
A Recursive Greedy Algorithm for Walks in Directed Graphs

Chandra Chekuri∗ Martin Ṕal†

Abstract

Given an arc-weighted directed graphG = (V,A, `) and
a pair of nodess, t, we seek to find ans-t walk of length
at mostB that maximizes some given functionf of the set
of nodes visited by the walk. The simplest case is when
we seek to maximize the number of nodes visited: this is
called the orienteering problem. Our main result is a quasi-
polynomial time algorithm that yields anO(log OPT) ap-
proximation for this problem whenf is a given submodular
set function. We then extend it to the case when a nodev
is counted as visited only if the walk reachesv in its time
window[R(v), D(v)].

We apply the algorithm to obtain several new results.
First, we obtain anO(log OPT) approximation for a gen-
eralization of the orienteering problem in which the profit
for visiting each node may vary arbitrarily with time. This
captures the time window problem considered earlier for
which, even in undirected graphs, the best approximation
ratio known [4] isO(log2 OPT). The second application
is anO(log2 k) approximation for thek-TSP problem in
directed graphs (satisfying asymmetric triangle inequality).
This is the first non-trivial approximation algorithm for this
problem. The third application is anO(log2 k) approxima-
tion (in quasi-poly time) for the group Steiner problem in
undirected graphs wherek is the number of groups. This
improves earlier ratios [15, 19, 8] by a logarithmic fac-
tor and almost matches the inapproximability threshold on
trees [20]. This connection to group Steiner trees also en-
ables us to prove that the problem we consider is hard to
approximate to a ratio better thanΩ(log1−ε OPT), even in
undirected graphs.

Even though our algorithm runs in quasi-poly time, we
believe that the implications for the approximability of sev-
eral basic optimization problems are interesting.

∗Lucent Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974.
chekuri@reserch.bell-labs.com
†DIMACS Center, CoRE Bldg 4th Floor, Rutgers University, Piscat-

away, NJ 08854.mpal@acm.org . Part of this work was done while the
author was at Lucent Bell Labs.

1 Introduction

A number of interesting combinatorial optimization
problems can be cast as a path or tour problem in a graph.
The most well known of these is the classical traveling
salesman problem (TSP) which asks for a shortest tour that
visits all nodes in a graph. Other related problems include
the Chinese postman problem, the minimum latency prob-
lem, and thek-TSP problem. In these problems we seek
to minimize the tour length subject to certain constraints on
the nodes visited by the tour. A different class of problems
is motivated bymaximizingsome function of the nodes vis-
ited, subject to abudgeton the tour length. The simplest of
these is theorienteeringproblem in which the goal is to visit
the maximum number of nodes subject to a budgetB on the
tour length. In particular we are interested in therootedver-
sion where the tour or path begins at a given start nodes. We
are allowed to visit a node multiple times although we ob-
tain a profit only for the first visit. These class of problems
are also sometime referred to asprize-collectingtraveling
salesman or repairman problems. These budgeted problems
are of much importance in real world applications such as
vehicle routing and its variants. They arise from operational
issues such as assigning technicians to maintenance jobs or
delivering goods to locations. A substantial amount of work
on heuristics for these problems can be found in operations
research literature. Typically there are several other con-
straints such as time-windows (each node has an interval
[R(v), D(v)] in which it can be visited) and vehicles with
capacity constraints. These problems are also known to be
difficult to solve (exactly) in practice for even moderately
sized instances. The book [25] provides a recent and com-
prehensive survey on vehicle routing.

Despite the importance of these types of problems, there
are few positive algorithmic results in the theoretical com-
puter science literature and some of them are quite recent.
One of the difficulties is that the constraints are rigid: bud-
get on the length of the path or time windows or vehicle
capacities. A second difficulty is that these problems com-
bine aspects ofschedulingandnetwork designand the algo-
rithmic tools that we have for them do not overlap strongly.
Nevertheless, in some recent work [1, 7, 4, 10], progress has
been made on some fundamental problems. In [7], Blumet

al. gave the first constant factor approximation algorithm
for the orienteering problem and some related problems in
metric spaces (induced by undirected graphs). Surprisingly,
this was the first non-trivial approximation algorithm for
this problem. Prior to this work, a(2 + ε)-approximation
was known for orienteering in geometric settings [1]. The
current best ratio for orienteering in metric spaces is3 due
to Bansalet al.[4]. Bansalet al.[4], building upon the algo-
rithm for orienteering, gave algorithms for the time window
version of the problem. They obtain a ratio ofO(log2 OPT)
for the time window problem and a ratio ofO(log OPT) for
the simpler problem when all release dates are the same.

The main idea in [7] for the orienteering problem is to
transform an approximation algorithm for the rootedk-TSP
problem into an approximation algorithm for the orienteer-
ing problem. In the rootedk-TSP problem, the objective is
to find a minimum length tour that visits at leastk-nodes
and includes a specified noder. Although the rootedk-
TSP and orienteering problems are equivalent in the ex-
act sense, an approximation algorithm fork-TSP does not
yield a corresponding approximation algorithm for orien-
teering. However, in [7], a clever idea is used to combine
dynamic programming with the use ofk-TSP to obtain an
algorithm for orienteering. A constant factor approximation
for the rootedk-TSP and related problems such ask-MST
are known in undirected graphs. The algorithms in [4] for
the time window problem rely on the algorithm for orien-
teering in a black box fashion and also apply to directed
graphs. However, there are no good algorithms known for
k-TSP and related problems in directed graphs.

In this paper we take a different approach to these prob-
lems. We give arecursive greedyalgorithm with the recur-
sion reminiscent of the well-known algorithm of Savitch for
directeds-t connectivity [24] that relates non-deterministic
and deterministic space complexities. We show that this
surprisingly simple algorithm has anO(log OPT) approx-
imation ratio for a number of walk problems indirected
graphs including the basic orienteering problem. The al-
gorithm works even when we seek to maximize an arbitrary
submodular set function on the set of nodes visited by the
walk. We discuss some interesting consequences of this.
There is however a price to pay for this generality. The al-
gorithm runs inquasi-polynomialtime. We nevertheless be-
lieve that the results are of interest from both an algorithmic
and complexity theoretic point of view. We obtain the first
non-trivial approximation algorithms for several seemingly
difficult optimization problems. Our algorithmic result also
yields a lower bound on reduction sizes for inapproxima-
bility bounds. And our results add to a growing number of
problems for which quasi-polynomial time algorithms yield
reasonable approximation ratios but no polynomial time al-
gorithms achieving comparable ratios are known. We now
formally define the problems that we consider.

Orienteering: The input to an orienteering problem is
given by a directed arc weighted graphG = (V,A, `) with
`(u, v) denoting the length of arc(u, v), two nodess, t ∈ V ,
not necessarily distinct, and a budgetB > 0. Our goal is
to find ans-t walk P of length at mostB, to maximize re-
ward collected. The reward is determined by the setV (P)
of nodes visited by the walkP . For plain orienteering, the
reward is simply|V (P)|, the number of distinct nodes vis-
ited, but we will be interested in more general rewards.

A reward functionf : 2V 7→ Z
+ assigns a non-negative

integer reward to every subset of nodes. The functionf
is submodularif for all A,B ⊂ V and u ∈ V , f(A ∪
{u}) − f(A) ≥ f(B ∪ {u}) − f(B) wheneverA ⊆ B.
An equivalent definition is that for allA,B ⊂ V , f(A) +
f(B) ≥ f(A∩B) + f(A∪B). We say thatf is monotone
if f(A) ≤ f(B) for all A ⊆ B.

Given an arc weighted directed graphG, two nodess, t,
a budgetB and a monotone submodular functionf , thesub-
modular orienteering problem(SOP) is to find ans-t walk
P of length at mostB that maximizesf(V (P)). We as-
sume that the functionf is given by an oracle that returns
f(S) when presented with a setS ⊆ V .

Time windows: In a time window version of SOP (SOP-
TW), each nodev has a time window[R(v), D(v)] dur-
ing which it can be visited:R(v) andD(v) are the re-
lease time and deadline ofv. We associate a notion of
time with walks inG. A timed walkP is given by a se-
quences = v0, v1, . . . , vk = t of nodes together with a se-
quenceT0, T1, . . . , Tk of times satisfyingT0 = 0, Tk ≤ B
andTi + `(vi, vi+1) ≤ Ti+1. Intuitively, Ti is the time
at whichP visits vi. It takes`(u, v) time to travel from
nodeu to v, but the walk is allowed to travel slower or stall.
Given a timed walkP , let VT (P) be the set of nodesvi
such thatTi ∈ [R(vi), D(vi)]. In SOP with time windows
(SOP-TW), the goal is to find a timeds-t walk maximizing
f(VT (P)) for a given monotone submodular functionf .

We note that processing times at nodes can be easily
modeled by adding extra arcs and dummy nodes. This is an
easy and well-known transformation and we omit the de-
tails. Throughout, OPT denotes the value of an optimum
solution to the given problem.

Results:Our main result is an algorithm for SOP with time
windows (SOP-TW) that runs in quasi-polynomial time and
provides a solution of valueΩ(OPT/ log OPT). More pre-
cisely, for any fixed integerh ≥ 2, we obtain an algo-
rithm with a running time of(n logB)O(h logn) that yields
anO(log OPT/ log h) approximation whereB is an upper
bound on the length of the tour. Note that this allows us to
obtain asub-logarithmicapproximation insub-exponential
time. We also prove that SOP is hard to approximate to
within a factor ofΩ(log1−ε OPT) unless NP is contained in
randomized quasi-polynomial time. Several interesting re-

sults follow from the algorithm for SOP-TW. In the follow-
ing we do not explicitly qualify the approximation bounds
as requiring quasi-polynomial time.

First we discuss applications of the algorithm for SOP
(without time windows). A first and immediate applica-
tion is anO(log OPT) approximation for orienteering in di-
rected graphs. Another application is anO(log2 k) approxi-
mation for thek-TSP problem in directed graphs. These two
results are the first non-trivial approximation algorithms for
these problems. A related but surprising consequence is
an O(log2 k) approximation for the group Steiner prob-
lem in undirectedgraphs [15] wherek is the number of
distinct groups. More precisely, anα-approximation for
SOP implies anO(α log k) approximation for the group
Steiner problem. Here we use the submodular property of
the reward function. This improves upon theO(log3 k)
bound achieved in quasi-polynomial time1 in [8] and the
O(log2 k log n) bound achieved in polynomial time2 [19]
(heren is the number of nodes in the graph). The bound
we achieve almost matches the inapproximability bound of
Ω(log2−ε k) on tree instances established by Halperin and
Krauthgamer [20]. The inapproximability bound is shown
under the assumption that NP has no quasi-polynomial time
Las-Vegas algorithms. In fact, as is typical with several PCP
based reductions, the reduction reduces 3SAT instances to
quasi-polynomial sized instances of the group Steiner prob-
lem. It is commonly assumed that with better parameters
and methods, such inapproximability results can be im-
proved to obtain a polynomial sized reduction. A conse-
quence of the our algorithm for SOP is that one can obtain
anO(log1+δ k) approximation for the group Steiner prob-
lem for any fixedδ > 0 in sub-exponential time. This
shows that an inapproximability bound ofΩ(log1+ε k) for
the group Steiner problem for any fixedε > 0 requires a
quasi-polynomial sized reduction from 3SAT (unless NP
has sub-exponential time algorithms).

We now discuss the applications of the algorithm for
SOP-TW. The first application is to the orienteering prob-
lem with time windows for which we obtain anO(log OPT)
approximation. This improves upon the approximation ra-
tio ofO(log2 OPT) in [4] and works in directed graphs (the
algorithm in [4] works in polynomial time so it is not an
apples to apples comparison). More interestingly, the com-

1In [8] an O(log2 k) approximation in quasi-polynomial time is
claimed for the directed Steiner tree problem which implies the same ratio
for the group Steiner tree problem. However, the analysis in [8] is based
on an erroneous lemma of Zelikovsky in [27] and when a correct version
of the lemma (see [21]) is used, the ratio obtained from the analysis in [8]
becomesO(log3 k).

2The first poly-logarithmic approximation for the group Steiner prob-
lem was given by Garg, Konjevod and Ravi [15]. The bound of
O(log2 k logn) is based on subsequent improvements for probabilistic
tree embeddings [12] and a more refined analysis in [19]. These results
also establish an approximation ratio ofO(logN log k logn) whereN is
the maximum group size. Note thatN andk are incomparable.

bination of single time window and submodularity of the
reward function allows us to handle problems in which each
node may have multiple time windows during which it is ac-
tive, and we get a reward for that node only if we visit it dur-
ing an active window. Our algorithm also applies to prob-
lems in which the reward for visiting each node is a func-
tion of the time of the visit (if a node is visited more than
once, we only get reward for the most profitable visit). An
example problem in which the profit of a node varies with
time is the discounted-reward TSP [7] in which the profit
for visiting a nodev at timet is given byπvγtv . We obtain
a logarithmic approximation for these problems when the
distances are asymmetric.

Related Work: There is a large amount of work on prob-
lems related to those that we consider in this paper. Here
we briefly discuss some of the more directly related liter-
ature. Most of the work on approximation algorithms for
route traversal problems is on metric spaces induced by
undirected graphs where the distances are symmetric and
satisfy the triangle inequality. We will explicitly mention
results for directed graphs. A basic problem underlying
some of the variants we mentioned is the prize-collecting
traveling salesman problem (PC-TSP) [3]. In this problem,
each node has a a profit for visiting it and a penalty for not
visiting it: the goal is to find a tour that obtains at least a
given profit while minimizing the length of the tour and the
sum of the penalties of the nodes not visited. Goemans and
Williamson [16] gave a primal dual2-approximation algo-
rithm for a special case of PC-TSP in which there are no
profits. Their algorithm and analysis formed the basis for
subsequent work on related problems such as thek-MST
and k-TSP problems and the minimum latency problem.
For thek-TSP problem the current best ratio is2 due to
Garg [14]. The orienteering problem [17] is closely related
to PC-TSP. Arkin, Mitchell and Narasimhan gave a(2 + ε)-
approximation when points are in the Euclidean plane and
more recently a constant factor approximation was devised
for metric spaces by Blumet al.[7] with an improvement of
the ratio to3 by Bansalet al. [4]. The time window version
of orienteering has also been studied. Tsitsiklis [26] showed
that the problem is NP-hard even if the metric space is a line.
Bar-Yehuda, Even, and Shahar [6] obtained anO(log OPT)
approximation for the line case. Bansalet al. [4] gave an
O(log2 OPT) approximation for general metric spaces and
an improvedO(log OPT) approximation if all release dates
are the same. Chekuri and Kumar [10] gave a constant fac-
tor approximation if the number of distinct time windows
is a fixed constant independent of the input size. These two
latter results use an algorithm for orienteering in a black box
fashion.

The time window problem is related to the problem of
scheduling jobs with interval constraints. In this setting,
each job has a processing time and can be scheduled in one

of several disjoint time windows. Given some number of
machines, each of which can process only one job at a time,
the goal is to find a non-preemptive schedule to maximize
the profit of jobs that are completed. We can also allow
the processing times and profits to vary with the interval in
which the job is scheduled. A constant factor approximation
for this general problem can be found in [5]. We remark that
SOP-TW generalizes this scheduling problem in a straight
forward way.

The approximability of TSP and related problems have
been much less understood in directed graphs. Asymmetric-
TSP has anO(log n) approximation [13, 22] and it is a
major open problem to decide whether there is a constant
factor approximation. The directed Steiner tree problem
with k terminals and thek-MST problem have anO(i3k1/i)
approximation innO(i) time [8]. Thus we can obtain an
O(log3 k) approximation in quasi-polynomial time. The re-
lated group Steiner problem [15] in undirected graphs has
had more success. AnO(min{log k, logN} log n log k)
approximation is known [15, 19] wherek is the number of
groups,N is the maximum group size, andn is the number
of nodes in the graph. It is also known that this problem is
hard to approximate to within a factor ofΩ(log2−ε k) un-
less NP is contained in randomized quasi-polynomial time
[20]. We refer the reader to [15, 8, 23, 9, 19, 20] for more
details on these problems.

2 Preliminaries

We are interested in walks in directed graphs and the re-
ward function is a monotone submodular function. This al-
lows us to assume without loss of generality that the arc
lengths of the given directed graph satisfy theasymmetric
triangle inequality; that is, for all triplesu, v, w of nodes,
`(u, v) + `(v, w) ≥ `(u,w). With this assumption, we can
restrict attention to paths and cycles instead of walks and
in particular we can assume that each node is visited only
once. We will also assume that all arc lengths are integers.

For simplicity, we will assume thatf is an integer valued
submodular function. Given a submodular functionf onV
and a subsetX ⊆ V we define a new submodular function
fX on V asfX(S) = f(S ∪ X) − f(X). The following
fact will be useful in the analysis.

Fact 2.1 Let f be a monotone submodular set function on
V . Then for anyA ⊆ B ⊆ V , fA(S) ≥ fB(S) for all
S ∈ 2V .

In the SOP-TW problem, we are interested in a timed
walk. However, given a pathP = v0, v1, . . . , vk, we can
check in polynomial time if the nodes can be visited in their
time windows while respecting the sequence imposed byP .
Therefore, it is sufficient to output a path instead of a timed
walk.

Polynomially Bounded Rewards:For computational pur-
pose, given an arbitrary instance of SOP-TW, we transform
into an instance in whichf(V) and OPT are poly-bounded
in n, the number of nodes in the graph. For any givenε > 0,
we can ensure that this transformation loses only a(1 + ε)
factor in the approximation ratio. The basic idea is toguess
the nodev with largest profit that an optimum tour visits
and restrict attention to nodesu ∈ V such thatf({u}) ≤
f({v}). Once we do this, iff is modular, we can use stan-
dard scaling and rounding ideas to ensure that all values are
integers and polynomially bounded. However, for submod-
ularf we cannot do this directly but we can still work with
scaling and rounding in an implicit fashion. We define a
new functionf ′ wheref ′(S) = bn2f(S)/(εf({v})c and
usef ′(S) in place off(S). We observe thatf ′ need not be
submodular, however we can argue that usingf ′ in place of
f does not affect the approximation ratio of our algorithms
by more than a factor of(1 + O(ε)). In this version of the
paper, we omit the details and for simplicity assume thatf
is integer valued and poly-bounded when necessary.

All logarithms in the paper are to base2.

3 The Recursive Greedy Algorithm

In this section we describe and analyze the algorithm
for SOP. Generalization to SOP-TW is relatively straight
forward. We first discuss an algorithm that achieves an
O(log OPT) approximation and defer the improvement to
a ratio ofO(log OPT/ log h) to Section 3.3. The algorithm
is simple and we describe it at a high level before formal-
izing it. In the following, it is useful to think off as the
simple functionf(S) = |S|which captures the orienteering
problem. LetP ∗ = s = v0, v1, . . . , vk = t be an optimal
walk. We refer tovk/2 as themiddlenode. The algorithm
guessesthe middle nodeandthe lengthB′ to reach the mid-
dle node and recursively calls itself two times. Informally,
the algorithm is as follows.

• guess the middle nodev and the lengthB′ to reachv
from s.

• recursively find a walkP1 from s to v with budgetB′.

• recursively find a walkP2 from v to t with budgetB−
B′ to augmentthe nodes visited byP1.

• output the walk obtained by the concatenation ofP1

andP2.
We note that the second recursive call depends on the first
in an essential way since it requires knowledge of which
nodes have already been visited byP1. This is thegreedy
aspect of the algorithm and is critical to the analysis of its
performance. The algorithm implements the guessing step
by enumerating all possibilities for the middle nodev as
well as the lengthB′. In the above description we did not

specify a stopping condition for the recursion. The intuition
is that we are breaking the optimum walk into two pieces
with roughly equal number of nodes, and hence the recur-
sion should have depthlog k. As stated, the running time
of the algorithm will beO((2nB)log k) which need not be
quasi-polynomial ifB is super-polynomial. To facilitate the
analysis and later present a modified algorithm with an im-
proved running time, we now give a detailed and formal
description of the above informal algorithm.

We define a procedure RG(s, t, B,X, i) that implements
the algorithm. We first explain the parameters. The param-
eterss, t andB indicate that we seek ans-t walk of length
at mostB. The parameterX indicates that we seek to find a
pathP so as to maximizefX(P) = f(V (P)∪X)− f(X);
that is we seek to find a path that augments a setX. The
parameteri indicates the depth of the recursion allowed.

Algorithm: RG(s, t, B,X, i)

1. If (`(s, t) > B) returnInfeasible

2. P ← s, t

3. Base case:i = 0. returnP

4. m← fX(P)

5. For eachv ∈ V do

(a) For1 ≤ B1 ≤ B do

i. P1 ← RG(s, v,B1, X, i− 1)
ii. P2 ← RG(v, t, B −B1, X ∪ V (P1), i− 1)

iii. If (fX(P1 · P2) > m)
P ← P1 · P2

m← fX(P)

6. returnP

Proposition 3.1 The running time ofRG(s, t, B,X, i) is
O((2nB)i · Tf) whereTf is the maximum time to compute
f on a given set.

The heart of the paper is in the analysis of the lemma be-
low. Recall that all logarithms are to base2. LetP(s, t, B)
denote the set of alls-t paths of length at mostB.

Lemma 3.2 Let P ∗ ∈ P(s, t, B) such thatP ∗ = (s =
v0, v1, . . . , vk = t). Let P be the path returned by
RG(s, t, B,X, i). If i ≥ d1 + log ke, then fX(P) ≥
fX(P ∗)/d1 + log ke.

Proof. The proof is by induction onk. The base case is
whenk = 1 in which caseP ∗ = s, t. It is easy to see
that the algorithm checks the paths, t and hencefX(P) ≥
fX(P ∗).

Now supposek > 1. Let v = vdk/2e be the middle
node inP ∗ and letP ∗1 andP ∗2 be the subpaths ofP ∗ from

s to v andv to t respectively. LetB1 = `(P ∗1) andB2 =
`(P ∗2). Consider the procedure RG(s, t, B,X, i) with i ≥
d1 + log ke. From the description of the algorithm, we see
that RG(s, t, B,X, i) calls P1 = RG(s, v,B1, X, i − 1)
andP2 = RG(v, t, B2, X ∪ V (P1), i − 1). We argue now,
using induction, that the pathP = P1 · P2 has the property
thatfX(P) ≥ fX(P ∗)/d1 + log ke. This will establish the
lemma.

Note thatP ∗1 andP ∗2 havedk/2e and bk/2c edges re-
spectively, and thatd1 + logdk/2ee = dlog ke ≤ i − 1.
SinceP ∗1 is a candidate for path froms to v of length at
mostB1, by induction we have

fX(P1) ≥ 1
dlog ke

fX(P ∗1) (1)

LetX ′ = X ∪ V (P1). SinceP ∗2 is a candidate path fromv
to t of length at mostB2, again by induction we have

fX′(P2) ≥ 1
dlog ke

fX′(P ∗2). (2)

We observe that

fX′(P ∗2) = f(P ∗2 ∪ (P1 ∪X))− f(P1 ∪X)
≥ fX(P ∗2 ∪ P1)− fX(P1).

Using this in (2), we obtain that

fX′(P2) ≥ 1
dlog ke

(fX(P ∗2 ∪ P1)− fX(P1))

≥ 1
dlog ke

(fX(P ∗2)− fX(P)). (3)

The inequality above follows from monotonicity off .
Adding (1) and (3) and using submodularity offX , we get

fX(P) ≥ 1
dlog ke

(fX(P ∗1) + fX(P ∗2)− fX(P))

≥ 1
dlog ke

(fX(P ∗)− fX(P)).

Rearranging terms, we obtain that

fX(P) ≥ 1
1 + dlog ke

fX(P ∗).

2

The above lemma is essentially inspired by the algorithm
and analysis in [10] for a fixed number of time windows
coupled with the idea of recursion.

3.1 Quasi-Polynomial Time Algorithm

To obtain a logarithmic approximation, the algorithm de-
scribed in the previous section takesO((2nB)log k) time

where k is the length of the path of an optimum path.
If B is large (super-polynomial inn), the running time
need not be quasi-polynomial in the input size. Here we
modify the algorithm to obtain an algorithm with a run-
ning time ofO((n · OPT · logB)log k). More precisely,
if there is a pathP ∗ with k nodes then the algorithm runs
in O((n · f(P ∗) · logB))log k) and yields anO(log k) ap-
proximation. As we mentioned in Section 2, we can assume
thatf(P ∗) is poly-bounded inn. This allows us to obtain
a quasi-polynomial time algorithm. We now describe the
modified algorithm. The basic idea is to use binary search
to guessB1 instead of enumerating all possible values. The
algorithm assumes an upper boundA on the value off(P ∗).

Algorithm: RG-QP(s, t, B,X, i)

1. If (`(s, t) > B) returnInfeasible

2. P ← s, t

3. Base case:i = 0. returnP

4. m← fX(P)

5. For eachv ∈ V do

(a) For1 ≤ a ≤ A do

i. B1 ← minb(RG-QP(s, v, b,X, i− 1) ≥ a)
ii. If B1 =∞, continue

iii. P1 ← RG-QP(s, v,B1, X, i− 1)
iv. P2 ← RG-QP(v, t, B−B1, X∪V (P1), i−

1)
v. If (fX(P1 · P2) > m)

P ← P1 · P2

m← fX(P)

6. returnP

The stepB1 = minb(RG-QP(s, v, b,X, i − 1) ≥
a) in the above algorithm is implemented as a binary
search over[1, B] and hence takeslogB recursive calls to
RG-QP(s, v, ,X, i − 1). The running time analysis is
straight forward.

Proposition 3.3 The running time ofRG-QP(s, t, B,X, i)
isO((2 + nA logB)i · Tf) whereTf is the maximum time
to computef on a given set.

The proof of the following lemma is very similar to that
of Lemma 3.2 and hence we omit it in this version.

Lemma 3.4 Let P ∗ ∈ P(s, t, B) and let k be the num-
ber of edges inP ∗. Let P be the path returned by
RG-QP(s, t, B,X, i). If i ≥ d1+log ke andA ≥ fX(P ∗),
thenfX(P) ≥ fX(P ∗)/d1 + log ke.

Proposition 3.3, the poly-boundedness offX(P ∗), and
Lemma 3.4 yield the theorem below.

Theorem 3.5 For the submodular orienteering prob-
lem (SOP) there is an algorithm with running time
(n logB)O(log n) that yields anO(log OPT) approxima-
tion.

3.2 Time Windows

We now generalize the recursive greedy algorithm to
handle time windows on the nodes. Recall that each node
v has a time window[R(v), D(v)] during which it can be
visited. To make the description of the recursive algorithm
cleaner we will now require that the walk starts ats at time
σ and has to reacht by timeτ . In the algorithm for SOP,σ
was0 andτ wasB. The modification to the basic algorithm
is simple: we need to ensure that the middle node is vis-
ited during its time window. We describe the time window
version of RG-QP below.

Algorithm: RG-QP-TW(s, t, σ, τ,X, i)

1. If (τ < R(t) or `(s, t) + σ > D(t)) returnInfeasible

2. P ← s, t

3. Base case:i = 0. returnP

4. m← fX(P)

5. For eachv ∈ V do

(a) For1 ≤ a ≤ A do

i. µ← minb(RG-QP(s, v, σ, b,X, i−1) ≥ a)
ii. If µ =∞, continue

iii. P1 ← RG-QP(s, v, σ, µ,X, i− 1)
iv. P2 ← RG-QP(v, t, µ, τ,X ∪ V (P1), i− 1)
v. If (fX(P1 · P2) > m)

P ← P1 · P2

m← fX(P)

6. returnP

The proof of the following theorem is based on similar
ideas to those presented earlier for the case without time
windows.

Theorem 3.6 For the submodular orienteering problem
with time windows (SOP-TW), there is an algorithm
with running time (n logB)O(log n) that provides an
O(log OPT) approximation whereB is an upper bound on
the tour length.

3.3 Improved Approximation Ratio

We outline how to improve the approximation ratio to
O(log OPT/ log h) while increasing the running time to
(n logB)O(h logn/ log h). In the algorithm RG for SOP, we

guessed the middle nodevk/2 of an optimum pathP ∗ =
s = v0, v1, . . . , vk = t and recursed twice in a greedy se-
quential fashion on subpathsP ∗1 andP ∗2 . Given an inte-
ger parameterh ≥ 2, to improve the approximation ratio,
we guess several nodes onP ∗, namelyvi1 , vi2 , . . . , vih−1

where i1 = k/h, i2 = 2k/h and more generally for
1 ≤ j < h, ij = jk/h. These nodes break up the path
P ∗ into h subpathsP ∗1 , P

∗
2 , . . . , P

∗
h and we also guess the

budget used byP ∗ in each of these subpaths. Then we re-
curse sequentially in a greedy fashion on each of these sub-
paths. Now the depth of the recursion isO(log k/ log h).
We can prove that the approximation ratio is proportional to
the depth which yields the desired result. Since we guess
h nodes and their budgets at each level of the recursion,
the running time goes up to(nB)O(h log k/ log h). We im-
prove this to(n logB)O(h log k/ log h) using the idea from
Section 3.1.

4 Applications

We discuss some applications of the algorithms for SOP
and SOP-TW. We omit some details in this version.

4.1 Orienteering with Multiple Disjoint Time
Windows

Orienteering with time windows is a special case of
SOP-TW. We demonstrate that a more general version can
also be cast as a special case of SOP-TW. Consider the
following problem. As in orienteering, we are given an
arc weighted graphG and we are interested in ans-t
walk of maximum profit. The profit function is defined
as follows. Each nodev has ` disjoint time windows
[R1(v), D1(v)], [R2(v), D2(v)], . . . , [R`(v), D`(v)] and
corresponding profit valuesp1(v), p2(v), . . . , p`(v). Vis-
iting v in its ith time window yields a profit ofpi(v) and
if v is visited multiple times, only the most profitable visit
is retained. We are assuming that all nodes have the same
number of time windows for simplicity - the case where
they have different numbers is easily captured by the uni-
form case by adding dummy time windows. It is relatively
easy to show that this version of the orienteering problem
with multiple disjoint time windows for each node is a spe-
cial case of SOP-TW and hence we obtain a logarithmic
approximation for this as well. By choosing the number
of time windows appropriately, we can closely approximate
any arbitrary time varying profit function for each node.
Most common profit functions can be approximated by a
polynomial number of time windows. The most general
case is when the profit for visitingv at time t, p(v, t) is
given as an oracle. For this case we can obtain a run-
ning time quasi-polynomial innB. Using a stronger oracle,
that for a given a time interval[t1, t2] and vertexv, returns

the valuemaxt∈[t1,t2] p(v, t), we again obtain running time
quasi-polynomial inn logB.

4.2 Rootedk-TSP in Directed Graphs

In the rootedk-TSP problem, we are given an arc
weighted graphG = (V,A, `) and a specified root node
r. The goal is to find a tour of minimum length starting at
r that contains at leastk nodes. Let OPT be the length of
such a tour. Suppose we have an upper boundB for OPT.
Using the algorithm for SOP with a budget ofB, we can
find a tour of lengthB that containsΩ(k/ log k) nodes. We
can remove the nodes visited by the tour and run the algo-
rithm again to cover more nodes. Using standard analysis
for covering problems, afterO(log2 k) iterations, the algo-
rithm will coverk nodes. We can stitch the tours together to
obtain a tour of lengthO(log2 k ·B) that containsk nodes.
We can use binary search to guessB to within a constant
factor of OPT. This yields anO(log2 k) approximation for
k-TSP in directed graphs.

4.3 Group Steiner and Covering Steiner Problems

We consider two network design problems inundirected
graphs. The input to the group Steiner problem consists of
an edge weighted graphG = (V,E, `) and ak subsets of
nodesg1, g2, . . . , gk called groups. The goal is to find a
minimum weight treeT = (V (T), E(T)) in G such that
V (T) ∩ gi 6= ∅ for 1 ≤ i ≤ k. We focus on the rooted
version of the problem: we are given a special root noder
and we require thatr ∈ V (T). The covering Steiner prob-
lem generalizes the group Steiner problem. In this problem
each groupgi has a positive integer coverage requirement
di. Now the goal is to find a minimum cost treeT such that
|V (T) ∩ gi| ≥ di.

In this section we obtain algorithm for the above two
problems via an algorithm for SOP. We discuss the cov-
ering Steiner problem since it captures the group Steiner
problem as a special case. From the given problem in-
stance we define a monotone submodular set functionf
as follows: for each setS ⊆ V (G), we definef(S) .=∑k
i=1 min(di, |S ∩ gi|). The quantityf(S) is the covering

requirement that is satisfied byS. It is easy to verify that
f is indeed a monotone submodular set function. Further,
givenS, f(S) can be computed in polynomial time.

Given an instance of the covering Steiner problem, con-
sider an optimum solutionT ∗ of cost OPT. Since the graph
is undirected, by taking an Euler tour ofT ∗ we obtain a
tour fromr of length at most2OPT that covers all groups.
Suppose we have an upper boundB for OPT. By using
SOP with functionf defined as above we obtain a tourP
of length at most2B that coversf(V (T ∗))/ log f(V (T ∗)).
Note thatf(V (T ∗)) =

∑
i di. We can remove the nodes

in P , reduce the requirements of the groups that are already
partially covered and repeat the above procedure. Using
standard set cover style arguments, inO(log2(

∑
i di) it-

erations, all the groups will be covered to their requisite
amount. Putting together the tours yields tree of length
O(log2∑

i di)B that is a feasible solution. We can use bi-
nary search to find aB that is within a constant factor of
OPT and hence we obtain anO(log2∑

i di) approxima-
tion. When specialized to the group Steiner problem the
ratio becomesO(log2 k) wherek is the number of groups.

The above discussion implies that anα-approximation
for SOP in undirected graphs implies anO(α log k) ap-
proximation for the group Steiner problem in undirected
graphs. Halperin and Krauthgamer [20] have shown that
the group Steiner problem is hard to approximate to within
anΩ(log2−ε k) factor unless NP has quasi-polynomial time
Las-Vegas algorithms. Under the same assumption, they
also establish an inapproximability bound ofΩ(log2−ε n)
wheren is the number of nodes in the group Steiner in-
stance. Using this and the above lemma, we obtain the fol-
lowing.

Theorem 4.1 The submodular orienteering problem (SOP)
in undirected graphs is hard to approximate to within a fac-
tor of Ω(log1−ε OPT) unless NP⊆ ZTIME(npolylog(n)).

Note that, using the algorithm in Section 3.3, we can
obtain anO(log1−δ OPT) approximation for SOP in time
exp(O(log2 n · 2logδ n)) which is sub-exponential for any
fixedδ < 1. Combined with Theorem 4.1, this might appear
to imply that NP is contained in sub-exponential time. This
is not the case since the hardness in Theorem 4.1 relies on
a quasi-polynomial size reduction. However, it shows that
the reduction size in [20] cannot be improved to polynomial,
unless NP has sub-exponential time algorithms. Indeed, as-
suming NP is not contained in sub-exponential time, any
reduction showing that the group Steiner problem is hard
to approximate withinΩ(log2−ε n) for someε < 1, must
necessarily have superpolynomial size. We formalize this
in the theorem below.

Theorem 4.2 For some0 < δ < 1, suppose there is a
reductiong that maps 3SAT instances of sizen to group
Steiner instances of sizeN = exp(o(log1/δ n)) such that
anO(log2−δ N) approximation for the group Steiner prob-
lem would decide the satisfiability of 3SAT. In addition sup-
poseg runs in sub-exponential time as a function ofn. Then
3SAT has a sub-exponential time algorithm.

For the covering Steiner problem, an approximation ra-
tio of O(min{N, log n logN log k}) is known from prior
work [18, 23, 11]. Heren is the number of nodes in the
given graph andN is the maximum size of a group. Thus
the ratio improves with decreasingN . We comment that the

dependence onN stems from the LP relaxation on which
the algorithms are based. The integrality gap of the LP
improves asN decreases because the graph isundirected
(whenN = 1 the problem becomes a Steiner tree problem).
In contrast, our algorithm yields a ratio ofO(log2∑

i di)
irrespective ofN since it does not distinguish between di-
rected and undirected instances. We note that, on trees,
the known approximation ratio for covering Steiner tree is
O(logN log k) and the additionallog n factor for general
graphs is the result of approximating a graph by a tree.
It is an open problem whether this extra factor is neces-
sary. The worst integrality gap for the natural relaxation
is Ω(logN log k/ log logN) and it applies to trees [19] and
no worse gap is known for graphs. Our results indicate that
anO(logN log k) approximation ratio is possible even in
graphs.

5 Conclusions

The most interesting open problem resulting from our
work is to obtain polynomial time algorithms for SOP and
SOP-TW that have a poly-logarithmic approximation ra-
tio. The hardness of approximation for SOP is based on
the hardness of the group Steiner problem. The hardness
applies also to undirected graphs because we allow a sub-
modular reward function - otherwise the basic orienteering
problem has a constant factor approximation in undirected
graphs [7]. An interesting question is whether the basic
orienteering problem in directed graphs has a constant fac-
tor approximation. The approximability of the orienteering
problem with time windows is open in both undirected and
directed graphs. In fact the problem is open even on the line
where the best approximation ratio known isO(log OPT)
[6] while we know only NP-hardness [26]. For the group
Steiner and covering Steiner problems, our results present
good evidence that the extralog n factor lost in approxi-
mating a graph by a tree is perhaps not inherent and better
rounding procedures might yield anO(logN log k) approx-
imation via the natural LP, matching the ratio achieved for
trees.

Acknowledgments: We are grateful to Rajat Bhattachar-
jee and Amit Kumar for collaborations on related problems
that led to this work. We thank Sanjeev Khanna for dis-
cussions and comments on quasi-polynomial time, reduc-
tions, and complexity, in particular for help in establishing
Theorem 4.2. Thanks to Guy Even, Ashish Goel, and Guy
Kortsarz for discussions on the group Steiner problem. We
also thank the reviewers for suggestions that improved the
presentation. Chandra Chekuri acknowledges support from
an ONR grant MA14681000 to Lucent Bell Labs. Martin
Pál was supported by an NSF grant EIA 02-05116 while at
DIMACS.

References

[1] E. Arkin, J. Mitchell, and G. Narasimhan. Resource-
constrained geometric network optimization.Proc. of
ACM SoCG, 307–316, 1998.

[2] S. Arora and G. Karakostas. A2 + ε approximation
algorithm for the k-mst problem.Proc. of ACM-SIAM
SODA, 754–759, 2000.

[3] E. Balas. The prize collecting traveling salesman
problem.Networks, 19:621–636, 1989.

[4] N. Bansal, A. Blum, S. Chawla, and A. Meyerson.
Approximation Algorithms for Deadline-TSP and Ve-
hicle Routing with Time-Windows. Proc. of ACM
STOC, 166–174, 2004.

[5] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor and
B. Schieber. A unified approach to approximating re-
source allocation and scheduling.JACM, 48(5):1069–
1090, 2001.

[6] R. Bar-Yehuda, G. Even and S. Shahar. On Approxi-
mating a Geometric Prize-Collecting Traveling Sales-
man Problem with Time Windows. To appear inJ. of
Algorithms. Preliminary version inProc. of ESA, 55–
66, 2003.

[7] A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson,
and M. Minkoff. Approximation Algorithms for Ori-
enteering and Discounted-Reward TSP.Proc. of IEEE
FOCS, 46–55, 2003.

[8] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel,
S. Guha and M. Li. Approximation Algorithms for
Directed Steiner Problems.J. of Algorithms, 33, p.
73–91, 1999.

[9] C. Chekuri, G. Even, and G. Kortsarz. A greedy ap-
proximation algorithm for the group Steiner problem.
To appear inDiscrete Applied Math. Manuscript 2002.

[10] C. Chekuri and A. Kumar. Maximum Coverage Prob-
lem with Group Budget Constraints and Applications.
Proc. of APPROX-RANDOM, LNCS, 72–83, 2004.

[11] G. Even, G. Kortsarz and W. Slany. On network design
problems: fixed cost flows and the covering Steiner
problem.Proc. of SWAT, LNCS, 318–327, 2002.

[12] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight
bound on approximating arbitrary metrics by tree met-
rics. Proc. of ACM STOC, 448-455, 2003.

[13] A. Frieze, G. Galbiati and M. Maffioli. On the worst-
case performance of some algorithms for the asym-
metric traveling salesman problem.Networks12, 23–
39, 1992.

[14] N. Garg. Saving anε: A 2-approximation for thek-
MST problem in graphs.Proc. of ACM STOC, 396–
402, 2005.

[15] N. Garg and G. Konjevod and R. Ravi, A polyloga-
rithmic approximation algorithm for the Group Steiner
tree problem.J. of Algorithms, 37, 66–84, 2000. Pre-
liminary version inProc. of ACM-SIAM SODA, 1998.

[16] M. Goemans and D. Williamson. A general approx-
imation technique for constrained forest problems.
SIAM J. on Computing, 24:296–317, 1995.

[17] B. Golden, L. Levy and R. Vohra. The orienteer-
ing problem. Naval Research Logistics, 34:307–318,
1987.

[18] A. Gupta and A. Srinivasan. On the Covering Steiner
Problem.Proc. of FST&TCS, LNCS, 244–251, 2003.

[19] E. Halperin, G. Kortsarz, R. Krauthgamer, A. Srini-
vasan and N. Wang. Integrality ratio for Group Steiner
Trees and Directed Steiner Trees.Proc. of ACM-SIAM
SODA, 275–284, 2003.

[20] E. Halperin and R. Krauthgamer. Polylogarithmic In-
approximability.Proc. of ACM STOC, 585–594, 2003.

[21] C. H. Helvig, G. Robins, and A. Zelikovsky. Improved
approximation scheme for the group Steiner problem.
Networks, 37(1):8–20, 2001.

[22] H. Kaplan, M. Lewenstein, N. Shafir and M. Sviri-
denko. Approximation Algorithms for Asymmet-
ric TSP by Decomposing Directed Regular Multidi-
graphs.Proc. of IEEE FOCS, 56–67, 2003.

[23] G. Konjevod, R. Ravi and A. Srinivasan. Approxi-
mation Algorithms for the Covering Steiner Problem.
Random Structures & Algorithms, vol 20, 465–482,
2002.

[24] Walter J. Savitch. Relationships Between Nonde-
terministic and Deterministic Tape Complexities.J.
Comput. Syst. Sci., 4(2):177–192, 1970.

[25] The Vehicle Routing Problem. P. Toth, D. Vigo eds,
SIAM Monographs on Discrete Mathematics and Ap-
plications, Philadelphia, 2002.

[26] J. Tsitsiklis. Special Cases of Traveling Salesman and
Repairman Problems with Time Windows.Networks,
vol 22, 263–282, 1992.

[27] A. Zelikovsky. A series of approximation algorithms
for the acyclic directed Steiner tree problem.Algorith-
mica, 18: 99–110, 1997.

