∑

i=0

|S(i)|2 − |S(0)|2
}

. (12)

Then, by integrating D(k) with respect to angular fre-

quency 2πk/L , the phase characteristic can be obtained

as

φ(k) =
2π

L
·

k
∑

i=0

D(i). (13)

From this phase characteristic, the frequency spectrum

of the SS signal, Ss(k), is given by

SS(k) =
{

|S(k)| · exp[− jφ(k)] (k = 0, 1, 2, . . . , L/2)

S∗
S(L − k) (k = L/2 + 1, . . . , L − 1)

(14)

Here, * represents the complex conjugate.

The waveform of the SS signal, ss(t), can be obtained by

applying an inverse DFT to the frequency spectrum given

by Eq. (14).
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APPENDIX 2

PROOF OF SOME CHARACTERISTICS OF

PROPOSED ALGORITHM

We prove that the SNR in the nth measurement becomes

constant in the frequency band where a high SNR is ob-

tained in the (n-1)th measurement and the estimate of SNR

is given by C2
n .

The proposed algorithm is summarized by equations

Eqs. (9), (6), and (1), i.e.,

C2
n =

Es

L−1
∑

k=0

PN (k)

|Ĥn−1(k)|2

(15)

|Sn(k)|2 = C2
n ·

PN (k)
∣

∣Ĥn−1(k)
∣

∣

2
(16)

Ĥn(k) = H (k) +
Nn(k)

Sn(k)
. (17)

Here, n is the number of iterations. Nn(k)(n = 1, 2, 3, . . .)

represents stationary noise added in the nth measurement,

and its average is 0 as expressed by the following equations:

E[Nn(k)] = 0, (18)

E[|Nn(k)|2] = PN (k). (19)

The noise components included in the nth measurement

result are Nn(k)/Sn(k), as shown in Eq. (17), and their power

spectrum is expressed using Eqs. (19) and (16).

E

[

∣

∣

∣

∣

Nn(k)

Sn(k)

∣

∣

∣

∣

2
]

=
PN (k)

|Sn(k)|2
=

1

C2
n

·
∣

∣Ĥn−1(k)
∣

∣

2
(20)

Then, the SNR in Ĥn(k) given by Eq. (17), i.e., SN Rn(k),

is expressed using Eq. (20) as

SN Rn(k) =
|H (k)|2

E

[

∣

∣

∣

Nn (k)

Sn (k)

∣

∣

∣

2
] = C2

n ·
|H (k)|2

∣

∣Ĥn−1(k)
∣

∣

2
. (21)

When the SNR in the (n-1)th measurement result,

Ĥn−1(k), is high for frequency k, we obtain

∣

∣Ĥn−1(k)
∣

∣

2 =
∣

∣

∣

∣

H (k) +
Nn−1(k)

Sn−1(k)

∣

∣

∣

∣

2

(22)
≈ |H (k)|2 .

By substituting Eq. (22) into the denominator of Eq.

(21), the SNR in Ĥn(k) for frequency k, at which the SNR

in Ĥn−1(k) is high, is given by

SN Rn(k) ≈ C2
n , (constant). (23)

Thus, SN Rn(k) is constant and independent of frequency,

and C2
n can be a good estimate of SN Rn(k).
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