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ABSTRACT A recursive dynamic modeling and control is presented for the dual-arm manipulator with

elastic joints carrying a common object. For decoupling the effect of elastic joints, the dynamic modeling

approach is based on the classic recursive Newton-Euler method but involves high-order derivatives of

motion and force variables. The high-order inverse kinematics which is needed in the motion control is

presented firstly. With the classic Recursive Newton-Euler (RNEA) method, two-order dynamic model of

the dual-arm robot is established, for decoupling the effect of the elastic joints, the form of four-order

dynamic model is presented, meanwhile, combining with the high-order dynamic model of the carried

object, the completed Dual-Arm Elastic Joints Newton-Euler Algorithm (DA-EJNEA) is established. Then

the feedback linearizationmethod is adopted to themotion control based on theDA-EJNEA. Finally, to verify

the effectiveness of the proposed method, feedback linearization method based on the DA-EJNEA and the

computed torque method based on the dynamic model with rigid joints are used to control the dual-arm

coordinated system respectively, the simulation results illustrate the feedback linearization method based

on the DA-EJNEA has an obvious advantage for trajectory tracking of the object in the operation space,

it behaves reasonable potentials for the model-based control.

INDEX TERMS Dual-arm manipulator, elastic joint, Newton-Euler approach, dynamic modeling.

I. INTRODUCTION

There is an increasing trend of using dual-arm robots

to do some complicated applications that are beyond the

capability of a single manipulator, for example, dual-arm

robots are often applied to manipulate massive and bulky

objects. And some non-rigid objects are needed to handle

by dual-arm robots. In the free assembly, such as the clas-

sic peg-in-hole assembly, dual-arm robots are widely used.

More complicated and dexterous tasks were handled in a

coordinated manner can be found in [1], [2].

Dynamic modeling of the dual-arm manipulator is the

foundation of the model-based control, efficient and accurate

dynamic models are essential for task execution. Most papers

regarded joints of dual-arm manipulators as rigid bodies gen-

erally. The biggest difference between dual-arm coordinated

operation and single-arm operation is the closed-chain con-

straint formed by the dual arms and the load, in general,

the dynamics of the dual-arm coordinated system includes

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen-Sheng Zhao .

the manipulator and the load. In the past thirty years, many

researchers regarded the joints are rigid bodies and used

the Lagrangian method to establish the model of two single

arms, and the model of load was established based on the

force balance equation and the torque balance equation [3],

[4]. The Udwadia-Kalaba equation presents a new idea of

dynamic modeling of dual-arm coordinated systems, but the

dynamic modeling of the unconstrained systems still depends

on the Lagrangian equation which makes the model quite

tedious [5].

The presence of elasticity at the joint level is not a desirable

feature in industrial manipulators traditionally. Elastic joints

are ubiquitous in the existing dual-arm manipulators because

of the widely using of the Harmonic Drive, which can

be modeled as ideal linear/torsional springs [6]. Therefore,

the dynamic model of an elastic manipulator has two more

orders than a rigid manipulator. Hence, if neglecting the joint

elasticity, the rigid-body dynamic model may cause system-

atic instability when it is used in the model-based control.

Consequently, the joint elasticity can limit their applications

to real-world robot manipulators [7]. Recently, the designers
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of lightweight manipulators, introduced joint elasticity for

physical human-robot interaction deliberately, considering

the joint elasticity can limit the effect of accidents as mechan-

ical absorbing layer [8], [9]. Therefore, it is necessary to take

the joint elasticity into account when models a manipulator,

especially when the robot must make fast and precise move-

ment or carry large loads. This needs to pay more attention

when models a coordinated dual-arm system because the

closed chain may be damaged.

In order to describe the distinct, dynamically related posi-

tions of the driving motors and of the driven links, dynamic

modeling of robots with elastic joints requires the considera-

tion of a double set of variables, the dynamic model generally

takes the usual, so-called Spong model assumptions [10].

So far, very few papers have addressed the dynamic modeling

of dual-arm manipulators with elastic joints. The earliest

study can be found is about a coordinated system consisting

of two prismatic arms and the carried object, and each arm

has only one elastic joint and the linear dynamic model of the

completed system can be easily established [11]. After that,

some researchers addressed non-linear dynamics of robots

with multiple elastic joints, they established dynamic model

of each elastic manipulator with the Lagrangian method,

meanwhile, modeled the carried object by the Newton-Euler

method, then the completed dynamic model of multi-arm

coordinated system was obtained by eliminating the same

force variables in the dynamic equations [12]–[19]. Recently,

some researchers considered cooperative manipulators with

flexible links, they used the recursive Gibbs-Appell formula-

tion model the manipulators and the Newton-Euler approach

model the object [20]. In this paper, the joints of the robot are

elastic because of using the Harmonic Drive, the links can be

considered as rigid bodies.

In general, the computational load of Lagrangian

model-based control for manipulators with N rigid joints is

O(N 4), however, the computational load for manipulators

with elastic joints whose Lagrangian model is obtained by

differentiating the rigid model twice is O(N 6), which is hard

to implement in the real-time robot system [7]. Although

some dynamic modeling methods are more efficient, such as

the recursive Lagrangian formulation [21], and the recursive

Gibbs-Appell equations [20], [22], all of them assumed

that the joints are rigid, obviously, these methods could not

be used in this paper directly. Recent years, a recursive

Newton-Euler algorithm for robots with elastic joints was

proposed, the developed tools are generic, easy to use, and

do not require symbolic Lagrangianmodeling and customiza-

tion, thus being of particular interest when the number N of

elastic joints becomes large [23]. Müller modified the above

algorithm with concepts from screw and Lie group theory,

the Lie group approach provides a high level of compactness

while ensuring the computational efficiency [24].

In this paper, inspired by the works [23], [24] on the

high-order inverse dynamics of serial manipulators, the main

contributions include two parts: firstly, we established the

dynamic model of the coordinated dual-arm manipulator

FIGURE 1. The attached coordinate frames of dual-arm manipulator.

with elastic joints, meanwhile, the high-order form of

the object dynamic model was considered, the completed

dynamic model of the dual-arm system can be called

as the Dual-Arm Elastic Joints Newton-Euler Algorithm

(DA-EJNEA). The computational load of the DA-EJNEA is

O(N ), obviously, it is advantageous respect to the mentioned

Lagrangian method, and the DA-EJNEA does not require

symbolic Lagrangian modeling and customization. Secondly,

the DA-EJNEA was used to the position control with the

feedback linearization method, the result further illustrated

the joint flexibility could not be neglected.

The remainder of this paper is organized as follows:

in Section II, kinematic relationship of the dual-arm closed

chain system is analyzed, and high-order inverse kinematics

is presented. In Section II, high-order dynamic model of

the dual-arm system is established based on the high-order

recursive Newton-Euler equations. In Section IV, the feed-

back linearization method is used to track the desired tra-

jectory of the object. For validating the effectiveness of

the DA-EJNEA-based feedback linearization method in the

motion control, contrast simulations with the computed

torque method which is based on the rigid dynamic model

are presented in Section V. Finally, conclusions are presented

in Section VI.

II. KINEMATICS OF THE DUAL-ARM SYSTEM

This section is the foundation of the system of dual-arm

coordinated manipulation, it is necessary to give a detailed

illustration. The dual-arm system under consideration in this

paper consists of two arms that each arm hasN (N = 7) elastic

revolute joints, here we use Arm-k (k = a, b) to classify dif-

ferent arms. In general, the standard D-H notation can be used

to describe the geometry of a manipulator, but it is not reason-

able for the dual-arm robot with tree structure or closed chain

structure in which some links have one more transmitting

axes. This paper establishes the coordinate frames as shown

in Fig. 1, which can be clearly to illustrate the homogeneous

transform relationship between adjacent links [25].
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Let
∑k

i (i = 1 . . . 7) be the frame of the link i of Arm-k,
∑k

e

be the frame of end-effector of Arm-k,
∑

B denotes the base

frame; hki (i = 1 . . . 6) represents the distance from the origin

of
∑k

i to the origin of
∑k

i+1, h
k
e is the height of end-effector

of Arm-k, wk represents the distance from the origin of
∑

B

to the origin of
∑k

1, let generalized coordination qk ∈ R
N be

the joint position vector in the link side, θk ∈ R
N be the joint

position vector in the motor side.

The two arms in the dual-arm system are the same

in the construction, the only difference between them is the

direction with respect to the base frame, they retain as

the mirror symmetry in the initial configuration. We get

the homogeneous transforms matrixes as follows:

BTa1 =









ca1 −sa1 0 0

sa1 ca1 0 wa
0 0 1 0

0 0 0 1









,

BTb1 =









−cb1 sb1 0 0

−sb1 −cb1 0 −wb
0 0 1 0

0 0 0 1









(1)

1Tk2 =









ck2 −sk2 0 0

0 0 −1 0

sk2 ck2 0 hk1
0 0 0 1









,

2Tk3 =









ck3 −sk3 0 0

0 0 1 hk2
−sk3 −ck3 0 0

0 0 0 1









(2)

3Tk4 =









ck4 −sk4 0 0

0 0 1 0

−sk4 −ck4 0 hk3
0 0 0 1









,

4Tk5 =









ck5 −sk5 0 0

0 0 −1 −hk4
sk5 ck5 0 0

0 0 0 1









(3)

5Tk6 =









ck6 −sk6 0 0

0 0 −1 0

sk6 ck6 0 hk5
0 0 0 1









,

6Tk7 =









ck7 −sk7 0 0

0 0 1 hk6
−sk7 −ck7 0 0

0 0 0 1









(4)

7Tke =









1 0 0 0

0 1 0 0

0 0 1 hke
0 0 0 1









(5)

where, cki , s
k
i (i = 1, . . . ,N , k = a, b) represent cos(qki )

and sin(qki ), respectively,
BTk1 is the homogenous transforms

matrix of frame
∑k

1 with respect to the base frame
∑

B,

FIGURE 2. The closed chain of dual-arm coordinated system.

iTki+1(i = 1, . . . ,N − 1) represents the homogenous trans-

forms matrix of
∑k

i+1 with respect to
∑k

i ,
7Tke is the

homogenous transforms matrix of end-effector frame
∑k

e

with respect to
∑k

7.

The homogeneous transforms matrixes can be used for

the purpose of changing the coordinate frame with respect

to which a point in space is expressed and describing the

relation between two coordinate frames [29], these matrixes

are crucial in the process of dynamic modeling derivation.

A system of dual-arm manipulator carrying a common

object is considered. And it is assumed the object grasped

by the manipulator is rigid and tightly attached to each

end-effector, as shown in Fig. 2.

The Euler angles ϕk = [φ, θ, ψ]T are used to describe the

orientation of the frame
∑k

e with respect to the frame
∑

B,

let pk ∈ R
3×1 be the position vector of the end-effectors

in the frame
∑

B, then Xk = [pTk ϕTk ]
T can be collected to

describe the position and orientation of the end-effectors.

Similarly, we can use Xc = [pTc ϕTc ]
T to describe the

position and orientation of the object, where pc ∈ R
3×1

is the position vector of the object in the frame
∑

B, and

ϕc ∈ R
3×1 is the vector of angular coordinates describing

the orientation of the object frame
∑

c with respect to the

frame
∑

B.

If let ṗk ∈ R
3×1 and ωk ∈ R

3×1 be the translational

and rotational velocities of the end-effector with respect to

the base, collected by Vk = [ṗTk ωT
k ]
T ∈ R

6×1, then the

following velocity relationship holds:

Vk =

[

ṗk
ωk

]

=

[

I3 O3

O3 �k (ϕk )

] [

ṗk
ϕ̇k

]

= Jk q̇k (6)

�k (ϕk ) =





0 − sin(φ) cos(φ) sin(θ)

0 cos(φ) sin(φ) sin(θ)

1 0 cos(θ)



 (7)

where, I3 is 3 × 3 unit matrix, O3 is 3 × 3 zero matrix,

Jk ∈ R
6×N is the geometric Jacobian matrix of Arm-k,

�k (ϕk ) denotes a transformation matrix.

Let ṗc ∈ R
3×1 and ωc ∈ R

3×1 be the translational and

rotational velocities of the object with respect to the base,

collected by Vc = [ṗTc ωT
c ]
T ∈ R

6×1, rk = [rx,kry,krz,k ]
T

be the virtual stick which determines the position of
∑

c
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FIGURE 3. The elastic joint based on Spong model assumptions.

with respect to
∑k

e , then the following velocity relationship

holds:

Vk =

[

I3 S(rk )

O3 I3

]

Vc = Jo,kVc (8)

where, S(rk ) ∈ R
3×3 is the skew-symmetric matrix operator.

For compactness, let J = [JaO6×N ;O6×NJb] ∈ R
12×2N ,

q = [qTa q
T
b ]
T ∈ R

2N×1, Jo = [Jo,aJo,b]
T ∈ R

12×6,

Jo is always full rank but not square, and we assume the

object is grasped by the end-effectors rigidly and therefore,

the following velocity relationship between the object and the

end-effectors holds:

Jq̇ = JoVc (9)

High order inverse kinematics solutions for velocity,

acceleration, jerk, and snap can be resolved respectively as

follows [28]:

q̇ = J†JoVc (10)

q̈ = J†(JoV̇c + J̇oVc − J̇q̇) (11)
...
q = J†(JoV̈c + 2J̇oV̇c + J̈oVc − J̈q̇− 2J̇q̈) (12)
....
q = J†(Jo

...
Vc+3J̇oV̈c+3J̈oV̇c+

...
J oVc−

...
J q̇− 3J̈q̈− 3J̇q̈)

(13)

where, J† = JT (JJT )−1 is the pseudo-inverse matrix,

joint position q usually can be obtained by time integration

of (10).

III. DYNAMIC MODEL AND IT’S HIGH ORDER FORM OF

DUAL-ARM SYSTEM WITH ELASTIC JOINTS

A. DYNAMIC MODEL OF THE DUAL-ARM ROBOT

Each arm of the dual-arm robot contains N elastic joints,

each elastic joint has the same structure as shown in Fig. 3.

Generally, we build the dynamic model of robot with elastic

joints is based on Spong model assumptions [10].

The elastic joint torque is defined as follows:

τ e,k = Kk (θk − qk ) (14)

where, τ e,k ∈ R
7×1 is the vector of elastic joint torque of

Arm-k, Kk ∈ R
7×7 is the constant, diagonal joint stiffness

matrix of Arm-k.

The dynamic model of series robots with rigid joints based

on Newton-Euler equation was outlined in detail in past many

years [29]. Supposing that the desired joint positions qi, joint

velocities q̇i and the joint accelerations q̈i are given for all

links, and the force fN+1 ∈ R
3×1 and moment nN+1 ∈ R

3×1

exerted on the end-effector by the grasped object are also

FIGURE 4. The vectors needed in the Newton-Euler formulation.

given. Before the procedure, the related variables are defined

in Fig. 4.

Firstly, we calculate the angular velocity ωik , the angular

acceleration ω̇ik , the linear acceleration p̈ik of link ik with

respect to the base frame, and the linear acceleration of the

mass center of link ik with respect to the base frame s̈ik , all

quantities will be expressed in the link frame for convenience,

starting from the base and moving to the end-effectors, with

ik = 1 . . .N , and let 0p̈0 = −g, g is the gravitational field

vector, the expressions can be given as:

ikωik = ik−1RTik
ik−1ωik−1 + ezq̇ik (15)

ik ω̇ik = ik−1RTik
ik−1ω̇ik−1 + ezq̈ik + (ik−1RTik

ik−1ωik−1)

× (ezq̇ik ) (16)
ik p̈ik = ik−1RTik [

ik−1p̈ik−1+
ik−1ω̇ik−1×

ik−1p̂ik +
ik−1ωik−1

× (ik−1ωik−1 × ik−1p̂ik )] (17)

ik s̈ik = ik p̈ik + ik ω̇ik × ik ŝik + ikωik × (ikωik × ik ŝik ) (18)

where, ik−1Rik represents the rotational matrix of
∑

ik
with

respect to
∑k

i−1,
ik−1p̂ik denotes the position of the originOik

in the frame
∑k

i−1,
ik−1p̂ik and

ik−1Rik can be extracted from

(1)-(5), ez = [0, 0, 1]T .

Secondly, the total external force f̂ik and the total external

moment n̂ik acting on the center of mass of link ik can be

calculated based on the Newton-Euler equations, expressed

in the frame
∑k

i as follows:

ik f̂ik = mik
ik s̈ik (19)

ik n̂ik = ik Iik
ik ω̇ik + ikωik × (ik Iik

ikωik ) (20)

where,mi is the mass including the link ik and the joint ik +1,
ik Iik is the inertia tensor of link ik expressed in the frame

∑

ik
,

ik s̈ik denotes the acceleration of the mass center Cik of link ik
expressed in

∑

ik
.

Thirdly, we calculate the force fik and the moment

nik which acting on the joint ik , expressed in the frame
∑

ik
, starting from the end-effectors moving to the base,

with ik = N . . . 1, the expressions can be given as:

ik fik = ikRik+1
ik+1fik+1 + ik f̂ik (21)

iknik = ikRik+1
ik+1nik+1 + ik n̂ik + ik ŝik × ik f̂ik

+ ik p̂ik+1 × (ikRik+1
ik+1fik+1) (22)
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Finally, we can get the elastic torque acting on the link ik
and the driving torque of motor ik as follows:

τe,ik = eTz
iknik = iknTik ez (23)

τm,ik = Bik θ̈ik + τe,ik (24)

where, Bik is the constant drive inertia moment of joint

ik , θ̈ik is the angular acceleration of joint ik in the motor

side.

The recursive equations (15)-(24) are the equations of

motion of Arm-k based on the Newton-Euler formulations,

it can be collected as:

τ k = Bk θ̈k + RNEA(qk , q̇k , q̈k ) (25)

where, τ k ∈ R
N×1 is the vector of motor torque, Bk ∈ R

N×N

is the constant, diagonal matrix with the drive inertia moment

of Arm-k.

As we know, the dynamic model based on the Lagrangian

method is equivalent to the dynamic model based on the

Newton-Euler method, we can easily obtain the Lagrangian

model from the Newton-Euler model:










Mk (qk )q̈k + nk (qk , q̇k ) + JTk Fk = Kk (θk − qk )

= RNEA(qk , q̇k , q̈k )

Bk θ̈k + Kk (θk − qk ) = τ k

(26)

where,Mk (qk ) is the positive definite inertia matrix contains

the link masses, the link inertias, the motor masses, and all

the inertial components of the motors, nk (qk , q̇k ) contains

centrifugal, Coriolis and gravity, Fk ∈ R
6×1 is the gen-

eralized force exerted on the object by the end-effectors of

the Arm-k.

B. THE HIGH ORDER FORM OF THE INVERSE DYNAMIC

OF THE DUAL-ARM ROBOT

It is obvious that the dynamic model is coupled with θk
and qk in (25) or (26), to decouple this relation, we can

differentiate (14) once and twice [27]:

τ̇ e,k = Kk (θ̇k − q̇k ), τ̈ e,k = Kk (θ̈k − q̈k ) (27)

From (27), we know that θ̈k can be obtained by

resolving τ̈ e,k , differentiating (15)-(22) once and twice, as

follows:

ik ω̈ik = ik−1RTik
ik−1ω̈ik−1 + ez

...
q ik + (ik−1RTik

ik−1ωik−1)

× [(2ezq̈ik ) + (ik−1RTik
ik−1ωik−1) × (ezq̇ik )]

+ (ik−1RTik
ik−1ω̇ik−1) × (ezq̇ik ) (28)

ik ...ωik = ik−1RTik
ik−1...ωik−1 + ez

....
q ik + (ik−1RTik

ik−1ω̈ik−1)

× (ezq̇ik ) + (ik−1RTik
ik−1ωik−1) × {[3ez

...
q ik

+ 3(ik−1RTik
ik−1ωik−1) × (ezq̈ik )]

+ (ik−1RTik
ik−1ωik−1) × [(ik−1RTi

ik−1ωik−1)

× (ezq̇ik )] + (ik−1RTik
ik−1ω̇ik−1)

× (ezq̇ik )} + (ik−1RTik
ik−1ω̇ik−1) × [3ezq̈ik

+ 2(ik−1RTik
ik−1ωik−1) × (ezq̇ik )] (29)

ik ...p ik = ik−1RTik {
ik−1...p ik−1+

ik−1ω̈ik−1×
ik−1p̂ik

+ 2ik−1ω̇ik−1 × (ik−1ωik−1 × ik−1p̂ik ) + ik−1ωik−1

× (ik−1ω̇ik−1 × ik−1p̂ik ) + ik−1ωik−1

× [ik−1ωik−1 × (ik−1ωik−1 × ik−1p̂ik )]} (30)
ik ...s ik = ik ...p ik + ik ω̈ik × ik ŝik + 2ik ω̇ik × (ikωik × ik ŝik )

+ ikωik × (ik ω̇ik × ik ŝik ) + ikωik

× [ikωik × (ikωik × ik ŝik )] (31)
ik ....p ik

= ik−1RTik {
ik−1....p ik−1+

ik−1...ωik−1×
ik−1p̂ik

+ 3ik−1ω̈ik−1 × (ik−1ωik−1 × ik−1p̂ik ) + ik−1ω̇ik−1

× [3ik−1ω̇ik−1 × ik−1p̂ik + 3ik−1ωik−1

× (ik−1ωik−1 × ik−1p̂ik )] + ik−1ωik−1 × [ik−1ω̈ik−1

× ik−1p̂ik + 2ik−1ω̇ik−1 × (ik−1ωik−1 × ik−1p̂ik )]

+ ik−1ωik−1 × [ik−1ωik−1 × (ik−1ω̇ik−1 × ik−1p̂ik )

+ ik−1ωik−1 × [ik−1ωik−1 × (ik−1ωik−1 × ik−1p̂ik )]}

(32)
ik ....s ik = ik ....p ik

+ ik ...ωik × ik ŝik + 3ik ω̈ik × (ikωik × ik ŝik )

+ik ω̇ik × [3ik ω̇ik × ik ŝik + 3ikωik × (ikωik × ik ŝik )]

+ ikωik × [ik ω̈ik × ik ŝik + 2ik ω̇ik × (ikωik × ik ŝik )]

+ ikωik × [ikωik × (ik ω̇ik × ik ŝik ) + ikωik

× (ikωik × ik ŝik )] (33)

ik ˙̂fik =mik
ik ...s ik (34)

ik ¨̂fik =mik
ik ....s ik (35)

ik ˙̂nik = ik Iik
ik ω̈ik −

ik Iik (
ikωik ×

ik ω̇ik )+2ikωik ×(ik Iik
ik ω̇ik )

+ ik ω̇ik ×(ik Iik
ikωik )+

ikωik ×[ikωik ×(ik Iik
ikωik )]

(36)
ik ¨̂nik = ik Iik [

ik ...ωik −2ikωik ×
ik ω̈ik +

ikωik ×(ikωik ×
ik ω̇ik )]

+ ikωik × {3ik Iik (
ik ω̈ik − ikωik × ik ω̇ik ) + 3ikωik

× (ik Iik
ik ω̇ik ) + ik ω̇ik × (ik Iik

ikωik ) + ikωik × [ikωik

× (ik Iik
ikωik )]} + 3ik ω̇ik × (ik Iik

ik ω̇ik ) + 2ik ω̇ik

× [ikωik × (ik Iik
ikωik )] + ik ω̈ik × (ik Iik

ikωik ) (37)

ik ḟik = ikRik+1
ik+1 ḟik+1 + ik ˙̂fik (38)

ik f̈ik = ikRik+1
ik+1f̈ik+1 + ik ¨̂fik (39)

ik ṅik = ikRik+1
ik+1ṅik+1+

ik ˙̂nik +
ik ŝik ×

ik ˙̂fik +(ikωik ×
ik ŝik )

× ik f̂ik +
ik p̂ik+1×(ikRik+1

ik+1 ḟik+1)+(ikωik × ik p̂ik )

× (ikRik+1
ik+1fik+1) (40)

ik n̈ik = ikRik+1
ik+1n̈ik+1 + ik ¨̂nik + ik ŝik × ik ¨̂fik

+ 2(ikωik × ik ŝik ) × ik ˙̂fik + [ik ω̇ik × ik ŝik + ikωik

× (ikωik × ik ŝik )] × ik f̂ik + ik p̂ik+1

× (ikRik+1
ik+1f̈ik+1) + 2(ikωik × ik p̂ik+1)

× (ikRik+1
ik+1ḟik+1) + [ik ω̇ik × ik p̂ik+1 + ikωik

× (ikωik × ik p̂ik+1)] × (ikRik+1
ik+1fik+1) (41)

Equations (15)-(18) and (28)-(33) need to be propagated

from the base to the end-effectors, equations (19)-(22) and

(34)-(41) need to be propagated from the end-effectors to
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the base. Then τ̇e,i and τ̈e,i can be obtained from the

following:

τ̇e,ik = (ik ṅik + iknik × ikωik )
T ez (42)

τ̈e,ik = [ik n̈ik + 2(ik ṅik × ikωik ) + iknik × ik ω̇ik

+ (iknik × ikωik ) × ikωik ]
T ez (43)

from (27) yields:

θ̈k =
τ̈ e,k

Kk
+ q̈k (44)

then the vector of motor torque τ k can be resolved as:

τ k = Bk θ̈k + τ e,k (45)

the high-order dynamic model of Arm-k can be collected as:

τ k = EJENA(qk , q̇k , q̈k ,
...
q k ,

....
q k ) (46)

the high-order dynamic model of the dual arms is:

τ = EJENA(q, q̇, q̈,
...
q ,

....
q ) (47)

where, τ = [τTa τTb ]
T ∈ R

2N×1.

C. DYNAMIC MODEL AND IT’S HIGH ORDER FORM

OF THE CONSTRAINED OBJECT

The constrained object by the dual-armmanipulator is rigidly

grasped, the equation of motion can be obtained by the force

balance equation and the moment balance equation. We build

themodel based on the Newton-Euler method as follows [14]:
[

mo O3

O3 IB

] [

p̈c
ω̇c

]

+

[

−mog

ωc × IBωc

]

= JToF (48)

where, F = [FTaF
T
b ]
T ∈ R

12×1 designates the generalized

force exerted on the object by the end-effectors of the Arm-a

and Arm-b.mo ∈ R
3×3 is the diagonal matrix with the object

mass mo in the diagonal; IB = BRcIc
BRTc is the object inertia

matrix defined in the base frame, Ic designates the object

inertia matrix in the frame
∑

c,
BRc is the rotational matrix

of
∑

c with respect to
∑

B.

From (48),we can resolve F as follows:

F = J†o

{[

mo O3

O3 IB

] [

p̈c
ω̇c

]

+

[

−mog

ωc × IBωc

]}

+ FI

(49)

where, J
†
o = Jo(J

T
o Jo)

−1 is the pseudo-inverse matrix, FI ∈

R
12×1 denotes the internal force, which does not contribute

the motion of the object. It locates in the null space of JTo ,

the values of the internal force can be decided according to

desired squeezing force on the object and the load distribution

[25], [26].

From (38)-(41), we need to get the Ḟ and F̈, they can be

obtained by differentiating (48) once and twice:

Ḟ= J†o{

[

mo O3

O3 IB

] [ ...
p c
ω̈c

]

+

[

0

İBω̇c

]

+

[

0

ω̇c × IBωc + ωc × (İBωc + IBω̇c)

]

− J̇
T

0F} (50)

F̈= J†o{

[

mo O3

O3 IB

] [ ....
p c...
ωc

]

+

[

0

2İBω̈c + ÏBω̇c + ω̈c × IBωc

]

+

[

0

2ω̇c×(İBωc+IBω̇c)+ωc×(ÏBωc+2İBω̇c+IBω̈c)

]

− 2J̇
T

o Ḟd − J̈
T

oFd } (51)

D. THE COMPLETED HIGH-ORDER INVERSE DYNAMIC

MODEL OF DUAL-ARM SYSTEM

When the dual-arm robot carries a common object,

the desired general force acting on the center of mass of the

object needs to be distributed to each end-effector as (49).

Note that the general force F is expressed in the base frame
∑

B, the force
N+1fkN+1 and the moment N+1nkN+1 used in the

dynamicmodel based onNewton-Eulermethod are expressed

in the end-effector frame
∑k

e , we need to transfer the acting

force on the end-effectors to the joint space from theCartesian

space:
[

N+1f kN+1
N+1nkN+1

]

= −

[

eRkB O3

O3
eRkB

]

Fk (52)

[

N+1ḟ
k

N+1
N+1ṅkN+1

]

= −

[

eRkB O3

O3
eRkB

]

Ḟk (53)

[

N+1 f̈
k

N+1
N+1n̈kN+1

]

= −

[

eRkB O3

O3
eRkB

]

F̈k (54)

where, eRkB is the rotation matrix of frame
∑

B with respect

to frame
∑k

e of Arm-k, N+1f kN+1 and
N+1nkN+1 are the force

and moment exerted on the end-effector of Arm-k expressed

in the frame of
∑k

e .

Summarizing, given an initial position and velocity of

the object Xc,0, Vc,0, then we can use the desired object

velocity Vc,d and it’s first three derivatives V̇c,d , V̈c,d ,
...
Vc,d ,

to compute the desired qd and its first four derivatives

q̇d , q̈d ,
...
q d ,

....
q d by employing the high-order inverse kine-

matics method (10)-(13). Meanwhile, the desired force
N+1f kN+1 and moment N+1nkN+1and their first two derivatives

can be calculated from (49)-(54). Finally, the nominal inverse

dynamic torque of dual-arm system can be obtained by the

recursive algorithm (15)-(18), (28)-(33),(19)-(22), (34)-(41),

we can collect the completed high-order inverse dynamic

algorithm as follows:

τ d = DA-EJNEA(qd , q̇d , q̈d ,
...
q d ,

....
q d ,F, Ḟ, F̈) (55)

where, τ d ∈ R
2N×1 is the desired torque vector which

obtained by the desired object motion.

IV. THE MOTION CONTROL OF DUAL-ARM SYSTEM

BY FEEDBACK LINEARIZATION

It is well known that the computed torque method for fully

rigid series manipulators behaves well in the motion con-

trol. Similarly, using the high order nonlinear state feedback,

the dual-arm system with elastic joints can be transformed

into exactly linear and decoupled systems. The flowchart of
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FIGURE 5. The control based on high order inverse dynamics.

TABLE 1. The dynamic parameters of dual-arm manipulator.

FIGURE 6. (a) The positions of joints. (b) The velocities of joints.

control based on the DA-EJNEA and feedback linearization

method is shown in Fig. 5.

The nonlinear state feedback law can be designed as

follows:

τ = DA-EJNEA(qd , q̇d , q̈d ,
...
q d ,

....
q ∗,F, Ḟ, F̈) (56)

where

....
q ∗ =

....
q d+K3(

...
q d−

...
q )+K2(

...
q d−

...
q )

+K1(q̈d−q̈)+K0(qd−q)
, K0, . . . ,K3 ∈

R
2N are diagonal matrices, with their diagonal elements K·,i

being such that the polynomials [23]:

FIGURE 7. (a) The positions error of joints. (b) The velocities error of
joints.

pi(s) = s4 +K3,is
3 +K2,is

2 +K1,is
1 +K0,i, i = 1, . . . , 2N

are Hurwitz, therefore, it can guarantee the system stable, and

the trajectory error converges to zero.

As we know, to use the above control law, q, q̇, q̈,
...
q need to

be measured, usually q can be read from the encoders located

in the link side, and q̇ can resort to numerical differentia-

tion of position measurements, but q̈,
...
q are not easily to be

measured by the sensors directly, and that multiple on-line

numerical differentiation of position measurements would

introduce excessive noise and/or delays in a discrete-time

implementation, they can be estimated from (26), as follows:

q̈ = M−1(q)[τ e − n(q, q̇) − JTF] (57)
...
q = M−1(q)[τ̇ e − Ṁ(q)q̈− ṅ(q, q̇) − JT Ḟ− J̇

T
F] (58)

In practice, the correctness of the above acceleration and

jerk is based on the precision of the elastic joint torque

τ e reading from the torque sensors, and the knowledge

of the model which is hard to obtain the accurate model

usually. When the torque sensors are not sufficiently pre-

cise, an observer can be relied on. If the knowledge of the

model is poor which will be lead to much systematic errors,

a kinematic-Kalman-filter-based approach can be used [30].

V. VALIDATION OF THE DYNAMIC MODEL

A. VALIDATION OF A SINGLE ARM DYNAMIC MODEL

WITH ELASTIC JOINTS

The dynamic equations (25) or (26) with elastic joints need

to be validated. It is the foundation to verify the effect of

the DA-EJNEA next. We established the dynamic model with
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TABLE 2. The dynamic parameters of dual-arm system.

FIGURE 8. (a) The velocity of the object in Z direction. (b) The position of
the object in Z direction.

two elastic joints as (26) , it is easily to extend the model with

N-degree elastic joints, meanwhile, we built the same model

in Adams. To verify the correctness of the dynamic model

with elastic joints, the key problem is coinciding the motion

output of the rigid-flexible coupling model with the physical

model in Adams.

The kinematic parameters of the model are hk1 = 0.11m,

hk2 = 0.15m, and dynamic parameters are list in Tab. I. Initial

positions and velocities of each link and motor are given to

zeros, the imposed torques for motors of joint 1 and joint 2 are

set as −50 cos(2π t), with the sampling rate of 1ms.

where, (isix ,
isiy,

isiz) represent the positions of the center

of mass of the links expressed in link frames. All the drive

inertia moments Bi of each joints are assumed 3 Kg.m2, and

all the joint stiffnesses Ki have been assumed 1000 Nm/rad,

the gravity term and external force are neglected there.

The resulting motions of each link are shown in Fig. 6, the

errors of joints position and velocity are shown in Fig. 7,

the positions and velocities of our model coincides well with

FIGURE 9. (a) The position tracking error based on the DA-EJNEA. (b) The
position tracking error based on the RNEA.

the model of Adams, it can be considered the rigid-elastic

coupling model is correct.

B. VALIDATION OF THE EFFECT OF THE DA-EJNEA

To validate the advantage of the feedback linearization based

on the DA-EJNEA in the motion control, we compared the

trajectory tracking precision of the object with the computed

torque method based on the rigid inverse dynamics. All the

simulations were executed in Matlab2018. The kinematic

parameters of dual-arm coordinated system read from the

3D model are: hk1 = 0.11m, hk2 = 0.15m, hk3 = 0.1m,

hk4 = 0.15m, hk5 = 0.1m, hk6 = 0.17m, hke = 0.2m and the

dynamic parameters including each links and end-effectors

and the object are listed in Tab. II. Because all the dynamic

parameters of each arm of the dual-arm manipulator are the

same, we do not classify Arm-k in Tab. II.

All the drive inertia moments Bi of each joints are

assumed 3 Kgm2, and all the joint stiffnesses Ki are assumed

1000 Nm/rad. The object is a cube with 0.2m sides, the center

of mass of the cube locates in the center of geometry, the

gravity term is g = [00 -9.8]T .

The initial joint velocities are assumed to be zeros, and the

initial joint angle of each arm and distance of each arm to the

base frame are assumed to be:

qat0 = qbt0 = [π/2; −π/6; 0; −5π/12; 0;π/4; 0]

wa = wb = 0.5m

Given the object a velocity trajectory in the Z direction of

the operation space as żd = −0.3 sin(2π t), with the sampling
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FIGURE 10. (a) The velocity tracking error based on the DA-EJNEA. (b) The
velocity tracking error based on the RNEA.

rate of 1ms, we obtained the positions and velocities of the

object in Z direction as shown in Fig. 8. The position and

velocity trajectory tracking precision in Z direction are shown

in Fig. 9 and Fig. 10. The results illustrated that the proposed

DA-EJNEA with feedback linearization has better tracking

performances.

VI. CONCLUSION

In this paper, the dynamic modeling and control method

of the system of dual-arm manipulator with elastic joints

cooperated carrying a common object was presented. The

proposed DA-EJNEA takes the manipulator high-order

dynamics and the object high-order dynamics into consid-

eration, which is based on a differential extension of the

classic recursive Newton-Euler algorithm. The DA-EJNEA

is efficient, and easily to extend the model with N degrees,

especially convenient for the redundant robot. The require-

ment to implement of the DA-EJNEA is that the arbi-

trary two terms of link positions, motor positions and

elastic torques are measurable, it is not a difficulty in

modern industrial robots. The computed torque method

for rigid inverse dynamics and the feedback lineariza-

tion method for rigid-elastic coupling inverse dynamics

were executed to control the dual-arm system, the sim-

ulation results illustrate the effectiveness of the proposed

DA-EJNEA in the position control. However, the DA-EJNEA

requires the exact model parameters of the dual-arm sys-

tem in theory. Future work will address the passive-based

control for the case of model parameters uncertainty,

meanwhile, the experimental validations will be added for

control algorithm approval in the future.
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