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A Recursive Algorithm for the Error Probability
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Abstract—A general recursive algorithm for the efficient and
accurate computation of the bit error rate (BER) of square-shaped

-QAM constellations over additive white Gaussian noise
(AWGN) channels is derived. We take advantage of the relation-
ship amongst different square-shaped -QAM constellations
using Gray coded bit mapping.

Index Terms—AWGN, BER computation, -QAM, square con-
stellation.

I. INTRODUCTION

SINCE its discovery in the early 1960s, quadrature amplitude
modulation (QAM) has continued to gain interest and

practical applications. -ary QAM ( -QAM) is a bandwidth
efficient scheme, which has been employed for digital video
broadcasting (DVB) [1], while adaptive -QAM has been
applied for high-speed data transmission over fading channels
[2], [3]. Conventionally, the bit error rate (BER) computation of

-QAM has been performed by either calculating the symbol
error probability first [4], [5] or simply estimating it using
lower/upper bounds [4], [6]. In [1] the BER has been directly
estimated for 16-QAM and 64-QAM constellations using Gray
coded bit mapping. However, no general algorithm of satisfac-
tory accuracy exists for directly estimating the BER of arbitrary

-QAM constellations.
The objective of this letter is to present a general algorithm for

the efficient and accurate computation of the BER of coherent
square-shaped Gray coded-QAM constellations over addi-
tive white Gaussian channels (AWGN). In contrast to conven-
tional approaches, which treat-QAM having different values
of separately, in our proposed approach, we take advantage
of the relationship between different square-QAM constella-
tions. Explicitly, a simple recursive algorithm is derived and the
BER performance of an arbitrary square-QAM constellation
is estimated.

This letter is organized as follows. Section II describes the
-QAM system model. Asa special case, the BER of a 16-QAM

constellation is analyzed in Section III. The approach used for
16-QAM is then generalized for arbitrary square-QAM con-
stellations in Section IV. In Section V we present numerical ex-
amples, which is followed by our conclusions in Section VI.

II. SYSTEM MODEL

The square -QAM signal constellation is exemplified in
Fig. 1 for [1]. The -QAM signal can be mathemat-
ically represented by:

(1)
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Fig. 1. 16-QAM square constellation.

where is the symbol interval, which is related to the bit du-
ration by where represents the number
of bits per symbol, the quadrature amplitudesand range
over the set of , in which rep-
resents the minimum Euclidean distance of constellation points,
while can be computed according to [5]:

(2)

where represents the average energy per bit.
Throughout, we will restrict our considerations to Gray coded

bit mapping [1]. With reference to Fig. 1 as an example, it can
be seen that according to the Gray coded bit mapping two ad-
jacent -bit symbols differ in a single bit. As a result, an erro-
neous decision resulting in an adjacent symbol is accompanied
by one and only one bit error. Furthermore, we will assume op-
timum coherent detection with perfect carrier tracking, perfect
frequency tracking, and symbol synchronization.

III. BER OF 16-QAM CONSTELLATION

We commence by considering the simple case of a square
16-QAM signal constellation, as shown in Fig. 1, where each
phasor can be represented by a 4-bit symbol, , where
and indicate the inphase bits, while and the quadra-
ture-phase bits. The -QAM signal can be decomposed
into two independent -AM signals [5]. These two -AM
signals have the same error probability and can be treated in-
dependently. Consequently, considering the in-phase4-AM
signal the average bit error probability can be computed by con-
sidering the th bit and the th bit, respectively [1].

Referring to Fig. 1 and [1, Ch. 5], for the bit the error
probability can be expressed as:

(3)
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where is the -function, which is defined as
, and

(4)

Substituting (2) into the above equation, we arrive at
for 16-QAM, where represents the average

signal-to-noise ratio (SNR) per bit. Similarly, according to Fig. 1
and following the approach of [1] the error probability of the
bit can be expressed as

(5)

Finally, the exact average BER for the square 16-QAM signal
is computed by averaging the error probabilities given by (3) and
(5), yielding

(6)

In conjunction with Gray coded bit mapping [1], in addition
to two adjacent -bit symbols differing in a single bit, another
important property is that the constellation points of the
four quadrants in Fig. 1 in the mirror-symmetric positions have
identical bits assigned to them with respect to theand axes,
if we ignore the and bits. Hence, without considering bits
and , the points in each quadrant actually constitute an -
QAM constellation. Consequently, the average bit error proba-
bility of an -QAM constellation can be expressed with the aid
of the BER expression of an -QAM constellation, if we
ignore the bits and . Let us now invoke this property in order
to investigate the approximate BER expression of 16-QAM.
Throughout, let represent the BER expressionofa 4-QAM
constellationbutwith computedaccording to the16-QAMcon-
stellation, i.e.using ,asshownpreviously.

A. Approximation 1

In practical terms it is reasonable to assume that a bit error is
most frequently caused by a noise sample exceeding, while the
probability of exceeding is insignificant, when the signal-to-
noise ratio is sufficiently high. Consequently, the BER expres-
sion of (3) for the bit can be approximated as

(7)

Upon invoking the BER expression of 4-QAM—which is ex-
pressed as —the BER of (5) for the bit can
be expressed as

(8)

Finally, the average BER of square 16-QAM can be approxi-
mated with the aid of (6), where and were given
by (7) and (8).

B. Approximation 2

The approximate formulae of (7) and (8) are suitable for
16-QAM upon assuming sufficiently high SNR’s. However, if
the SNR is low, a more close approximation is required. This
can be achieved by considering also the case, when the noise
exceeds . In this case the BER of the bit is given by (3),
while that of the bit can be expressed as

(9)

upon neglecting the probability of the noise exceedingin (5).
And finally, the average BER for the square 16-QAM signal can

Fig. 2. Simplified representation of an arbitrary squareM -QAM constellation
using Gray coded bit mapping.

approximated by (6) with and given by (3) and
(9), respectively.

Above, we have used 16-QAM as an example and inves-
tigated its average exact and approximate BER. The above
approach of combining the BER expressions of-QAM
having different values of can be extended to arbitrary
square -QAM constellations and consequently can be used
to simplify the associated BER computations. Let us now
consider the general algorithm suitable for computing the BER
of an arbitrary square -QAM constellation.

IV. BER OF ARBITRARY SQUARE -QAM CONSTELLATIONS

The points of an -QAM constellation in quadrants I and II
can be simply portrayed, as seen in Fig. 2, where the first two
bits indicate the bits and encountered in the quadrants
I and II, while the remaining number of bits of the

-QAM symbol are represented by , or .
Referring to Fig. 1 and [1], it is explicit that
actually represent the corresponding points of a row in the

-QAM constellation. Let repre-
sent the -bit -QAM symbol. Then, the average BER can
be derived as follows.

A. Approximation 1

Based on Approximation 1, where the probability of noise ex-
ceeding was neglected, the BER of thebit of an -QAM
constellation can be expressed as:

(10)

where is given by (4), while is given by (2) for -QAM.
The average BER of bits of an -QAM con-
stellation can be expressed as:

(11)

Consequently, the average BER of-QAM can be derived by
averaging the BER given by (10) and (11), yielding

(12)

According to (12) has to be determined first, in
order to derive . Hence the general BER expression of
(12) can be implemented with the aid of a recursive algorithm,
which is described as follows. Let and
evaluate:

(13)

for , until , which is the average
BER of the considered square -QAM scheme, where

represents the number of bits per symbol of a K-QAM
constellation. It can be shown on the basis of (13) that we have
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to evaluate only one integral, in order to determine the resulting
BER of an -QAM constellation.

Approximation 2

When using Approximation 2, where the probability of the
noise exceeding was neglected and can be
expressed as:

(14)

(15)

where the former is the probability of an bit error, while the
latter is the average BER of bits . Note that in
the computation of there exists only one term including

, except those included in . This term is the
second part at the right-hand side of (15), which is derived from

and by considering that and have a one-bit dif-
ference according to Fig. 2, due to the associated Gray coding.

When invoking Approximation 2, let ,
. Then the average BER of the square-QAM

signal can be recursively determined according to:

(16)

for , until , which is the average
BER of the considered square-shaped-QAM constellation.
Equation (16) implies that only two integrals have to be evalu-
ated at the first step, in order to obtain the resulting BER of the
square -QAM constellation.

V. NUMERICAL EXAMPLES

In this sectionwe use the abovealgorithms, in order toevaluate
the BER performance of various square-QAM schemes using
different values of . Fig. 3 is used to show the accuracy of
the BER estimated by the proposed approximation approaches,
while Fig. 4 implies that we can readily estimate the BER of an
arbitrarily high-order square -QAM constellation. In Fig. 3,
the BER of 16-QAM and 64-QAM computed according to the
recursive expression of (13) and (16) were compared with the
exact BER of 16-QAM—which was obtained from (6)—and
the exact BER of 64-QAM—which was computed according to
the related equations in [1]. These results were also compared
with the “standard” approximation derived from the division of
the symbol error probability by the number of bits per symbol,

[5, p. 630]. It can be shown that both Approxima-
tion 1 and 2 are closer to the exact BER than the “standard”
approximation within the range of SNR per bit considered. An
accurate BER can be achieved by Approximation 1, when the
SNR per bit is sufficiently high. However, when the SNR per bit
is too low (for example lower than 4dB for 64-QAM), the more
accurate Approximation 2 has to be invoked, in order to achieve a
satisfactory BER approximation. As shown in Fig. 3, we cannot
distinguish theexactBERfromthat computedbyApproximation
2 for16-QAMand64-QAMover theSNRrangeof interest.

Fig. 4 shows the BER performance of various square-QAM
constellations for , 16, 64, 256, 1024 and 4096. Note that
for the BER formula is reduced to that of quadrature
phase shift keying (QPSK), yielding ,

Fig. 3. BER performance of squareM -QAM using Gray coded bit mapping
over AWGN channels, whereP (E) represents the average symbol error
probability.

Fig. 4. BER performance of squareM -QAM using Gray coded bit mapping
over AWGN channels.

while the BER of the remaining -QAM constellations was es-
timated according to (13) and (16), upon invoking Approxima-
tions 1 and 2, respectively. It can be shown that at the average
BER of , 4–5 dB of SNR per bit has to be invested, in order
to transmit an extra 2 bits/symbol by employing a higher-order
square -QAM constellation.

VI. CONCLUSIONS

A simple recursive algorithm was proposed, which is based
on the symmetry of the different square-QAM constellations
using Gray coded bit mapping for evaluating the BER of arbi-
trarily high-order square -QAM constellations. The numerical
examples show that the BER of any square-QAM constella-
tion can be accurately estimated by the proposed algorithm.
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