
1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

A Recursive Decomposition Method for Large

Scale Continuous Optimization
Yuan Sun, Michael Kirley, and Saman K. Halgamuge

Abstract—Cooperative Co-evolution (CC) is an evolutionary
computation framework that can be used to solve high dimen-
sional optimization problems via a ‘divide-and-conquer’ mecha-
nism. However, the main challenge when using this framework
lies in problem decomposition. That is, deciding how to allocate
decision variables to a particular sub-problem, especially inter-
acting decision variables. Existing decomposition methods are
typically computationally expensive. In this paper, we propose a
new decomposition method, which we call Recursive Differential
Grouping (RDG), by considering the interaction between decision
variables based on non-linearity detection. RDG recursively
examines the interaction between a selected decision variable
and the remaining variables, placing all interacting decision
variables into the same sub-problem. We use analytical methods
to show that RDG can be used to efficiently decompose a problem,
without explicitly examining all pairwise variable interactions.
We evaluated the efficacy of the RDG method using large
scale benchmark optimization problems. Numerical simulation
experiments showed that RDG greatly improved the efficiency of
problem decomposition in terms of time complexity. Significantly,
when RDG was embedded in a CC framework, the optimization
results were better than results from seven other decomposition
methods.

Index Terms—Large scale global optimization, cooperative co-
evolution, decomposition method, continuous optimization prob-
lem.

I. INTRODUCTION

LARGE-SCALE (high-dimensional) optimization prob-

lems are ubiquitous in the real-world, occurring in do-

mains spanning the sciences, engineering, and multidisci-

plinary design problems [1]–[3]. Such problems are very

difficult to solve when using evolutionary algorithms (EAs),

and in many cases cannot be solved when using traditional

mathematical approaches. This in part may be attributed to

the fact that (a) the search space of an optimization problem

grows exponentially as the dimensionality increases [4]; (b) the

complexity of an optimization problem usually grows as the

dimensionality increases [5]; and (c) the computational cost of

using some EAs (e.g., estimation of distribution algorithms)

when solving very high-dimensional problems is extremely

high [6].

Yuan Sun is with the Department of Mechanical Engineering,
The University of Melbourne, Parkville, VIC, 3010, Australia, email:
yuans2@student.unimelb.edu.au.

Michael Kirley is with the Department of Computing and Information
Systems, The University of Melbourne, Parkville, VIC, 3010, Australia email:
mkirley@unimelb.edu.au.

Saman K. Halgamuge is with the Research School of Engineering,
The Australian National University, Canberra, ACT, 2601, Australia, email:
saman.halgamuge@anu.edu.au.

Manuscript received August 15, 2016; revised November 30, 2017, March
20, 2017, and July 29, 2017; accepted November 20, 2017.

There has been significant recent interest within the Evo-

lutionary Computation community focussed specifically on

tackling large scale global optimization (LSGO) problems.

This is best illustrated by the introduction of special sessions

held at the leading conferences and the special issues published

in related journals. The review papers by Mahdavi et al., [7]

and LaTorre et al., [8] highlight recent developments in this

exciting field.

Cooperative Co-evolution (CC) [9] has been used with some

success when ‘scaling up’ EAs to tackle very high dimen-

sional search and optimization problems. For example, CC

has been applied to large scale continuous [10], combinatorial

[11], constrained [12], multi-objective [13] and dynamic [14]

optimization problems. The CC framework divides the LSGO

problem into a number of sub-components, and uses an (sev-

eral) EA(s) to solve each sub-component cooperatively. When

optimizing each sub-component, representatives (typically the

best sub-solutions found) from the other sub-components are

combined with individuals in the optimized sub-component,

to form complete candidate solutions that can be evaluated. A

number of studies have shown that the problem decomposition

can have a significant impact on the performance of a CC

framework (e.g., [10], [15]–[18]).

The existing decomposition methods can be classified into

two very different approaches (see Section II-B for a brief

review): In the Manual Decomposition method, the structure

of the sub-components is manually designed (e.g., Random

Grouping [19]). This method does not take the underlying

structure of variable interactions (see Section II-B1 for formal

definition) into consideration. In the second method, Automatic

Decomposition, the structure of the sub-components is deter-

mined by the identified decision variable interactions (e.g.,

Differential Grouping [10]). However, this approach can be

computationally expensive – decomposing an n-dimensional

problem typically consumes O(n2) function evaluations (FEs).

This high computational complexity results in an inappropriate

allocation of computational resources to the decomposition

stage rather than the optimization stage.

In this paper, we propose a Recursive Differential Group-

ing (RDG) method, which can decompose an n-dimensional

problem using O
(

n log(n)
)

FEs. The RDG method examines

the interaction between a selected decision variable xi and

the remaining decision variables based on non-linearity detec-

tion. If any interaction is identified, the remaining decision

variables will be divided into two equally sized groups, and

the interaction between xi and each group is checked. This

process is carried out recursively until all of the individual

decision variables interacting with xi have been identified and

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

have been placed into the same sub-component as xi.

We have evaluated the efficacy of the RDG method us-

ing benchmark LSGO problems (problems from the special

sessions on LSGO at CEC’2010 [20] and CEC’2013 [21]).

Comprehensive numerical simulations showed that the RDG

method can decompose the benchmark problems efficiently in

terms of time complexity. We verified that the sub-component

groupings dictated by RDG were in fact useful for optimiza-

tion. When embedded into a CC framework, the optimization

results generated using the RDG method were statistically

better in terms of solution quality when compared against

seven other decomposition methods across the benchmark

suite.

The remainder of this paper is organized as follows. Section

II describes the state-of-the-art algorithms and decomposition

methods within the context of LSGO. Section III describes

the proposed RDG method in detail. Section IV describes

experiments to evaluate the proposed RDG method. Section

V presents and analyzes the experimental results. Section VI

concludes the paper and shows future directions.

II. RELATED WORK

A. Algorithms for LSGO

In this section, we briefly describe the state-of-the-art tech-

niques that can be used to ‘scale up’ EAs for LSGO problems.

1) Cooperative Co-evolution: The CC [9] framework tack-

les a LSGO problem using a divide-and-conquer strategy. It

divides the problem into a number of low-dimensional sub-

components that are solved cooperatively. A standard CC algo-

rithm consists of two stages: decomposition and optimization.

In the decomposition stage, an optimization problem is

decomposed into several sub-components. For example, a

decomposition of a 6-dimensional optimization problem (f :
R

6 → R̄) could possibly be {(x1, x2), (x3, x4), (x5, x6)}, as

shown in Fig. 1. When the structure of the underlying decision

variable interactions are considered, this allocation to sub-

components may in fact be different. Recent studies have

shown that the performance of a CC algorithm relies heavily

on the way the optimization problem is decomposed [7], [10],

[15], [16], [18]. See sections II-B and III for further details.

In the optimization stage, an evolutionary algorithm can

be used to optimize each sub-component based on a context

vector. The context vector is a complete candidate solution,

typically consisting of the best sub-solutions from each sub-

component. When optimizing the ith sub-component, the

context vector (excluding the ith sub-solution) is used to com-

bine with the individuals in the ith sub-component, to form

complete candidate solutions that can be evaluated, as shown

in Fig. 1. It has been found that using only one context vector

may be too greedy [22]. Therefore, the adaptive multi-context

CC [22] framework is proposed, which employs more than one

context vector to co-evolve sub-components. The original CC

framework [9] optimizes each sub-component in a round-robin

fashion. Recently, a contribution based CC framework [23]

has been proposed to efficiently allocate the computational

resources. In each cycle, it selects and optimizes the sub-

component that makes the greatest historical contribution to

the fitness improvement.

Decom-

position
x1 x2 x3 x4 x5 x6x1 x2 x3 x4 x5 x6

☛
✡

✟
✠
☛
✡

✟
✠
☛
✡

✟
✠

☛
✡

✟
✠
☛
✡

✟
✠
☛
✡

✟
✠

Context

Vector
x∗

1
x∗

2
x∗

3
x∗

4
x∗

5
x∗

6
x∗

1
x∗

2
x∗

3
x∗

4
x∗

5
x∗

6

Optimizing

group 2

{ }

x∗

1
x∗

2
x∗

5
x∗

6
x∗

1
x∗

2
x∗

5
x∗

6

x1

3
x1

4
...

...
xn
3

xn
4

x1

3
x1

4

xn
3

xn
4

↑

the population of group 2

consisting of n individuals

Fig. 1. The decomposition and optimization of a 6-dimensional problem using
a CC algorithm. The problem has been decomposed into 3 sub-components,
each with 2 decision variables. When optimizing the 2nd sub-component, the
context vector (excluding the 2nd sub-solution) is used to combine with the
individuals in the 2nd sub-component, to form complete candidate solutions
that can be evaluated.

2) Other Techniques: In addition to CC, there are other

techniques that can be used to address the additional chal-

lenges inherent in LSGO problems. Representative techniques

include the model complexity control [6] and random projec-

tion [24] methods for estimation of distribution algorithms;

the multiple strategies [25] and generalized opposition-based

learning [26] methods for differential evolution; the social

learning [27] and pairwise competition [28] methods for

particle swarm optimization; and the multiple trajectory search

[29] as well as multiple offspring sampling [30] methods

for algorithm hybridization. Due to page limits, we cannot

describe these techniques in detail.

B. Decomposition Methods

1) Interacting decision variables: In this sub-section, we

start by presenting a formal definition of ‘variable interac-

tions’, as some of the decomposition methods discussed below

rely on variable interactions.

In an optimization problem, two decision variables interact

if they cannot be optimized independently to find the global

optimum. It is important to note that the interaction between

given decision variables may be complicated. Take the follow-

ing objective function as an example:

f(x) := x2

1 + (x2 − x3)
2 + (x3 − x4)

2, x ∈ [−1, 1]4, (1)

where ‘:=’ denotes ‘defined as’. Decision variable x2 interacts

with x3, and x3 interacts with x4. Therefore, x2 and x4 are

linked by x3. If the optimal value of x3 is known, x2 and x4

are independent, as they can be optimized separately. However,

if x3 needs to be optimized, x2 and x4 will influence each

other. Therefore, x2 conditionally interacts with x4
1. Note that

conditional interaction only exists in overlapping problems

e.g., Rosenbrock’s function [21]. The formal definitions of

interaction and conditional interaction are consistent with

the definitions of direct interaction and indirect interaction

described in [15], [31]:

1In [4], the relationships between {x2, x4} and {x1, x4} are both defined
as additively separable. In this paper, we use conditional interaction to
differentiate these two relationships.

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

Definition 1. Let f : Rn → R̄ be a differentiable function.

Decision variables xi and xj interact if a candidate solution

x
∗ exists, such that

∂2f(x∗)

∂xi∂xj

6= 0. (2)

denoted by xi ↔ xj . Decision variables xi and xj condition-

ally interact if for any candidate solution x
∗,

∂2f(x∗)

∂xi∂xj

= 0, (3)

and a set of decision variables {xk1, . . . , xkt} ⊂ X exists,

such that xi ↔ xk1 ↔ . . . ↔ xkt ↔ xj . Decision variables

xi and xj are independent if for any candidate solution x
∗, Eq.

(3) holds and a set of decision variables {xk1, . . . , xkt} ⊂ X
does not exist, such that xi ↔ xk1 ↔ . . . ↔ xkt ↔ xj .

2) Manual Decomposition: In these methods, the number

of sub-components and the size of each sub-component are

manually designed. These methods work well when combined

with algorithms to solve fully separable problems. However,

the performance deteriorates quickly when applied on partially

separable problems or fully non-separable problems. The main

reason is that it does not take the underlying structure of

variable interactions into consideration.

Probably the first and simplest decomposition is the uni-

variable grouping [9] method, which decomposes an n-

dimensional problem into n 1-dimensional sub-components.

The uni-variable grouping method improved the performance

of a genetic algorithm (GA) when solving benchmark sepa-

rable problems, however it degraded the GA’s performance

when solving a benchmark non-separable problem – the

Rosenbrock’s function [9]. This performance difference may

be attributed to the fact that the uni-variable grouping method

decomposes an optimization problem without considering the

interaction between decision variables.

The Sk grouping [32] method is more flexible than the uni-

variable grouping method when used to decompose an opti-

mization problem. It decomposes an n-dimensional problem

into k s-dimensional sub-components, s < n. The Sk grouping

method has been shown to be able to improve the performance

of a particle swarm optimization [32] algorithm and a biogeo-

graph based optimization [33] algorithm. However, like the

uni-variable grouping method, the Sk grouping method does

not take variable interactions into consideration.

The random grouping (RG) method is proposed within the

context of a differential evolution cooperative co-evolution

(DECC) framework [19]. It randomly assigns decision vari-

ables to predetermined number of sub-components before each

evolutionary cycle. The RG method has been successfully

applied to improve the performance of a particle swarm

optimization [34] algorithm and an artificial bee colony [35]

algorithm. However, it has been shown that the probability

of assigning more than two interacting decision variables

into one sub-component using the RG method is low [36].

Another limitation of RG is the requirement of setting an

appropriate sub-component size. To address this issue, the

multilevel cooperative co-evolution [37] algorithm takes the

sub-component size as a parameter, and selects an appropriate

sub-component size according to the historical performance.

A more sophisticated method – delta grouping [38] iden-

tifies variable interactions based on the averaged difference

in a certain decision variable across the whole population.

It generally outperforms the RG method when incorporated

with the DECC framework to solve the CEC’2010 benchmark

problems [38]. However on benchmark problems with more

than one non-separable sub-component, the performance of

the delta grouping method is low [10].

The k-means grouping [39] method uses a k-means clus-

tering algorithm to construct decision variable groups. The

decision variables with similar effects on the fitness value are

placed into the same sub-component. The sub-component with

the greatest contribution to the fitness value will be optimized

with more iterations (FEs). The idea is similar to the contri-

bution based cooperative co-evolution [23], [40] framework.

Unlike most decomposition methods which group decision

variables based on variable interactions, the k-means grouping

method groups decision variables based on their contribution

to the fitness improvement. Therefore, it is specifically tailored

for problems with unbalanced sub-components [4], [39].

3) Automatic Decomposition: In these methods, the in-

teracting decision variables are identified and automatically

placed into the same sub-component. It is important to

note that automatic decomposition considers the underlying

variable interaction structure encapsulated within the search

landscape. The decomposition method proposed in Section III

falls into this category.

A representative automatic decomposition method – cooper-

ative co-evolution with variable interaction learning (CCVIL)

[41] – identifies the pairwise interaction between decision vari-

ables by the non-monotonicity detection. If the monotonicity

of the fitness function with respect to xi does not change for

different value of xj , xi and xj are independent. Otherwise,

decision variables xi and xj interact. The rationale behind the

CCVIL method is consistent with the linkage identification by

non-monotonicity detection [42] method. The CCVIL method

is more accurate than most of the manual decomposition

methods when identifying variable interactions. However, it

still can not obtain acceptable results when used to decompose

some benchmark problems [10].

The statistical variable interdependence learning (SL) [43]

method identifies variable interactions based on the non-

monotonicity detection as well. Unlike the CCVIL method, the

SL method detects the monotonicity relationship between xi

and xj multi-times. The probability (pij) of the observation of

non-monotonicity is calculated. If the probability pij is greater

than a given threshold, decision variables xi and xj interact.

The main issue of the SL method is the high computational

complexity. The number of FEs needed to decompose an n-

dimensional optimization problem is 4mn2, where m is the

number of non-monotonicity detection conducted for each pair

of decision variables.

To address the high computational complexity of the SL

method, a fast variable interdependence searching [44] method

is proposed. It identifies interactions between two subsets of

decision variables, instead of two decision variables, by non-

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

monotonicity detection. Therefore, it speeds up the decompo-

sition process. The computational cost to decompose an n-

dimensional problem can be reduced to 4mn log(n) in the

worst case.

The differential grouping (DG) [10] method identifies vari-

able interactions by detecting the fitness changes when per-

turbing the decision variables. If the fitness change induced

by perturbing decision variable xi varies for different value

of xj , xi and xj interact. The rationale behind the DG

method is consistent with the linkage identification by non-

linearity check [45] method. The DG method outperformed

the CCVIL method when used to decompose the CEC’2010

benchmark problems [10]. However it has been shown not to

be able to completely identify interacting decision variables in

overlapping problems [15], [46].

Subsequently, the extended differential grouping (XDG)

[15] method was proposed to address this issue, by placing all

the linked (interacting and conditionally interacting) decision

variables into one sub-component. It employs the same tech-

nique as DG to identify interacting decision variables. Then the

overlapping between sub-components are checked to identify

conditional interactions. However, the number of FEs used

by XDG to decompose an n-dimensional problem is usually

around n2. The high complexity of the XDG method results in

an inappropriate allocation of computational budget between

decomposition and optimization, and prevents it from being

applied to solve even higher dimensional problems.

The computational cost in the decomposition stage can be

reduced to (n2 + 3n + 2)/2 by using the global differential

grouping (GDG) [46] method. It employs the same technique

as DG to identify the pairwise interactions between decision

variables. The variable interaction matrix is calculated, which

is regarded as the adjacency matrix of a graph. Then the depth-

first search or breadth-first search can be used to identify

the connected components. Note that both the interacting and

conditionally interacting decision variables will also be placed

into one connected component (sub-component).

Recently, it has been shown that the minimal number of

FEs used to identify the complete variable interaction matrix

based on DG is (n2 + n + 2)/2 [47]. However, it may

not need the entire variable interaction matrix to identify

the connected components (sub-components). For example, if

decision variable x1 interacts with x2 and x3, the interaction

between x2 and x3 needs not to be checked, as they belong

to the same connected component.

The fast interdependency identification (FII) [48] method

can further improve the efficiency of problem decomposition

by avoiding the need to identify the complete variable in-

teraction matrix. FII firstly identifies the separable decision

variables by examining the interaction between one decision

variable and the other variables. Then the interaction be-

tween non-separable decision variables is examined, and all

the linked (connected) decision variables are placed into the

same sub-component. The FII method is efficient when used

to decompose benchmark problems with a large portion of

separable decision variables. However on benchmark problems

with conditional variable interactions, the number of FEs used

by FII may still be in the magnitude of n2
(

Θ(n2)
)

. In the next

section, we will propose an efficient and robust method that

can decompose any n-dimensional problem using less than

6n log
2
(n) FEs.

III. RECURSIVE DIFFERENTIAL GROUPING

In this section, the proposed decomposition method – Re-

cursive Differential Grouping (RDG) – is described in detail.

Then, the computational complexity of the RDG method is

presented.

Notation. Let X be the set of decision variables {x1, . . . , xn};

UX be the set of unit vectors in the decision space Rn. Let

X1 be a subset of decision variables X1 ⊂ X; and UX1
be

a subset of UX such that any unit vector u = (u1, . . . , un) ∈
UX1

, we have
ui = 0, if xi /∈ X1. (4)

Directional Derivative. Let f : R
n → R̄ be a differentiable

function, and u = (u1, . . . , un) be a vector from UX . The

directional derivative of f in the direction u, denoted Duf(x),
is given by

Duf(x) =

n
∑

i=1

∂f(x)

∂xi

ui. (5)

Proposition 1. Let f : R
n → R̄ be a differentiable function;

X1 ⊂ X and X2 ⊂ X be two mutually exclusive subsets of

decision variables: X1∩X2 = ∅. If there exist two unit vectors

u1 ∈ UX1
and u2 ∈ UX2

, and a candidate solution x
∗ in the

decision space such that

Du1
Du2

f(x∗) 6= 0, (6)

there is some interaction between decision variables in X1

and X2.

Proof. Without loss of generality, we assume that X1 =
{x1,1, . . . , x1,p}, X2 = {x2,1, . . . , x2,q}, where p, q are the

number of decision variables in X1 and X2 respectively;

u1 = (u1

1
, . . . , u1

n) and u2 = (u2

1
, . . . , u2

n). According to

Directional Derivative,

Du1
Du2

f(x) =

n
∑

i=1

n
∑

j=1

∂2f(x)

∂xi∂xj

u1

iu
2

j . (7)

As u1 and u2 are two unit vectors from UX1
and UX2

respectively, we can obtain that:

u1

i = 0, if xi /∈ X1, (8)

u2

j = 0, if xj /∈ X2. (9)

Therefore,

Du1
Du2

f(x) =

p
∑

i=1

q
∑

j=1

∂2f(x)

∂x1,i∂x2,j

u1

1,iu
2

2,j , (10)

If (6) holds,

p
∑

i=1

q
∑

j=1

∂2f(x∗)

∂x1,i∂x2,j

u1

1,iu
2

2,j 6= 0. (11)

Therefore, there exists at least one pair of (i, j), such that

∂2f(x∗)

∂x1,i∂x2,j

6= 0. (12)

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

Based on Definition 1, at least one pair of decision variables

x1,i ∈ X1 and x2,j ∈ X2 interact.

Corollary 1. Let f : Rn → R̄ be an objective function; X1 ⊂
X and X2 ⊂ X be two mutually exclusive subsets of decision

variables: X1 ∩X2 = ∅. If there exist two unit vectors u1 ∈
UX1

and u2 ∈ UX2
, two real numbers l1, l2 > 0, and a

candidate solution x
∗ in the decision space, such that

f(x∗+ l1u1+ l2u2)−f(x∗+ l2u2) 6= f(x∗+ l1u1)−f(x∗), (13)

there is some interaction between decision variables in X1

and X2.

Proof. With Proposition 1, we only need to prove the follow-

ing statement:

Statement 1. If there exist two unit vectors u1 ∈ UX1
and

u2 ∈ UX2
, two real numbers l1, l2 > 0, and a candidate

solution x
∗ in the decision space, such that Eq. (13) holds,

then Eq. (6) is true.

It is equivalent to prove its contraposition:

Statement 2. If for any two unit vectors u1 ∈ UX1
and u2 ∈

UX2
, and for any candidate solution x

∗ in the decision space,

the following condition holds:

Du1
Du2

f(x∗) = 0, (14)

then

f(x∗+ l1u1+ l2u2)−f(x∗+ l2u2) = f(x∗+ l1u1)−f(x∗), (15)

for any l1, l2 > 0.

In order to prove Statement 2, we first introduce line

integral.

Line Integral. Let L be a curve with end points A and B in

the decision space Rn and the arc length of L be l. Let C be

any point on L and the coordinate of C (x) can be uniquely

determined by the length of the arc AC (s): x = x(s), s ∈
[0, l]. The integral of a function g : Rn → R̄ along the curve

L is given by
∫

L

g(x) ds =

∫ l

0

g
(

x(s)
)

ds. (16)

Let A2 (x∗) be any point in Rn, and B2 be x
∗+l2u2, where

u2 is any vector in UX2
and l2 is any positive real number. Let

C2 be any point on the segment A2B2. Therefore, the length

of the segment A2B2 is l2, and the coordinate of C2 (x) can

be uniquely determined by the length of the segment A2C2

(s2): x(s2) = x
∗+s2u2, s2 ∈ [0, l2]. If Eq. (14) holds for any

candidate solution in the decision space, then

Du1
Du2

f(x) = 0. (17)

As Du1
Du2

f(x) = Du2
Du1

f(x), by integrating both sides of

Eq. (17) along the segment A2B2, we can obtain that
∫ l2

0

Du1
Du2

f(x) ds2 =

∫ l2

0

Du2
Du1

f(x) ds2 = 0. (18)

As
∫ l2

0

Du2

(

Du1
f
(

x(s2)
)

)

ds2 = Du1
f
(

x(s2)
)

∣

∣

∣

s2=l2

s2=0

, (19)

thus

Du1
f
(

x(s2)
)

∣

∣

∣

s2=l2

s2=0

= 0, (20)

and

Du1
f(x∗ + l2u2)−Du1

f(x∗) = 0. (21)

As A2 (x∗) is any point in Rn, therefore

Du1
f(x+ l2u2) = Du1

f(x). (22)

Let A1 (x∗) be any point in Rn, and B1 be x
∗ + l1u1, where

u1 is any vector in UX1
and l1 is any positive real number. Let

C1 be any point on the segment A1B1. Therefore, the length

of the segment A1B1 is l1, and the coordinate of C1 (x) can

be uniquely determined by the length of the segment A1C1

(s1): x(s1) = x
∗+ s1u1, s1 ∈ [0, l1]. Similarly, by integrating

both sides of Eq. (22) along the segment A1B1, we can obtain

∫ l1

0

Du1
f(x(s1) + l2u2) ds1 =

∫ l1

0

Du1
f(x(s1)) ds1. (23)

Therefore,

f(x∗+ l1u1+ l2u2)−f(x∗+ l2u2) = f(x∗+ l1u1)−f(x∗). (24)

Thus, Statement 2 is proved, and Statement 1 and Corollary

1 are true.

With Corollary 1, the interaction between two subsets of

decision variables (X1 and X2) can be identified using the

following procedures:

1) Set all the decision variables to the lower bounds (lb) of

the search space (xl,l);

2) Perturb the decision variables X1 of xl,l from the lower

bounds to the upper bounds (ub), denoted by xu,l;

3) Calculate the fitness difference (δ1) between xl,l and xu,l;

4) Perturb the decision variables X2 of xl,l and xu,l from the

lower bounds to the middle between the lower bounds and

upper bounds, denoted by xl,m and xu,m respectively;

5) Calculate the fitness difference (δ2) between xl,m and

xu,m;

6) If the difference between δ1 and δ2 is greater than a

threshold ǫ, there is some interaction between X1 and

X2.

The two subscripts of x denote the values of X1 and X2

respectively: ‘l’ means lower bounds, ‘u’ means upper bounds,

and ‘m’ means the middle between the lower bounds and

upper bounds. The threshold ǫ is estimated based on the

magnitude of the objective space [46]:

ǫ = α ·min
{

|f(x1)|, · · · , |f(xk)|
}

, (25)

where x1, · · · ,xk are k randomly generated candidate solu-

tions, and α is the control coefficient [46].

Based on Corollary 1, we propose the Recursive Differ-

ential Grouping (RDG) (Algorithm 1) method to efficiently

decompose an optimization problem. The decomposition by

the RDG method considers the underlying structure of variable

interactions. Taking the following objective function as an

example:

f(x) := x2

1+(x2−x3)
2+(x3−x4)

2+(x5−x6)
2, x ∈ [−1, 1]6, (26)

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

Interaction

Structure
x1
♠ x2

♠ x3
♠ x4

♠ x5
♠ x6

♠x1
♠ x2

♠ x3
♠ x4

♠ x5
♠ x6

♠↔ ↔ ↔

RDG Dec-

omposition

❄
❅
❅❘ ❄

�
�✠

❆
❆❯

✁
✁☛

x1 x2 x3 x4 x5 x6x1 x2 x3 x4 x5 x6
♠

☛
✡

✟
✠
☛
✡

✟
✠

♠
☛
✡

✟
✠
☛
✡

✟
✠

↑
group 1

↑
group 2

↑
group 3

Fig. 2. The variable interaction structure and the RDG decomposition of
the objective function given in Eq. (26). The notation xi ↔ xj denotes that
decision variable xi interacts with xj .

the decision variables (x2, x3, x4) interact, as well as

(x5, x6). Therefore, the decomposition by the RDG method

is {(x1), (x2, x3, x4), (x5, x6)}, as shown in Fig. 2.

The inputs to the RDG method are the fitness function

(f), the upper bounds (ub), the lower bounds (lb), and the

threshold (ǫ) which is estimated using Eq. (25). The outputs

are the separable variable group (seps) and the non-separable

variable groups (nonseps). The seps contains one group of

all separable decision variables. The nonseps contains several

groups of non-separable decision variables. Each group of

decision variables will form a sub-component.

The RDG method begins by identifying the interaction be-

tween the first decision variable x1 and the remaining decision

variables. If no interaction is detected, x1 will be placed in

the separable decision variable group, and the algorithm will

move on to the next decision variable x2. If any interaction

is detected, the remaining decision variables will be divided

into two (nearly) equally-sized groups G1 and G2. Then the

interaction between x1 and G1, x1 and G2 will be identified

respectively. This process is recursively conducted until all the

individual decision variables that interact with x1 are identified

and placed in the decision variable subset X1 with x1.

Then, the RDG method examines the interaction between

X1 and the remaining decision variables (excluding the de-

cision variables in X1) to identify the individual decision

variables that conditionally interact with x1 (linked by other

decision variables). If any interaction is identified, the interact-

ing decision variables will be placed into X1. This process is

repeated until no interaction can be further detected between

X1 and the remaining decision variables (exclusive X1). The

decision variables in X1 will be placed in a non-separable

group.

The RDG method moves on to the next decision variable

that has not been grouped (xi). The interaction between xi and

the remaining decision variables will be examined, and both

the interacting and conditionally interacting (linked) decision

variables will be placed into one group with xi. This process

is repeated until all of the decision variables are grouped. It

returns the separable (seps) and the non-separable (nonseps)

decision variable groups as the outputs.

The computational complexity of the RDG method when

used to decompose an n-dimensional problem is O
(

n log(n)
)

,

which is analyzed as follows:

1) When decomposing an n-dimensional fully separable

problem, the computational complexity of the RDG

Algorithm 1 Recursive Differential Grouping

Require: f , ub, lb, ǫ
1: Initialize seps and nonseps as empty groups

2: Set all decision variables to the lower bounds: xl,l = lb

3: Calculate the fitness: yl,l = f(xl,l)
4: Assign the first variable x1 to the variable subset X1

5: Assign the rest of variables to the variable subset X2

6: while X2 is not empty do

7: [X∗

1
] = INTERACT(X1, X2, xl,l, yl,l, ǫ)

8: if X∗

1
is the same with X1 then

9: if X1 contains one decision variable then

10: Add X1 to seps
11: else

12: Add X1 to nonseps
13: end if

14: Empty X1 and X∗

1

15: Assign the first variable of X2 to X1

16: Delete the first variable in X2

17: else

18: X1 = X∗

1

19: Delete the variables of X1 from X2

20: end if

21: end while

22: return seps and nonseps

1: function INTERACT(X1, X2, xl,l, yl,l, ǫ)
2: xu,l=xl,l; xu,l(X1) = ub(X1) //Set X1 to the ub

3: Calculate the fitness change: δ1 = yl,l − f(xu,l)
4: xl,m = xl,l; xl,m(X2) =

(

lb(X2) + ub(X2)
)

/2
5: xu,m = xu,l; xu,m(X2) =

(

lb(X2) + ub(X2)
)

/2
6: Calculate the fitness change: δ2 = f(xl,m)− f(xu,m)
7: if |δ1 − δ2| > ǫ then

8: if X2 contains one variable then

9: X1 = X1 ∪X2

10: else

11: Divide X2 into equally-sized groups G1, G2

12: [X1

1
]=INTERACT(X1, G1, xl,l, yl,l, ǫ)

13: [X2

1
]=INTERACT(X1, G2, xl,l, yl,l, ǫ)

14: [X1]= X1

1
∪X2

1

15: end if

16: end if

17: return X1

18: end function

method is Θ(n) in terms of the number of FEs. For

each decision variable, 3 FEs are used to determine its

separability. Therefore, totally about 3n FEs are needed.

2) When decomposing an n-dimensional fully non-separable

problem with one sub-component, the computational

complexity of the RDG method is Θ(n). When group-

ing the n interacting decision variables, the function

‘INTERACT’ is executed about
∑k

i=0
(n/2i) times, where

k = log
2
(n).

k
∑

i=0

n

2i
= n

(

2−
(1

2

)k
)

< 2n (27)

It consumes 3 FEs each time the function ‘INTERACT’ is

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

executed. Therefore totally about 6n FEs are used.

3) When decomposing an n-dimensional partially separable

problem with n/m sub-components, the computational

complexity of the RDG method is Θ
(

n log(n)
)

, where n
is the dimensionality and m is the number of decision

variables in each sub-component. When grouping m
interacting decision variables into one sub-component,

the function ‘INTERACT’ is executed less than 2m ×
log

2
(n) times, each time consuming 3 FEs. The number

of sub-components is n/m. Therefore, totally less than

3× 2m× log
2
(n)× n/m = 6n log

2
(n) FEs are used.

4) When decomposing an n-dimensional partially separa-

ble problem with an m-dimensional non-separable sub-

component, the computational complexity of the RDG

method is O
(

max{n,m log(n)}
)

. The RDG algorithm

consumes about 3(n − m) FEs to identify the n − m
separable decision variables, and consumes less than

6m× log
2
(n) FEs to identify the m interacting decision

variables. Therefore, totally less than 3(n−m) + 6m×
log

2
(n) FEs are used.

5) When decomposing an n-dimensional overlapping prob-

lem (e.g., Rosenbrock’s function [21]), the computational

complexity of the RDG method is Θ
(

n log(n)
)

. Starting

from x1, it consumes about 3×2×2 log
2
(n) = 12 log

2
(n)

FEs to identify the two decision variables (xp and xq)

that interact with x1. Then it also consumes about

12 log
2
(n) FEs to identify the two decision variables

that interact with (xp, x1, xq). Therefore, totally about

n/2× 12 log
2
(n) = 6n log

2
(n) FEs are used.

IV. EXPERIMENTAL METHODOLOGY

In this section, comprehensive numerical experiments are

designed to evaluate the proposed RDG method. Two research

questions guide the experimental design to evaluate the effi-

cacy of the proposed RDG method:

Q1. Can the proposed RDG method decompose the

CEC’2010 and CEC’2013 benchmark problems more

efficiently when compared against other well-known de-

composition methods?

Q2. Can the proposed RDG method outperform other well-

known decomposition methods when embedded into a

CC framework to solve the CEC’2010 and CEC’2013

benchmark problems?

To answer Q1, the proposed RDG method was used to

decompose the CEC’2010 [20] and CEC’2013 [21] bench-

mark problems2. Two metrics were employed to evaluate the

performance of a decomposition method: (1) the number of

FEs used to decompose the problem; and (2) the percentage

of interacting decision variables that are correctly grouped,

defined as

Decomposition Accuracy. Let G = {g1, . . . , gm} denote the

groups of interacting decision variables in a problem f , and

G̃ = {g̃1, . . . , g̃n} denote the groups of interacting decision

variables that are identified by a decomposition method. Let

2The MATLAB implementation of the RDG method can be accessed from
the following link: https://bitbucket.org/yuans/rdg.

TABLE I
THE PARAMETER SETTINGS FOR ALL THE DECOMPOSITION METHODS

USED IN THE EXPERIMENTS. DG2 IS A PARAMETER-FREE METHOD.

Decomposition Methods Parameter Settings

RDG control coefficient α = 10−12 and k = 10
GDG control coefficient α = 10−12 and k = 10
XDG threshold ǫ = 10−1

DG threshold ǫ = 10−3

DG2 parameter free

FII threshold ǫ = 10−2

D (delta grouping) sub-component size sub dim = 100
RG sub-component size sub dim = 100

Gi = {gi,1, . . . , gi,m} denote the ith permutation of G, where

1 ≤ i ≤ m!, and G̃j = {g̃j,1, . . . , g̃j,n} denote the jth
permutation of G̃, where 1 ≤ j ≤ n!. The decomposition

accuracy (DA) of the decomposition method on f is defined

as

DA =

max
i,j

{min{m,n}
∑

k=1

|gi,k ∩ g̃j,k|
}

m
∑

i=1

|gi|
, (28)

where |gi| denotes the number of decision variables in gi.

The performance of the RDG method was then compared

to the GDG [46], XDG [15], DG [10], as well as two

recently published methods – DG2 [47], and FII [48]. The

parameter settings for all the decomposition methods used in

the experiments are shown in Table I. The threshold values

(ǫ) estimated by the RDG (or GDG) method for each problem

were recorded. Note that the RDG and GDG methods use the

same approach
(

Eq. (25)
)

to estimate the threshold values.

To answer Q2, the proposed RDG method was embedded

into the DECC [19] / CMAESCC [46] framework to solve the

CEC’2010 and CEC’2013 benchmark problems. The DECC is

the most widely used CC framework, which employs a variant

of Differential Evolution – SaNSDE [49] – to solve each sub-

component cooperatively. The CMAESCC framework uses

the well-known CMA-ES [50] algorithm to solve each sub-

component. It performs well when used to solve the CEC’2010

and CEC’2013 benchmark problems. The parameter settings

for the DECC and CMAESCC frameworks were consistent

with the original papers. The maximum number of FEs was

set to 3 × 106, divided between the decomposition stage and

optimization stage. For each benchmark problem, the median,

mean and standard deviation of the best solutions found by the

DECC/CMAESCC-RDG algorithm based on 25 independent

runs were recorded. The performance of the RDG method was

compared against the performance of the XDG, GDG, DG,

DG2, FII, as well as two manual decomposition methods – D

(delta grouping [38]) and RG [19] methods, when embedded

in each CC framework.

The performance of DECC/CMAESCC-RDG was also com-

pared to the performance of two state-of-the-art hybrid algo-

rithms – MOS [30] and MA-SW-Chains [51] with default pa-

rameter settings. The MOS algorithm evaluates the constituent

algorithms in each generation, and the better performed con-

stituent algorithm will be used to generate more offspring.

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

MOS achieved the best performance in the 2011 special issue

of the Soft Computing journal. The MA-SW-Chains algorithm

assigns to each individual a local search intensity that depends

on its features, by chaining different local search applications.

MA-SW-Chains achieved the best performance in the CEC

2010 special session and competition on LSGO.

The Kruskal-Wallis nonparametric one-way ANOVA test

[52] with 95% confidence interval was used to determine

whether the performance of at least one algorithm was sig-

nificantly different from the others. Then a series of Wilcoxon

rank-sum tests (significance level α=0.05) with Holm p-value

correction [52] was conducted in a pairwise fashion to find

the better performing algorithm.

V. EXPERIMENTAL RESULTS

Comprehensive experimental results are presented and dis-

cussed in this section. Section V-A presents the decomposition

comparison between the RDG method and five other methods,

thus addressing Q1. Section V-B presents the optimization

comparison between the RDG method and seven other meth-

ods when embedded into the DECC/CMAESCC framework to

solve the benchmark problems, thus addressing Q2.

A. Decomposition Comparison

Table II lists the decomposition results of the RDG, GDG,

XDG and DG methods on the CEC’2010 and CEC’2013

benchmark problems. The parameter settings for the four

decomposition methods are consistent with Table I. In Table II,

“DA” represents the decomposition accuracy – the percentage

of interacting decision variables that correctly grouped; “FEs”

represents the number of FEs used in the decomposition

stage; “ǫ” represents the threshold used to identify interactions

between decision variables. Note that the threshold values used

by RDG are the same as those used by GDG. The entries with

the best decomposition accuracy achieved using the smallest

number of FEs are highlighted in bold. Different categories of

benchmark problems are divided by lines.

The RDG and GDG methods obtain nearly the same de-

composition accuracy across all the benchmark problems. The

reason for this is that RDG uses the same approach
(

Eq. (25)
)

as GDG to estimate the threshold values. However, RDG is

much more efficient than GDG in terms of FEs used. Note

that the number of FEs used by GDG to decompose an n-

dimensional problem is fixed: (n2 + 3n+ 2)/2.

The first three problems (f1-f3) from each benchmark suite

are fully separable. Therefore, decomposition accuracy is not

applicable to these problems. On f1 and f2 (CEC’2010 and

CEC’2013), the RDG method successfully identifies all the

decision variables as separable, using a small number of FEs.

However on f3, the RDG and GDG methods identify all the

separable variables as non-separable, and place them into one

sub-component. The reason for this is that the threshold value

is under-estimated by the RDG and GDG methods on f3.

The CEC’2013 f13 and f14 are benchmark problems with

overlapping (conforming or conflicting) sub-components. It

is not clear yet what is the best approach to decompose

these problems [4], [21]. The RDG, GDG and XDG methods

place all the overlapped sub-components into one group. On

the other benchmark problems where the sub-components

are independent with each other, the ‘ideal’ decomposition

can possibly be achieved (See [4], [10], [20], [21] for more

information). Note that the 100% decomposition accuracy in

Table II corresponds to the ideal decomposition.

On the CEC’2010 partially separable problems (f4-f18),

the RDG method consistently achieves the best results when

compared against GDG, XDG and DG. The RDG, GDG and

XDG methods achieve the ideal decomposition on all of these

benchmark problems. However, the number of FEs used by the

GDG and XDG methods is usually several magnitude larger

than that used by the RDG method. The DG method performs

well on the benchmark problems without conditional variable

interactions. On f19, the DG method uses the smallest number

of FEs to decompose the problem. However on problems with

conditional variable interactions (overlapping problems e.g.,

CEC’2010 f13, f18 and f20), the decomposition accuracy of

the DG method is low. The reason for this is that DG is unable

to completely identify variable interactions in overlapping

problems [15], [46].

On the CEC’2013 partially separable problems (f4-f11), the

RDG method achieves the best results on 4 out of 8 benchmark

problems. We observe that it is generally more difficult to

identify the variable interactions in the CEC’2013 than the

CEC’2010 benchmark problems. None of the four methods can

perfectly decompose the CEC’2013 f8, f10 and f11 problems.

On CEC’2013 f11, the threshold value is underestimated by

the RDG and GDG methods
(

Eq. (25)
)

, resulting in placing all

the decision variables into a single non-separable group. While

on CEC’2013 f8 and f10, the threshold value is overestimated,

resulting in some omissions of variable interactions being

identified.

The threshold values estimated by the GDG and RDG meth-

ods vary significantly across the CEC’2010 and CEC’2013

benchmark problems. Therefore, it is very difficult to find a

single threshold value to accurately identify variable interac-

tions across all the problems. Although the threshold value

ǫ = 10−1 works well for the XDG method on the CEC’2010

benchmark problems, it fails on some of the CEC’2013

benchmark problems e.g., f5-f8. On f5, the XDG algorithm

(with ǫ = 10−1) identifies all the interacting decision variables

as separable. The reason for this is that the threshold value

10−1 is too large compared with the computational error,

which is equal to 8.03 × 10−5 estimated by the RDG and

GDG methods. When using the estimated computational error

as the threshold value, the XDG method achieves equal

decomposition accuracy with the RDG method.

To further show the efficacy of the RDG method, we com-

pare the performance of RDG against two recently published

methods – DG2 and FII. The average number of FEs used by

RDG to decompose the CEC’2010 and CEC’2013 benchmark

problems is 1.47×104, which is less than that used by the DG2

and FII methods: 4.95× 105 and 4.94× 104 respectively. The

detailed decomposition results of the DG2 and FII methods

are presented in the supplementary documents.

The DG2 method uses a fixed number of FEs to decompose

an n-dimensional problem: (n2 + n + 2)/2, which has been

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

TABLE II
THE EXPERIMENTAL RESULTS OF THE PROPOSED RDG METHOD WHEN USED TO DECOMPOSE THE CEC’2010 AND CEC’2013 BENCHMARK PROBLEMS.
“DA” IS THE DECOMPOSITION ACCURACY; “FES” IS THE FES USED; “ǫ” IS THE THRESHOLD. NOTE THAT THE THRESHOLD VALUES USED BY RDG ARE

THE SAME AS THOSE USED BY GDG. THE PERFORMANCE OF THE RDG METHOD IS COMPARED WITH THE PERFORMANCES OF THE GDG, XDG AND DG
METHODS. THE ENTRIES WITH THE BEST DA ACHIEVED USING THE LOWEST FES ARE HIGHLIGHTED IN BOLD.

Bench- Func RDG GDG XDG (ǫ = 10−1) DG (ǫ = 10−3)

marks Num DA FEs ǫ DA FEs DA FEs DA FEs

CEC’2010

f1 – 3.00e+03 4.11e-01 – 5.01e+05 – 1.00e+06 – 1.00e+06
f2 – 3.00e+03 2.49e-08 – 5.01e+05 – 1.00e+06 – 1.00e+06
f3 – 6.00e+03 2.15e-11 – 5.01e+05 – 1.00e+06 – 1.00e+06

f4 100% 4.20e+03 1.03e+04 100% 5.01e+05 100% 8.05e+04 100% 1.45e+04
f5 100% 4.15e+03 1.14e-03 100% 5.01e+05 100% 9.98e+05 100% 9.05e+05
f6 100% 5.00e+04 2.13e-05 100% 5.01e+05 100% 9.98e+05 100% 9.06e+05
f7 100% 4.23e+03 5.17e+00 100% 5.01e+05 100% 9.98e+05 68.0% 6.77e+04
f8 100% 5.60e+03 2.62e+05 100% 5.01e+05 100% 1.21e+05 90.0% 2.32e+04

f9 100% 1.40e+04 4.88e-01 100% 5.01e+05 100% 9.77e+05 100% 2.70e+05
f10 100% 1.40e+04 2.52e-08 100% 5.01e+05 100% 9.77e+05 100% 2.72e+05
f11 100% 1.36e+04 2.36e-10 100% 5.01e+05 100% 9.78e+05 99.8% 2.70e+05
f12 100% 1.43e+04 4.26e-05 100% 5.01e+05 100% 9.77e+05 100% 2.71e+05
f13 100% 2.92e+04 3.71e+00 100% 5.01e+05 100% 1.00e+06 31.8% 5.03e+04

f14 100% 2.05e+04 4.15e-01 100% 5.01e+05 100% 9.53e+05 100% 2.10e+04
f15 100% 2.05e+04 2.53e-08 100% 5.01e+05 100% 9.53e+05 100% 2.10e+04
f16 100% 2.09e+04 4.30e-10 100% 5.01e+05 100% 9.56e+05 99.6% 2.11e+04
f17 100% 2.07e+04 1.10e-04 100% 5.01e+05 100% 9.53e+05 100% 2.10e+04
f18 100% 4.98e+04 8.19e+00 100% 5.01e+05 100% 9.99e+05 23.0% 3.96e+04

f19 100% 6.00e+03 6.14e-04 100% 5.01e+05 100% 3.99e+03 100% 2.00e+03

f20 100% 5.08e+04 8.53e+00 100% 5.01e+05 100% 1.00e+06 28.7% 1.55e+05

CEC’2013

f1 – 3.00e+03 4.20e-01 – 5.01e+05 – 1.00e+06 – 1.00e+06
f2 – 3.00e+03 1.31e-07 – 5.01e+05 – 1.00e+06 – 1.00e+06
f3 – 6.00e+03 2.16e-11 – 5.01e+05 – 1.00e+06 – 1.00e+06

f4 100% 9.84e+03 7.22e+01 100% 5.01e+05 33.3% 3.97e+05 95.3% 1.56e+04
f5 100% 1.01e+04 8.03e-05 100% 5.01e+05 0.00% 1.00e+06 0.00% 1.00e+06
f6 100% 1.32e+04 1.07e-06 100% 5.01e+05 50.0% 9.90e+05 82.6% 5.79e+05
f7 100% 9.82e+03 5.82e+05 100% 5.01e+05 33.3% 2.66e+04 39.6% 1.14e+04

f8 80.0% 1.95e+04 1.20e+06 80.0% 5.01e+05 10.0% 6.83e+04 85.6% 2.26e+04

f9 100% 1.92e+04 6.07e-03 100% 5.01e+05 99.9% 9.35e+05 100% 1.76e+04
f10 82.7% 1.91e+04 9.80e-05 90.0% 5.01e+05 79.6% 9.52e+05 79.8% 4.86e+04
f11 10.0% 1.06e+04 1.52e+06 10.0% 5.01e+05 10.0% 2.20e+04 37.7% 9.10e+03

f12 100% 5.08e+04 8.57e+00 100% 5.01e+05 100% 1.00e+06 39.0% 1.49e+05
f13 – 8.39e+03 1.83e+06 – 4.10e+05 – 1.29e+04 – 5.86e+03
f14 – 1.61e+04 5.45e+06 – 4.10e+05 – 3.57e+04 – 1.39e+04
f15 100% 6.16e+03 2.70e+06 100% 5.01e+05 100% 3.99e+03 100% 2.00e+03

f6 f8 f13 f16 f18 f20

0

1

2

3

4

5

·105

F
E

s

RDG

FII

Fig. 3. The benchmark problems from the CEC’2010 test suite on which
the RDG and FII methods generate significant different results (the difference
between the number of FEs used is greater than 104).

shown to be the lower bound of identifying the complete

variable interaction matrix. With the complete variable in-

teraction matrix being identified, it is possible to generate

an effective decomposition for the problems with overlapping

sub-components, e.g., CEC’2013 f13 and f14 [47]. However,

the existing automatic decomposition methods place all the

linked decision variables into one sub-component.

DG2 is a parametric-free method, which automatically

estimates the threshold values in the decomposition process.

The decomposition accuracy of DG2 on the CEC’2010 and

CEC’2013 benchmark problems is high. It achieves 100% de-

composition accuracy for the CEC’2013 f10 and f11 problems.

The variable interactions in these two problems are difficult

for the other decomposition methods to identify. However on

CEC’2013 f7 and f8, the decomposition accuracy of DG2 is

less than that of RDG.

The FII method performs well when used to decompose the

benchmark problems with a large portion of separable decision

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

1,000 2,000 3,000 4,000 5,000

0

0.5

1

1.5

·105

n

F
E

s

RDG

FII

(a) CEC’2010 f12

1,000 2,000 3,000 4,000 5,000

0

1

2

3

4

5

·105

n

F
E

s

RDG

FII

(b) CEC’2010 f15

1,000 2,000 3,000 4,000 5,000

0

0.2

0.4

0.6

0.8

1
·107

n

F
E

s

RDG

FII

(c) CEC’2010 f18

Fig. 4. The number of FEs used by RDG and FII methods when used to decompose the extended benchmark problems (CEC’2010 f12, f15 and f18) with
dimensionality equal to 1000, 2000, 3000, 4000, and 5000.

TABLE III
THE EXTENDED CEC’2010 f12 , f15 AND f18 PROBLEMS. FOR EACH

PROBLEM, THE NUMBER OF DECISION VARIABLES IN EACH

NON-SEPARABLE SUB-COMPONENT IS FIXED TO 50, WHICH IS

CONSISTENT WITH THE ORIGINAL BENCHMARK SET [20].

Func Dim Sep Variables Non-Sep Groups

f12

1000 500 10
2000 1000 20
3000 1500 30
4000 2000 40
5000 2500 50

f15, f18

1000 0 20
2000 0 40
3000 0 60
4000 0 80
5000 0 100

variables. For example on CEC’2010 f4, where there are 950

separable and 50 non-separable decision variables, the number

of FEs used by FII (3.69× 103) is slightly less than that used

by RDG (4.20×103). However, on some benchmark problems

especially those with conditional variable interactions e.g.,

CEC’2010 f18 and f20, RDG is much more efficient than FII,

as shown in Fig. 3.

In fact, the number of FEs used by the FII method to

decompose the CEC’2010 f18 and f20 problems is in Θ(n2).
It has been shown that FII uses 3n + knn + k FEs when

decomposing an n-dimensional problem with equally sized

non-separable sub-components, where nn is the number of

non-separable decision variables, and k is the number of non-

separable sub-components [48]. As CEC’2010 f18 and f20 are

Rosenbrock’s functions, nn is equal to n and each decision

variable interacts with at most two other decision variables.

Therefore the total number of FEs used by FII is around

3n+ n2/3 + n/3 ∈ Θ(n2).

On CEC’2010 f6, the number of FEs used by RDG (5.00×
104) is greater than that used by FII (3.05× 103). The reason

for this is that the threshold estimated by the RDG method

(ǫ = 2.13× 10−5) is too small, resulting in identifying some

separable decision variables as non-separable. If RDG employs

TABLE IV
THE AVERAGE RANKING OF EACH DECOMPOSITION METHOD WHEN

EMBEDDED INTO THE DECC OR CMAESCC FRAMEWORK TO SOLVE THE

CEC’2010 AND CEC’2013 BENCHMARK PROBLEMS. THE RDG METHOD

CONSISTENTLY ACHIEVES THE SMALLEST AVERAGE RANKING.

CCs RDG GDG XDG DG DG2 FII D RG

DECC 2.0 4.9 4.0 4.4 3.9 2.5 4.6 4.7
CMAESCC 1.7 3.1 3.3 4.0 2.9 2.2 6.7 5.7

the same threshold with FII (ǫ = 0.01), the FEs used by RDG

will decrease to 5.06×103. However if FII employs the same

threshold with RDG, the FEs used by FII will increase to

3.12× 105.

To test the scalability of the RDG and FII methods, we

extend some of the CEC’2010 benchmark problems from 1000

dimensions to 5000 dimensions (See Table III for details).

When tested on the extended benchmark problems, we observe

that the FEs used by the FII method increases more quickly

than that used by the RDG method as the dimensionality

increases, as shown in Fig. 4.

B. Optimization Comparison

The performances of the RDG, GDG, XDG, DG, DG2,

FII, D (delta grouping), and RG methods when embedded in

the DECC/CMAESCC framework to solve the CEC’2010 and

CEC’2013 benchmark problems are presented in Fig. 5 and

Fig. 6 respectively. On each benchmark problem, the eight

methods are ranked from 1 to 8 (as labelled on the concentric

circles in the radar charts) based on the results from 25

independent runs. The average ranking of each decomposition

method across all the benchmark problems is presented in

Table IV. The detailed optimization results from DECC-RDG

and CMAESCC-RDG are presented in Table V and Table VI.

The results from the other seven methods are placed in the

supplementary documents due to page limits.

When embedded into the DECC/CMAESCC framework,

the RDG method achieves the best solution quality when

used to solve 16/15 out of 23 partially separable benchmark

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

RG

D

FII

DG2

DG

XDG

GDG

RDG

f1 f2

f3

f4

f5

f6

f7

f8

f9

f10f11
f12

f13

f14

f15

f16

f17

f18

f19

f20

1

2

3

4

5

6

7

8

(a) CEC’2010

f1
f2

f3

f4

f5

f6

f7

f8f9

f10

f11

f12

f13

f14

f15

1

2

3

4

5

6

7

8

(b) CEC’2013

Fig. 5. The radar chart of the performance of RDG, GDG, XDG, DG, DG2, FII, D (delta grouping) and RG when embedded in the DECC framework to solve
the CEC’2010 and CEC’2013 benchmark problems. On each benchmark problem, the eight methods are ranked from 1 to 8 (as labelled on the concentric
circles) based on the results from 25 independent runs (Wilcoxon rank-sum tests (α=0.05) with Holm p-value correction).

RG

D

FII

DG2

DG

XDG

GDG

RDG

f1 f2

f3

f4

f5

f6

f7

f8

f9

f10f11
f12

f13

f14

f15

f16

f17

f18

f19

f20

1

2

3

4

5

6

7

8

(a) CEC’2010

f1
f2

f3

f4

f5

f6

f7

f8f9

f10

f11

f12

f13

f14

f15

1

2

3

4

5

6

7

8

(b) CEC’2013

Fig. 6. The radar chart of the performance of RDG, GDG, XDG, DG, DG2, FII, D (delta grouping) and RG when embedded in the CMAESCC framework
to solve the CEC’2010 and CEC’2013 benchmark problems. On each benchmark problem, the eight methods are ranked from 1 to 8 (as labelled on the
concentric circles) based on the results from 25 independent runs (Wilcoxon rank-sum tests (α=0.05) with Holm p-value correction).

problems (CEC’2010 f4-f18 and CEC’2013 f4-f11). It ob-

tains the smallest average ranking across all the benchmark

problems investigated. The RDG method generally uses the

smallest number of FEs in the decomposition stage, assigning

more computational resources to optimize the problems, when

compared against the other automatic decomposition methods.

On the fully separable and some fully non-separable prob-

lems, the RDG method is outperformed by the two manual

decomposition methods – D (delta grouping) and RG, as

RDG does not actually perform any decomposition for these

problems. However, the performance of the D (delta grouping)

and RG methods deteriorates quickly on the partially separable

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

0 0.5 1 1.5 2 2.5 3

·106

103

105

107

109

1011

1013

n

F
E

s

RG

D

FII

DG2

DG

XDG

GDG

RDG

(a) DECC

0 0.5 1 1.5 2 2.5 3

·106

100

103

106

109

1012

n

F
E

s

(b) CMAESCC

Fig. 7. The convergence curves of the RDG, GDG, XDG, DG, DG2, FII, D (delta grouping) and RG methods when embedded into the DECC and CMAESCC
frameworks to solve the CEC’2010 f18 problem. The horizontal axis represents the number of FEs used in the evolutionary process. The vertical axis represents
the median of the best fitness found.

problems.

On some benchmark problems with separable decision vari-

ables, e.g., CEC’2010 f10, the GDG method generates better

solution quality than RDG. The reason for this is that GDG

further divides the separable decision variables into several

sub-components. Interestingly, the GDG method achieves the

first place when embedded into CMAESCC, however the last

place when embedded into DECC, to solve the CEC’2010 f9.

The DG method performs poorly on overlapping benchmark

problems (e.g., CEC’2010 f8, f13, f18, and f20). The reason

for this is that the DG method can not completely iden-

tify interaction between decision variables in an overlapping

problem. Once all the variable interactions are identified and

all the linked decision variables are placed into one sub-

component, the solution quality can be greatly improved by

several magnitudes.

The DG2 method generates the best solution quality when

embedded into the CMAESCC framework to solve the

CEC’2013 f11 problem. The reason for this is that DG2

achieves 100% accuracy when used to decompose this prob-

lem, which is higher than RDG. However on the other bench-

mark problems, the RDG method generally obtains equally

well or statistically better solution quality than DG2.

The FII method performs well across the benchmark prob-

lems investigated. It achieves the second place according to the

average ranking. However, on the benchmark problems where

the decomposition by FII is less efficient e.g., CEC’2010 f8,

the RDG method can generate significantly better solution

quality than FII.

The DECC-D (with delta grouping) algorithm achieves

much better results than the other DECC based algorithms

when used to solve the CEC’2010 f3 and f11 benchmark

problems. An interesting observation is that both f3 and f11
are Ackley’s functions [21]. Moreover, the DECC-D (with

delta grouping) algorithm also performs well when used to

solve the other Ackley’s functions: CEC’2010 f6, f16 and

CEC’2013 f3, f6, f10. So far, we don’t know the reason why

the DECC-D (with delta grouping) algorithm performs well

on the Ackley’s functions.

The convergence curves of the eight decomposition methods

when embedded into the DECC/CMAESCC framework to

solve the CEC’2010 f18 problem are shown in Fig. 7. The

RDG method uses the smallest number of FEs in the decompo-

sition stage, therefore can generate better solution quality when

compared against the other automatic decomposition methods.

In the next phase of the experimental study, we compare

the performance of DECC-RDG and CMAESCC-RDG against

the performance of two state-of-the-art algorithms – MOS and

MA-SW-Chains. The experimental results of each algorithm

when used to solve the CEC’2010 and CEC’2013 benchmark

problems are presented in Table V and Table VI respectively.

The CMAESCC-RDG algorithm achieves the best solution

quality on 22 out of 35 benchmark problems when compared

against DECC-RDG, MOS and MA-SW-Chains. It does not

perform well on the fully separable problems (CEC’2010 f1
to f3 and CEC’2013 f1 to f3). However on partially separable

and fully non-separable problems, it generally achieves com-

parable or statistically better solution quality than the other

algorithms (e.g., on CEC’2010 f4 to f9 and f11 to f19).

The DECC-RDG algorithm achieves the best solution qual-

ity when used to solve the CEC’2010 f16 problem. On the

other 34 benchmark problems, the DECC-RDG is outper-

formed by the CMAESCC-RDG. It may indicate that the sub-

component optimizer used by the CMAESCC framework is

more effective than that used by the DECC framework.

The MOS algorithm achieves the best results when used

to solve the fully separable problems (CEC’2010 f1-f3, and

CEC’2013 f1-f3). However, on partially separable problems

and fully non-separable problems, it is generally outperformed

by the CMAESCC-RDG algorithm.

The MA-SW-Chains algorithm performs well on the

CEC’2013 benchmark problems. It achieves the best results

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

TABLE V
THE RESULTS OF THE DECC-RDG, CMAESCC-RDG, MOS AND

MA-SW-CHAINS ALGORITHMS WHEN USED TO SOLVE THE CEC’2010
BENCHMARK PROBLEMS. THE BEST PERFORMANCES ARE HIGHLIGHTED

IN BOLD (WILCOXON RANK-SUM TESTS (α=0.05) WITH HOLM P-VALUE

CORRECTION).

Func Stats DECC-RDG CMAESCC-RDG MOS MA-SW-Chains

f1

Median 1.50e-01 2.86e+05 0.00e+00 2.67e-14

Mean 2.07e+00 2.84e+05 1.50e-28 3.80e-14

Std 6.75e+00 2.28e+04 5.55e-28 4.91e-14

f2

Median 4.35e+03 4.43e+03 0.00e+00 8.47e+02

Mean 4.38e+03 4.42e+03 0.00e+00 8.40e+02

Std 1.72e+02 1.76e+02 0.00e+00 4.88e+01

f3

Median 1.65e+01 1.12e+00 0.00e+00 5.16e-13

Mean 1.65e+01 1.05e+00 0.00e+00 5.76e-13

Std 3.35e-01 3.49e-01 0.00e+00 2.73e-13

f4

Median 5.75e+11 9.97e+05 4.94e+11 3.10e+11

Mean 6.68e+11 1.01e+06 5.16e+11 2.97e+11

Std 3.33e+11 9.37e+04 1.85e+11 6.19e+10

f5

Median 1.31e+08 9.05e+07 5.00e+08 2.30e+08

Mean 1.28e+08 9.52e+07 4.93e+08 2.18e+08

Std 1.92e+07 2.22e+07 6.93e+07 5.75e+07

f6

Median 1.61e+01 1.04e+00 1.97e+07 2.45e+00

Mean 1.61e+01 9.17e-01 1.97e+07 1.42e+05

Std 3.64e-01 4.23e-01 1.15e+05 3.96e+05

f7

Median 2.46e+00 7.41e-19 2.27e+07 7.94e-03

Mean 2.16e+01 7.41e-19 3.54e+07 1.17e+02

Std 7.56e+01 8.35e-20 3.22e+07 2.37e+02

f8

Median 3.66e+00 1.83e-17 2.14e+06 2.76e+06

Mean 1.59e+05 6.37e+05 3.75e+06 6.90e+06

Std 7.97e+05 1.49e+06 4.40e+06 1.90e+07

f9

Median 4.65e+07 4.80e+06 1.18e+07 1.48e+07

Mean 4.69e+07 4.82e+06 1.13e+07 1.49e+07

Std 5.21e+06 3.88e+05 1.61e+06 1.61e+06

f10

Median 4.33e+03 2.78e+03 6.35e+03 2.02e+03

Mean 4.33e+03 2.79e+03 6.28e+03 2.01e+03

Std 1.39e+02 1.17e+02 3.12e+02 1.59e+02

f11

Median 1.03e+01 1.51e-12 2.84e+01 3.77e+01

Mean 1.03e+01 3.58e-02 3.08e+01 3.86e+01

Std 8.50e-01 1.79e-01 6.07e+00 8.06e+00

f12

Median 1.38e+03 4.30e-22 3.46e+03 3.09e-06

Mean 1.53e+03 4.22e-22 4.39e+03 3.24e-06

Std 4.66e+02 8.38e-23 2.92e+03 5.78e-07

f13

Median 6.12e+02 3.98e+00 3.19e+02 8.61e+02

Mean 7.12e+02 4.78e+00 3.32e+02 9.83e+02

Std 2.52e+02 3.98e+00 1.19e+02 5.66e+02

f14

Median 3.47e+08 3.90e-20 2.04e+07 3.23e+07

Mean 3.47e+08 3.91e-20 2.05e+07 3.25e+07

Std 2.31e+07 2.11e-20 3.60e+06 2.46e+06

f15

Median 5.82e+03 1.92e+03 1.29e+04 2.67e+03

Mean 5.84e+03 1.94e+03 1.29e+04 2.68e+03

Std 1.01e+02 1.10e+02 3.48e+02 9.95e+01

f16

Median 2.66e-13 8.41e-13 3.97e+02 9.32e+01

Mean 2.67e-13 8.43e-13 3.96e+02 9.95e+01

Std 9.81e-15 2.10e-14 3.47e+00 1.53e+01

f17

Median 4.08e+04 6.89e-24 7.30e+03 1.28e+00

Mean 4.07e+04 6.90e-24 8.45e+03 1.27e+00

Std 2.55e+03 2.05e-25 5.04e+03 1.24e-01

f18

Median 1.19e+03 1.55e+01 7.78e+02 1.41e+03

Mean 1.20e+03 1.50e+01 8.96e+02 1.57e+03

Std 1.07e+02 7.19e+00 4.03e+02 6.73e+02

f19

Median 1.71e+06 5.63e+03 5.71e+05 3.75e+05

Mean 1.71e+06 5.46e+03 5.49e+05 3.80e+05

Std 8.91e+04 7.07e+02 8.38e+04 2.34e+04

f20

Median 3.70e+03 8.55e+02 7.40e+01 1.04e+03

Mean 6.96e+03 8.26e+02 9.23e+01 1.06e+03

Std 1.27e+04 6.35e+01 8.99e+01 9.38e+01

TABLE VI
THE RESULTS OF THE DECC-RDG, CMAESCC-RDG, MOS AND

MA-SW-CHAINS ALGORITHMS WHEN USED TO SOLVE THE CEC’2013
BENCHMARK PROBLEMS. THE BEST PERFORMANCES ARE HIGHLIGHTED

IN BOLD (WILCOXON RANK-SUM TESTS (α=0.05) WITH HOLM P-VALUE

CORRECTION).

Func Stats DECC-RDG CMAESCC-RDG MOS MA-SW-Chains

f1

Median 5.32e-01 2.84e+05 1.34e-30 7.12e-13

Mean 3.73e+01 2.89e+05 3.10e-29 1.34e-12

Std 1.24e+02 3.27e+04 4.53e-29 2.45e-12

f2

Median 1.29e+04 4.66e+03 1.90e+01 1.24e+03

Mean 1.27e+04 4.68e+03 1.83e+01 1.25e+03

Std 6.40e+02 1.77e+02 4.65e+00 1.05e+02

f3

Median 2.13e+01 2.03e+01 1.49e-13 6.83e-13

Mean 2.13e+01 2.03e+01 1.65e-13 6.85e-13

Std 1.64e-02 4.96e-02 1.02e-13 2.12e-13

f4

Median 4.01e+10 5.83e+06 1.23e+10 2.75e+09

Mean 4.44e+10 5.90e+06 1.40e+10 3.81e+09

Std 1.77e+10 6.56e+05 7.65e+09 2.73e+09

f5

Median 5.09e+06 2.19e+06 1.12e+07 2.03e+06

Mean 5.09e+06 2.20e+06 1.15e+07 2.25e+06

Std 4.81e+05 3.76e+05 1.82e+06 1.30e+06

f6

Median 1.06e+06 9.95e+05 9.78e+05 6.33e+02

Mean 1.06e+06 9.95e+05 9.83e+05 1.86e+04

Std 1.21e+03 2.88e+01 8.22e+03 2.54e+04

f7

Median 5.41e+07 2.94e-20 1.30e+07 4.03e+06

Mean 6.42e+07 8.12e-17 2.33+07 3.85e+06

Std 2.97e+07 2.17e-16 3.62e+07 6.34e+05

f8

Median 4.74e+15 8.71e+06 1.15e+15 4.60e+13

Mean 5.04e+15 9.74e+06 1.65e+15 4.62e+13

Std 1.86e+15 5.83e+06 1.76e+15 9.02e+12

f9

Median 4.85e+08 1.57e+08 9.08e+08 1.42e+08

Mean 4.82e+08 1.65e+08 9.02e+08 1.44e+08

Std 3.06e+07 4.16e+07 1.04e+08 1.55e+07

f10

Median 9.44e+07 9.04e+07 8.82e+07 3.34e+02

Mean 9.44e+07 9.12e+07 6.66e+07 3.72e+04

Std 2.06e+05 1.53e+06 3.01e+07 6.25e+04

f11

Median 5.31e+08 1.64e+07 1.82e+09 2.10e+08

Mean 5.38e+08 1.62e+07 3.87e+10 2.10e+08

Std 1.34e+08 6.11e+05 1.06e+11 2.35e+07

f12

Median 3.77e+03 1.01e+03 6.89e+01 1.25e+03

Mean 4.85e+03 9.81e+02 8.64e+01 1.24e+03

Std 3.06e+03 7.30e+01 7.82e+01 8.33e+01

f13

Median 3.16e+09 2.49e+06 8.45e+08 1.91e+07

Mean 3.06e+09 2.47e+06 1.09e+09 3.58e+07

Std 6.68e+08 3.83e+05 7.69e+08 4.30e+07

f14

Median 2.50e+09 2.74e+07 2.27e+09 1.43e+08

Mean 2.87e+09 2.76e+07 6.65e+09 1.45e+08

Std 1.73e+09 1.49e+06 1.62e+10 1.60e+07

f15

Median 9.67e+06 2.18e+06 1.24e+08 5.80e+06

Mean 9.75e+06 2.19e+06 1.33e+08 5.98e+06

Std 1.91e+06 2.28e+05 6.05e+07 1.42e+06

when used to solve the CEC’2013 f5, f6, f9, and f10 prob-

lems. However, on the other partially separable and fully non-

separable benchmark problems, it is consistently outperformed

by the CMAESCC-RDG algorithm. In some cases, the best

solution found by the CMAESCC-RDG algorithm is much

better than that found by the MA-SW-Chains algorithm.

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

VI. CONCLUSION

In this paper, we have investigated the influence of prob-

lem decomposition on the performance of CC algorithms

when used to solve LSGO problems. A robust decomposition

method – RDG – was proposed, which can decompose an

n-dimensional problem using O
(

n log(n)
)

FEs based on a

measure of non-linearity between decision variables. Signifi-

cantly, RDG outperformed seven other decomposition methods

when embedded into the DECC/CMAESCC framework and

tested across a suite of benchmark LSGO problems. When

compared against two other state-of-the-art hybrid algorithms,

the CMAESCC-RDG algorithm achieved statistically signifi-

cantly better results.

In future work, we plan to apply the CMAESCC-RDG algo-

rithm to solve real-world LSGO problems. Another direction

worth pursuing is focused on the modification of the RDG

method to the combinatorial and multi-objective spaces.

ACKNOWLEDGMENT

The authors would like to thank Mario A. Muñoz, Wei Wang

for their valuable comments.

REFERENCES

[1] P. Benner, “Solving large-scale control problems,” Control Systems,

IEEE, vol. 24, no. 1, pp. 44–59, 2004.
[2] S. Shan and G. G. Wang, “Survey of modeling and optimization strate-

gies to solve high-dimensional design problems with computationally-
expensive black-box functions,” Structural and Multidisciplinary Opti-

mization, vol. 41, no. 2, pp. 219–241, 2010.
[3] H. Liu and L. Yu, “Toward integrating feature selection algorithms for

classification and clustering,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 17, no. 4, pp. 491–502, 2005.
[4] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems

for large-scale continuous optimization,” Information Sciences, vol. 316,
pp. 419–436, 2015.

[5] T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls
and booby traps,” Journal of Computer Science and Technology, vol. 27,
no. 5, pp. 907–936, 2012.

[6] W. Dong, T. Chen, P. Tino, and X. Yao, “Scaling up estimation
of distribution algorithms for continuous optimization,” Evolutionary

Computation, IEEE Transactions on, vol. 17, no. 6, pp. 797–822, 2013.
[7] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-

scale global continues optimization: A survey,” Information Sciences,
vol. 295, pp. 407–428, 2015.

[8] A. LaTorre, S. Muelas, and J.-M. Peña, “A comprehensive comparison
of large scale global optimizers,” Information Sciences, vol. 316, pp.
517–549, 2015.

[9] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel problem solving from nature PPSN

III. Springer, 1994, pp. 249–257.
[10] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution

with differential grouping for large scale optimization,” Evolutionary

Computation, IEEE Transactions on, vol. 18, no. 3, pp. 378–393, 2014.
[11] Y. Mei, X. Li, and X. Yao, “Cooperative coevolution with route distance

grouping for large-scale capacitated arc routing problems,” Evolutionary

Computation, IEEE Transactions on, vol. 18, no. 3, pp. 435–449, 2014.
[12] E. Sayed, D. Essam, R. Sarker, and S. Elsayed, “Decomposition-

based evolutionary algorithm for large scale constrained problems,”
Information Sciences, vol. 316, pp. 457–486, 2015.

[13] K. C. Tan, Y. Yang, and C. K. Goh, “A distributed cooperative co-
evolutionary algorithm for multiobjective optimization,” Evolutionary

Computation, IEEE Transactions on, vol. 10, no. 5, pp. 527–549, 2006.
[14] C. Goh and K. C. Tan, “A competitive-cooperative coevolutionary

paradigm for dynamic multiobjective optimization,” Evolutionary Com-

putation, IEEE Transactions on, vol. 13, no. 1, pp. 103–127, 2009.
[15] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential grouping

for large scale global optimization with direct and indirect variable
interactions,” in Proceedings of the 2015 on Genetic and Evolutionary

Computation Conference. ACM, 2015, pp. 313–320.

[16] W. Chen and K. Tang, “Impact of problem decomposition on cooperative
coevolution,” in 2013 IEEE Congress on Evolutionary Computation.
IEEE, 2013, pp. 733–740.

[17] H. Liu, Y. Wang, X. Liu, and S. Guan, “Empirical study of effect of
grouping strategies for large scale optimization,” in Neural Networks

(IJCNN), 2016 International Joint Conference on. IEEE, 2016, pp.
3433–3439.

[18] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, “A sensitivity analysis
of contribution-based cooperative co-evolutionary algorithms,” in 2015

IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015, pp.
417–424.

[19] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[20] K. Tang, X. Yao, and P. Suganthan, “Benchmark functions for the
CEC’2010 special session and competition on large scale global opti-
mization,” Technique Report, USTC, Natrue Inspired Computation and

Applications Laboratory, no. 1, pp. 1–23, 2010.

[21] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
functions for the CEC 2013 special session and competition on large-
scale global optimization,” gene, vol. 7, no. 33, p. 8, 2013.

[22] R. Tang, Z. Wu, and Y. Fang, “Adaptive multi-context cooperatively
coevolving particle swarm optimization for large-scale problems,” Soft

Computing, pp. 1–20, 2016.

[23] M. Yang, M. N. Omidvar, C. Li, X. Li, Z. Cai, B. Kazimipour, and
X. Yao, “Efficient resource allocation in cooperative co-evolution for
large-scale global optimization,” IEEE Transactions on Evolutionary

Computation, 2016.

[24] A. Kabán, J. Bootkrajang, and R. J. Durrant, “Toward Large-Scale
Continuous EDA: A Random Matrix Theory Perspective,” Evolutionary

computation, 2015.

[25] J. Brest and M. S. Maučec, “Self-adaptive differential evolution al-
gorithm using population size reduction and three strategies,” Soft

Computing, vol. 15, no. 11, pp. 2157–2174, 2011.

[26] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based dif-
ferential evolution for solving high-dimensional continuous optimization
problems,” Soft Computing, vol. 15, no. 11, pp. 2127–2140, 2011.

[27] R. Cheng and Y. Jin, “A social learning particle swarm optimization
algorithm for scalable optimization,” Information Sciences, vol. 291, pp.
43–60, 2015.

[28] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” Cybernetics, IEEE Transactions on, vol. 45, no. 2, pp.
191–204, 2015.

[29] L. Tseng and C. Chen, “Multiple trajectory search for large scale global
optimization,” in Evolutionary Computation, 2008. CEC 2008.(IEEE

World Congress on Computational Intelligence). IEEE Congress on.
IEEE, 2008, pp. 3052–3059.

[30] A. LaTorre, S. Muelas, and J.-M. Peña, “A MOS-based dynamic
memetic differential evolution algorithm for continuous optimization: a
scalability test,” Soft Computing, vol. 15, no. 11, pp. 2187–2199, 2011.

[31] Y. Sun, M. Kirley, and S. K. Halgamuge, “Quantifying variable interac-
tions in Continuous Optimization Problems,” Evolutionary Computation,

IEEE Transaction on, In Press, DOI: 10.1109/TEVC.2016.2599164.

[32] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” Evolutionary Computation, IEEE Trans-

actions on, vol. 8, no. 3, pp. 225–239, 2004.

[33] X. Zheng, D. Lu, X. Wang, and H. Liu, “A cooperative coevolutionary
biogeography-based optimizer,” Applied Intelligence, vol. 43, no. 1, pp.
95–111, 2015.

[34] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” Evolutionary Computation, IEEE Transactions on,
vol. 16, no. 2, pp. 210–224, 2012.

[35] Y. Ren and Y. Wu, “An efficient algorithm for high-dimensional function
optimization,” Soft Computing, vol. 17, no. 6, pp. 995–1004, 2013.

[36] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE,
2010, pp. 1–8.

[37] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution
for large scale optimization,” in Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational Intelligence). IEEE

Congress on. IEEE, 2008, pp. 1663–1670.

[38] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with
delta grouping for large scale non-separable function optimization,” in
Evolutionary Computation (CEC), 2010 IEEE Congress on. IEEE,
2010, pp. 1–8.

1089-778X (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2778089, IEEE

Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

[39] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Multilevel framework
for large-scale global optimization,” Soft Computing, pp. 1–30, 2016.

[40] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proceedings of the 13th annual conference on Genetic and

evolutionary computation. ACM, 2011, pp. 1115–1122.
[41] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimiza-

tion using cooperative coevolution with variable interaction learning,” in
Parallel Problem Solving from Nature, PPSN XI. Springer, 2010, pp.
300–309.

[42] M. Munetomo and D. E. Goldberg, “Linkage identification by non-
monotonicity detection for overlapping functions,” Evolutionary com-

putation, vol. 7, no. 4, pp. 377–398, 1999.
[43] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A cooperative particle

swarm optimizer with statistical variable interdependence learning,”
Information Sciences, vol. 186, no. 1, pp. 20–39, 2012.

[44] H. Ge, L. Sun, X. Yang, S. Yoshida, and Y. Liang, “Cooperative
differential evolution with fast variable interdependence learning and
cross-cluster mutation,” Applied Soft Computing, vol. 36, pp. 300–314,
2015.

[45] M. Tezuka, M. Munetomo, and K. Akama, “Linkage identification by
nonlinearity check for real-coded genetic algorithms,” in Genetic and

Evolutionary Computation–GECCO 2004. Springer, 2004, pp. 222–
233.

[46] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” ACM Transactions on Mathematical Software (TOMS), vol. 42,
no. 2, p. 13, 2016.

[47] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” IEEE Transactions on Evolutionary Computation, 2017.

[48] X.-M. Hu, F.-L. He, W.-N. Chen, and J. Zhang, “Cooperation coevo-
lution with fast interdependency identification for large scale optimiza-
tion,” Information Sciences, vol. 381, pp. 142–160, 2017.

[49] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution
with neighborhood search,” in Evolutionary Computation, 2008. CEC

2008.(IEEE World Congress on Computational Intelligence). IEEE

Congress on. IEEE, 2008, pp. 1110–1116.
[50] N. Hansen, “The CMA evolution strategy: A tutorial,” Technique Report,

2011.
[51] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic

algorithm based on local search chains for large scale continuous
global optimization,” in Evolutionary Computation (CEC), 2010 IEEE

Congress on. IEEE, 2010, pp. 1–8.
[52] D. J. Sheskin, Handbook of parametric and nonparametric statistical

procedures. CRC Press, 2003.

Yuan Sun received his B.Sc degree in theoreti-
cal and applied mechanics from Peking University,
China, in 2013. He is currently working towards
his Ph.D degree at the University of Melbourne,
Australia. His doctoral work focuses on the anal-
ysis of interaction between decision variables in
optimization and classification problems. His cur-
rent research interests include exploratory landscape
analysis, large scale optimization, multi-objective
optimization, and feature selection.

Michael Kirley received his B.Ed degree from
Deakin University, Australia, in 1998, and his Ph.D
degree from Charles Sturt University, Australia, in
2003. He is currently an Associate Professor at the
Department of Computing and Information Systems
at the University of Melbourne, Australia. His cur-
rent research interests include theory and applica-
tion of evolutionary computation, evolutionary game
theory, multi-agent system, and complex systems
science. He has published over 100 papers in these
areas.

Saman K. Halgamuge received his B.Sc.Eng. de-
gree in electronic and telecommunication engineer-
ing from the University of Moratuwa, Sri Lanka,
and Dr.-Ing and Dipl.-Ing degrees in Electrical En-
gineering (Data Engineering) from TU Darmstadt,
Germany in 1995 and 1990 respectively. He is
a Professor and the Director, Research School of
Engineering of Australian National University. He
held appointments as Professor at the Department
of Mechanical Engineering and Associate Dean In-
ternational of Melbourne School of Engineering,

University of Melbourne, Australia. He also holds the Professor V. K.
Samaranayake Endowed visiting Chair at the University of Colombo, Sri
Lanka. His research interests are data engineering, optimization, smart grids,
mechatronics and bioinformatics. He has published over 250 papers and
graduated 32 PhD students in these areas and obtained substantial research
grants from the ARC, NHMRS and industry.

