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Abstract 1 Introduction
Given an arc-weighted directed gragh= (V, 4, /) and A number of interesting combinatorial optimization

a pair of nodess, ¢, we seek to find as-t walk of length ~ problems can be cast as a path or tour problem in a graph.
at mostB that maximizes some given functigrof the set The most well known of these is the classical traveling
of nodes visited by the walk. The simplest case is whensalesman problem (TSP) which asks for a shortest tour that
we seek to maximize the number of nodes visited: this isvisits all nodes in a graph. Other related problems include
called the orienteering problem. Our main result is a quasi- the Chinese postman problem, the minimum latency prob-
polynomial time algorithm that yields af(log OPT) ap- lem, and thek-TSP problem. In these problems we seek
proximation for this problem whefiis a given submodular ~ to minimize the tour length subject to certain constraints on
set function. We then extend it to the case when a mode the nodes visited by the tour. A different class of problems
is counted as visited only if the walk reache# its time ~ is motivated bymaximizingsome function of the nodes vis-
window[R(v), D(v)]. ited, subject to dudgeton the tour length. The simplest of
these is therienteeringproblem in which the goal is to visit
the maximum number of nodes subject to a budgen the

tour length. In particular we are interested in thetedver-

sion where the tour or path begins at a given start noifée

are allowed to visit a node multiple times although we ob-
tain a profit only for the first visit. These class of problems
are also sometime referred to pisze-collectingtraveling
salesman or repairman problems. These budgeted problems
are of much importance in real world applications such as
vehicle routing and its variants. They arise from operational
issues such as assigning technicians to maintenance jobs or
delivering goods to locations. A substantial amount of work
on heuristics for these problems can be found in operations
research literature. Typically there are several other con-
straints such as time-windows (each node has an interval
[R(v), D(v)] in which it can be visited) and vehicles with
capacity constraints. These problems are also known to be
difficult to solve (exactly) in practice for even moderately
sized instances. The book [25] provides a recent and com-
prehensive survey on vehicle routing.

Even though our algorithm runs in quasi-poly time, we  Despite the importance of these types of problems, there
believe that the implications for the approximability of sev- are few positive algorithmic results in the theoretical com-
eral basic optimization problems are interesting. puter science literature and some of them are quite recent.
One of the difficulties is that the constraints are rigid: bud-
get on the length of the path or time windows or vehicle
capacities. A second difficulty is that these problems com-
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We apply the algorithm to obtain several new results.
First, we obtain anO(log OPT) approximation for a gen-
eralization of the orienteering problem in which the profit
for visiting each node may vary arbitrarily with time. This
captures the time window problem considered earlier for
which, even in undirected graphs, the best approximation
ratio known [4] is O(log? OPT). The second application
is an O(log? k) approximation for thek-TSP problem in
directed graphs (satisfying asymmetric triangle inequality).
This is the first non-trivial approximation algorithm for this
problem. The third application is a@(log® k) approxima-
tion (in quasi-poly time) for the group Steiner problem in
undirected graphs wherk is the number of groups. This
improves earlier ratios [15, 19, 8] by a logarithmic fac-
tor and almost matches the inapproximability threshold on
trees [20]. This connection to group Steiner trees also en-
ables us to prove that the problem we consider is hard to
approximate to a ratio better thaf(log' ~© OPT), even in
undirected graphs.




al. gave the first constant factor approximation algorithm Orienteering: The input to an orienteering problem is
for the orienteering problem and some related problems ingiven by a directed arc weighted gragh= (V, A, ¢) with
metric spaces (induced by undirected graphs). Surprisingly,/(u, v) denoting the length of ar@:, v), two nodes;, ¢ € V,
this was the first non-trivial approximation algorithm for not necessarily distinct, and a buddet> 0. Our goal is
this problem. Prior to this work, & + ¢)-approximation to find ans-t walk P of length at mosiB, to maximize re-
was known for orienteering in geometric settings [1]. The ward collected. The reward is determined by thelSeP)
current best ratio for orienteering in metric space3 e of nodes visited by the wall. For plain orienteering, the
to Bansakt al.[4]. Bansalet al.[4], building upon the algo-  reward is simplyV'(P)|, the number of distinct nodes vis-
rithm for orienteering, gave algorithms for the time window ited, but we will be interested in more general rewards.
version of the problem. They obtain a ratio@flog> OPT) A reward functionf : 2V — Z* assigns a non-negative
for the time window problem and a ratio 6f(log OPT) for integer reward to every subset of nodes. The funciion
the simpler problem when all release dates are the same. is submodularif for all A,B c V andu € V, f(AU

The main idea in [7] for the orienteering problem is to {u}) — f(A4) = f(B U {u}) — f(B) wheneverd C B.
transform an approximation algorithm for the roofedSP ~ An equivalent definition is that for all, B C V, f(A) +
problem into an approximation algorithm for the orienteer- f(B) = f(AN B) + f(AU B). We say thalf is monotone
ing problem. In the rooted-TSP problem, the objective is  if f(A) < f(B)forall A C B.
to find a minimum length tour that visits at ledsnodes Given an arc weighted directed gragh two nodess, ¢,
and includes a specified node Although the rooted:- a budget and a monotone submodular functiythesub-
TSP and orienteering problems are equivalent in the ex-modular orienteering probler(SOP) is to find ars-¢ walk
act sense, an approximation algorithm foTSP does not P of length at most3 that maximizesf (V' (P)). We as-
yield a corresponding approximation algorithm for orien- sume that the functioif is given by an oracle that returns
teering. However, in [7], a clever idea is used to combine f(5) when presented with a s6tC V.
dynamic programming with the use #fTSP to obtain an
algorithm for orienteering. A constant factor approximation
for the rootedk-TSP and related problems such/aMST
are known in undirected graphs. The algorithms in [4] for
the time window problem rely on the algorithm for orien-
teering in a black box fashion and also apply to directed
graphs. However, there are no good algorithms known for
k-TSP and related problems in directed graphs.

Time windows: In a time window version of SOP (SOP-
TW), each nodev has a time windowR(v), D(v)] dur-
ing which it can be visited:R(v) and D(v) are the re-
lease time and deadline ef We associate a notion of
time with walks inG. A timed walkP is given by a se-
quences = vg, vy, ..., v, = t of nodes together with a se-
quencely, Ty, . . ., Ty, of times satisfyingly, = 0, T, < B
andT; + £(v;,vi+1) < Tyy1. Intuitively, T; is the time

In this paper we take a different approach to these prob-at which P visits v;. It takes¢(u, v) time to travel from
lems. We give aecursive greedplgorithm with the recur-  nodey, to v, but the walk is allowed to travel slower or stall.
sion reminiscent of the well-known algorithm of Savitch for Gjyen a timed walkP, let Vi (P) be the set of nodes;
directeds-¢ connectivity [24] that relates non-deterministic = gych thatT; < [R(v;), D(v;)]. In SOP with time windows
and deterministic space complexities. We show that this (SOP-TW), the goal is to find a timedt walk maximizing
surprisingly simple algorithm has ab(log OPT) approx-  ¢(y.(P)) for a given monotone submodular functign
imation ratio for a number of walk problems lirected We note that processing times at nodes can be easily
graphs including the basic orienteering problem. The al- 1,odeled by adding extra arcs and dummy nodes. This is an
gorithm works even when we seek to maximize an arbitrary easy and well-known transformation and we omit the de-

submodular set function on the set of nodes visited by the;g;is Throughout, OPT denotes the value of an optimum
walk. We discuss some interesting consequences of thisgg|,tion to the given problem.

There is however a price to pay for this generality. The al-

gorithm runs inquasi-polynomiatime. We nevertheless be- Results: Our main result is an algorithm for SOP with time
lieve that the results are of interest from both an algorithmic windows (SOP-TW) that runs in quasi-polynomial time and
and complexity theoretic point of view. We obtain the first provides a solution of valu2(OPT/log OPT). More pre-
non-trivial approximation algorithms for several seemingly cisely, for any fixed integek > 2, we obtain an algo-
difficult optimization problems. Our algorithmic result also rithm with a running time ofn log B)°(1°¢™) that yields
yields a lower bound on reduction sizes for inapproxima- an O(log OPT/ log h) approximation where3 is an upper
bility bounds. And our results add to a growing number of bound on the length of the tour. Note that this allows us to
problems for which quasi-polynomial time algorithms yield obtain asub-logarithmicapproximation irsub-exponential
reasonable approximation ratios but no polynomial time al- time. We also prove that SOP is hard to approximate to
gorithms achieving comparable ratios are known. We now within a factor Ofﬂ(logl_e OPT) unless NP is contained in
formally define the problems that we consider. randomized quasi-polynomial time. Several interesting re-



sults follow from the algorithm for SOP-TW. In the follow-
ing we do not explicitly qualify the approximation bounds
as requiring quasi-polynomial time.

First we discuss applications of the algorithm for SOP
(without time windows). A first and immediate applica-
tion is anO(log OPT) approximation for orienteering in di-
rected graphs. Another application is@flog? ) approxi-
mation for thek-TSP problem in directed graphs. These two
results are the first non-trivial approximation algorithms for

bination of single time window and submodularity of the
reward function allows us to handle problems in which each
node may have multiple time windows during which itis ac-
tive, and we get a reward for that node only if we visit it dur-
ing an active window. Our algorithm also applies to prob-
lems in which the reward for visiting each node is a func-
tion of the time of the visit (if a node is visited more than
once, we only get reward for the most profitable visit). An
example problem in which the profit of a node varies with

these problems. A related but surprising consequence idime is the discounted-reward TSP [7] in which the profit

an O(log® k) approximation for the group Steiner prob-
lem in undirectedgraphs [15] wherg: is the number of
distinct groups. More precisely, amapproximation for
SOP implies anO(«alog k) approximation for the group

Steiner problem. Here we use the submodular property of

the reward function. This improves upon tigglog® k)
bound achieved in quasi-polynomial titna [8] and the
O(log? klogn) bound achieved in polynomial tifRd19]
(heren is the number of nodes in the graph). The bound
we achieve almost matches the inapproximability bound of
Q(log®> k) on tree instances established by Halperin and
Krauthgamer [20]. The inapproximability bound is shown

under the assumption that NP has no quasi-polynomial time

Las-Vegas algorithms. In fact, as is typical with several PCP

based reductions, the reduction reduces 3SAT instances tQ
guasi-polynomial sized instances of the group Steiner prob-

lem. It is commonly assumed that with better parameters
and methods, such inapproximability results can be im-
proved to obtain a polynomial sized reduction. A conse-
guence of the our algorithm for SOP is that one can obtain
an O(log1+5 k) approximation for the group Steiner prob-
lem for any fixedd > 0 in sub-exponential time. This
shows that an inapproximability bound @flog" < k) for

the group Steiner problem for any fixed> 0 requires a
guasi-polynomial sized reduction from 3SAT (unless NP
has sub-exponential time algorithms).

We now discuss the applications of the algorithm for
SOP-TW. The first application is to the orienteering prob-
lem with time windows for which we obtain an(log OPT)
approximation. This improves upon the approximation ra-
tio of O(log? OPT) in [4] and works in directed graphs (the
algorithm in [4] works in polynomial time so it is not an
apples to apples comparison). More interestingly, the com-

Uin [8] an O(log? k) approximation in quasi-polynomial time is
claimed for the directed Steiner tree problem which implies the same ratio
for the group Steiner tree problem. However, the analysis in [8] is based
on an erroneous lemma of Zelikovsky in [27] and when a correct version
of the lemma (see [21]) is used, the ratio obtained from the analysis in [8]
becomes) (log? k).

2The first poly-logarithmic approximation for the group Steiner prob-
lem was given by Garg, Konjevod and Ravi [15]. The bound of
O(log? klogn) is based on subsequent improvements for probabilistic

tree embeddings [12] and a more refined analysis in [19]. These results

also establish an approximation ratio@flog N log k log n) whereN is
the maximum group size. Note that andk are incomparable.

for visiting a nodev at timet is given byr,~'*. We obtain
a logarithmic approximation for these problems when the
distances are asymmetric.

Related Work: There is a large amount of work on prob-
lems related to those that we consider in this paper. Here
we briefly discuss some of the more directly related liter-
ature. Most of the work on approximation algorithms for
route traversal problems is on metric spaces induced by
undirected graphs where the distances are symmetric and
satisfy the triangle inequality. We will explicitly mention
results for directed graphs. A basic problem underlying
some of the variants we mentioned is the prize-collecting
traveling salesman problem (PC-TSP) [3]. In this problem,
each node has a a profit for visiting it and a penalty for not
visiting it: the goal is to find a tour that obtains at least a
given profit while minimizing the length of the tour and the
sum of the penalties of the nodes not visited. Goemans and
Williamson [16] gave a primal du&-approximation algo-
rithm for a special case of PC-TSP in which there are no
profits. Their algorithm and analysis formed the basis for
subsequent work on related problems such asktST
and k-TSP problems and the minimum latency problem.
For the k-TSP problem the current best ratiodsdue to
Garg [14]. The orienteering problem [17] is closely related
to PC-TSP. Arkin, Mitchell and Narasimhan gavéat- ¢)-
approximation when points are in the Euclidean plane and
more recently a constant factor approximation was devised
for metric spaces by Blurat al.[7] with an improvement of
the ratio to3 by Bansalet al.[4]. The time window version
of orienteering has also been studied. Tsitsiklis [26] showed
that the problem is NP-hard even if the metric space is a line.
Bar-Yehuda, Even, and Shahar [6] obtained¥itog OPT)
approximation for the line case. Banslal. [4] gave an
O(log2 OPT) approximation for general metric spaces and
an improved) (log OPT) approximation if all release dates
are the same. Chekuri and Kumar [10] gave a constant fac-
tor approximation if the number of distinct time windows
is a fixed constant independent of the input size. These two
latter results use an algorithm for orienteering in a black box
fashion.

The time window problem is related to the problem of
scheduling jobs with interval constraints. In this setting,
each job has a processing time and can be scheduled in one



of several disjoint time windows. Given some number of Polynomially Bounded Rewards:For computational pur-
machines, each of which can process only one job at a time pose, given an arbitrary instance of SOP-TW, we transform
the goal is to find a non-preemptive schedule to maximize into an instance in whiclf (V) and OPT are poly-bounded
the profit of jobs that are completed. We can also allow in n, the number of nodes in the graph. For any giwen0,
the processing times and profits to vary with the interval in we can ensure that this transformation loses ony & ¢)
which the job is scheduled. A constant factor approximation factor in the approximation ratio. The basic idea igtess
for this general problem can be found in [5]. We remark that the nodev with largest profit that an optimum tour visits
SOP-TW generalizes this scheduling problem in a straightand restrict attention to nodes< V such thatf({u}) <
forward way. f({v}). Once we do this, iff is modular, we can use stan-
The approximability of TSP and related problems have dard scaling and rounding ideas to ensure that all values are
been much less understood in directed graphs. Asymmetricintegers and polynomially bounded. However, for submod-
TSP has arO(logn) approximation [13, 22] and it is a ular f we cannot do this directly but we can still work with
major open problem to decide whether there is a constantscaling and rounding in an implicit fashion. We define a
factor approximation. The directed Steiner tree problem new functionf’ where f'(S) = |n2f(S)/(ef({v})] and
with & terminals and thé-MST problem have a®(i*k'/?) usef’(S) in place of f(S). We observe thaf’ need not be
approximation inn®® time [8]. Thus we can obtain an submodular, however we can argue that usihin place of
O(log® k) approximation in quasi-polynomial time. The re- f does not affect the approximation ratio of our algorithms
lated group Steiner problem [15] in undirected graphs hasby more than a factor ofl + O(e)). In this version of the

had more success. A@(min{logk,log N}lognlogk) paper, we omit the details and for simplicity assume that
approximation is known [15, 19] whereis the number of  is integer valued and poly-bounded when necessary.
groups,N is the maximum group size, andis the number All logarithms in the paper are to ba%e

of nodes in the graph. It is also known that this problem is
hard to approximate to within a factor 6f(log® k) un-
less NP is contained in randomized quasi-polynomial time

[20]. We refer the reader to [15, 8, 23, 9, 19, 20] for more i i ) )
details on these problems. In this section we describe and analyze the algorithm

for SOP. Generalization to SOP-TW s relatively straight
forward. We first discuss an algorithm that achieves an
O(log OPT) approximation and defer the improvement to
a ratio ofO(log OPT/ log h) to Section 3.3. The algorithm

is simple and we describe it at a high level before formal-
izing it. In the following, it is useful to think off as the
simple functionf (S) = |S| which captures the orienteering
problem. LetP* = s = vg,v1,... ,v, = t be an optimal

The Recursive Greedy Algorithm

2 Preliminaries

We are interested in walks in directed graphs and the re-
ward function is a monotone submodular function. This al-
lows us to assume without loss of generality that the arc
lengths of the given directed graph satisfy ssymmetric

triangle inequality that is, for all triplesu, v, w of nodes, walk. We refer tovy,» as themiddlenode. The algorithm

£(u,v) + £(v, w) > £(u, w). With this assumption, we can ¢ essethe middle nodandthe lengthB’ to reach the mid-
restrict attention to paths and cycles instead of walks andgje node and recursively calls itself two times. Informally,
in particular we can assume that each node is visited only;, o algorithm is as follows.

once. We will also assume that all arc lengths are integers.
For simplicity, we will assume thatis an integer valued e guess the middle nodeand the lengthB’ to reachw
submodular function. Given a submodular functipon v from s.
and a subseX C V' we define a new submodular function
fxonVasfx(S) = f(SUX)— f(X). The following
fact will be useful in the analysis. e recursively find a walkP, from v to ¢ with budgetB —
B’ to augmenthe nodes visited by;.

e recursively find a walkP; from s to v with budgetB’.

Fact 2.1 Let f be a monotone submodular set function on , i
V. Thenforanyd C B C V, fa(S) > f(S) for all e output the walk obtained by the concatenation/bHf

S eV, andp;.
We note that the second recursive call depends on the first

In the SOP-TW problem, we are interested in a timed in an essential way since it requires knowledge of which
walk. However, given a patl? = vy, vy,... , v, We can nodes have already been visited By. This is thegreedy
check in polynomial time if the nodes can be visited in their aspect of the algorithm and is critical to the analysis of its
time windows while respecting the sequence imposeBby performance. The algorithm implements the guessing step
Therefore, it is sufficient to output a path instead of a timed by enumerating all possibilities for the middle nodes
walk. well as the lengthB’. In the above description we did not



specify a stopping condition for the recursion. The intuition s to v andwv to ¢ respectively. LetB; = ¢(P;) and By =

is that we are breaking the optimum walk into two pieces ¢(P;). Consider the procedure R&t, B, X, i) with ¢ >

with roughly equal number of nodes, and hence the recur-[1 + log k]. From the description of the algorithm, we see

sion should have deptlog k. As stated, the running time that RG(s, ¢, B, X,4) calls P, = RG(s,v,B1,X,i — 1)

of the algorithm will beO((2n.B)'°#*) which need not be ~ andP, = RG(v,t, By, X UV (P;),i — 1). We argue now,

quasi-polynomial ifB is super-polynomial. To facilitate the  using induction, that the path = P; - P, has the property

analysis and later present a modified algorithm with an im- that fx (P) > fx(P*)/[1 + log k]. This will establish the

proved running time, we now give a detailed and formal lemma.

description of the above informal algorithm. Note thatP;" and Py have[k/2] and |k/2]| edges re-
We define a procedure R&@ ¢, B, X, i) thatimplements  spectively, and thafl + log[k/2]] = [logk] < ¢ — 1.

the algorithm. We first explain the parameters. The param-Since P;* is a candidate for path from to v of length at

eterss, t and B indicate that we seek anit walk of length most By, by induction we have

at mostB. The parametek indicates that we seek to find a

path P so as to maximiz¢x (P) = f(V(P)UX) — f(X); fx(Pr) > #fx(pl*) 1)

that is we seek to find a path that augments aXsetThe [log k]

parametei indicates the depth of the recursion allowed. Let X' — X U V(P,). SinceP; is a candidate path from

Algorithm: RG(s, t, B, X, i) to ¢ of length at mosB,, again by induction we have

1

1. If (¢(s,t) > B) returninfeasible fxi(P2) =2 oghl fx: (Py). @
2. P s,t
3. Base case: = 0. returnP We observe that
4. m — fx(P) fx(P3) = f(PFU(PUX))— f(PLUX)
5. Foreachy € V do > fx(P;UP)— fx(Py).
(@) Forl1 < B; < Bdo Using this in (2), we obtain that
i. P — RG(s,v,B1,X,i—1) 1
i. P, RG(v,t,B— B, XUV(P),i—1) fx(P) > Tlog k] (fx(Py UP) — fx(P1))
iii. If (fx(P1-P) >m) 1
PP P > =——=(fx(P3) — fx(P)). 3)
[log k1
m — fx(P)

The inequality above follows from monotonicity of.

6. retunp Adding (1) and (3) and using submodularity 6§, we get

Proposition 3.1 The running time oRG(s,t, B, X, 1) is 1
O((2nB) - Ty) whereT is the maximum time to compute ~ fx(P) > m(fx(Pf) + fx(Py) = fx(P))
f onagiven set. 1

>

The heart of the paper is in the analysis of the lemma be- [log k|
low. Recall that all logarithms are to bagelLet P(s, t, B)
denote the set of all-t paths of length at mogs.

(fx(P?) = fx(P)).

Rearranging terms, we obtain that

1 %
Lemma 3.2 Let P* € P(s,t, B) such thatP* = (s = fx(P) > —————fx(P").
1+ [log k|
vo,V1,...,0 = t). Let P be the path returned by
RG(s,t,B, X,i). If i > [1 + logk], then fx(P) > O
fx(P*)/[1 +1ogk]. The above lemma is essentially inspired by the algorithm

and analysis in [10] for a fixed number of time windows
Proof. The proof is by induction ort. The base case is coupled with the idea of recursion.
whenk = 1 in which caseP* = s,t. Itis easy to see
that the algorithm checks the patht and hencefx (P) > 3.1 Quasi-Polynomial Time Algorithm
fx (Pr).
Now supposée > 1. Letv = v 9 be the middle To obtain a logarithmic approximation, the algorithm de-
node inP* and letP; and P be the subpaths d?* from scribed in the previous section takex(2nB)°e*) time



where k is the length of the path of an optimum path. Theorem 3.5 For the submodular orienteering prob-
If B is large (super-polynomial im), the running time lem (SOP) there is an algorithm with running time
need not be quasi-polynomial in the input size. Here we (nlog B)°(°e™) that yields anO(log OPT) approxima-
modify the algorithm to obtain an algorithm with a run- tion.

ning time of O((n - OPT - log B)!°8*). More precisely,

if there is a pathP* with & nodes then the algorithm runs 3.2 Time Windows

in O((n - f(P*) -log B))°¢*) and yields arO(log k) ap-

proximation. As we mentioned in Section 2, we can assume  \We now generalize the recursive greedy algorithm to
that f(P*) is poly-bounded im. This allows us to obtain  handle time windows on the nodes. Recall that each node
a quasi-polynomial time algorithm. We now describe the 4 has a time windowR(v), D(v)] during which it can be
modified algorithm. The basic idea is to use binary searchyjsjted. To make the description of the recursive algorithm
to guessB, instead of enumerating all possible values. The cleaner we will now require that the walk startssat time

algorithm assumes an upper boutidn the value off (P~). o and has to reachby time . In the algorithm for SORy
_ ‘ was0 andr was B. The modification to the basic algorithm
Algorithm: RG-QRs,t, B, X, 1) is simple: we need to ensure that the middle node is vis-

ited during its time window. We describe the time window

1. If (¢(s,t) > B) returninfeasible version of RG-QP below.

2. P+ st
3. Base case: = 0. returnP Algorithm: RG-QP-TW(s, ¢, 0,7, X, 1)
4. m— fx(P) 1. If (r < R(t) or£(s, t) + o > D(t)) returninfeasible
5. Foreachy € V do
2. P~ st
(@) Forl <a < Ado 3. Base case: = 0. returnP
i. By — miny(RG-QRs,v,b,X,i—1) > a) 4. m — fx(P)
. If By = oo, continue 5. Foreachy € V do
ii. P, — RG-QRs,v,B1,X,i—1)
iv. P, — RG-QRwv,t,B—B;, XUV(P,),i— (@) Forl <a< Ado
1) i. p— miny(RG-QRs,v,0,b, X,i—1) > a)
v. If (fx (P P2) > m) ii. If 4= oo, continue
P 1;1 '(% iii. P, — RG-QRs,v,0,1,X,i—1)
-
melx iv. Py RG-QFu,t,u,7, X UV (P),i—1)
6. returnP V. If (fx (P Py) >m)
P+~ PP
The stepB; = miny(RG-QRs,v,b0, X,i — 1) > m:fl (P§
a) in the above algorithm is implemented as a binary X
search ovefl, B] and hence takeleg B recursive calls to 6. returnP
RG-QRs,v,_ ,X,i — 1). The running time analysis is
straight forward. The proof of the following theorem is based on similar

- o ideas to those presented earlier for the case without time
Proposition 3.3 The running time oRG-QRs, t, B, X, 1) windows.
is O((2 + nAlog B)" - T¢) whereT} is the maximum time
to computef on a given set. Theorem 3.6 For the submodular orienteering problem
_ . o with time windows (SOP-TW), there is an algorithm
The proof of the following lemma is very similar to that it running time (nlog B)°(°e™) that provides an
of Lemma 3.2 and hence we omit it in this version. O(log OPT) approximation where3 is an upper bound on

Lemma 3.4 Let P* € P(s,t, B) and letk be the num- the tour length.

ber of edges inP*. Let P be the path returned by
RG-QR(s,t, B, X,i). If i > [1+logk] andA > fx(P*),

thenfx (P) > P*)/[1+logk].
fx(P) 2 fx(ED/1 gkl We outline how to improve the approximation ratio to
Proposition 3.3, the poly-boundednessfaf(P*), and O(log OPT/ log h) while increasing the running time to
Lemma 3.4 yield the theorem below. (nlog B)O(hlegn/logh) |n the algorithm RG for SOP, we

3.3 Improved Approximation Ratio



guessed the middle nodg , of an optimum pathP* =

s = wg,v1,...,0; = t and recursed twice in a greedy se-
quential fashion on subpath3® and P;. Given an inte-
ger parameteh > 2, to improve the approximation ratio,
we guess several nodes &1, namelyv;, , v;,, ... ,vi,_,
wherei; = k/h, ia = 2k/h and more generally for

the valuemax;c, +,) p(v,t), we again obtain running time
guasi-polynomial im log B.

4.2 Rootedk-TSP in Directed Graphs

In the rootedk-TSP problem, we are given an arc

1 < j < h,i; = jk/h. These nodes break up the path weighted graphz = (V, A, ¢) and a specified root node

P* into h subpathsPf, Py, ... , P} and we also guess the

r. The goal is to find a tour of minimum length starting at

budget used by’" in each of these subpaths. Then we re- ;. that contains at leagt nodes. Let OPT be the length of
curse sequentially in a greedy fashion on each of these subgch a tour. Suppose we have an upper bairidr OPT.

paths. Now the depth of the recursion(glog k/ log h).

Using the algorithm for SOP with a budget 8f we can

We can prove'that .the approximlation ratio is proportional 10 find a tour of lengthB that containg2(k/ log k) nodes. We
the depth which yields the desired result. Since we guesscan remove the nodes visited by the tour and run the algo-
h nodes and their budgets at each level of the recursion,rithm again to cover more nodes. Using standard analysis

the running time goes up te.B)C(Mlogk/logh) — \We im-
prove this to(n log B)©(*legk/legh) ysing the idea from
Section 3.1.

4 Applications

We discuss some applications of the algorithms for SOP

and SOP-TW. We omit some details in this version.

4.1 Orienteering with Multiple Disjoint Time
Windows

Orienteering with time windows is a special case of nodesgi,ga,...

for covering problems, aftaD(log® k) iterations, the algo-
rithm will cover k nodes. We can stitch the tours together to
obtain a tour of lengtl®(log® k - B) that contains: nodes.
We can use binary search to gudsgo within a constant
factor of OPT. This yields a®(log? k) approximation for
k-TSP in directed graphs.

4.3 Group Steiner and Covering Steiner Problems

We consider two network design problemaiimdirected
graphs. The input to the group Steiner problem consists of
an edge weighted graphi = (V, £, ¢) and ak subsets of
, g calledgroups The goal is to find a

SOP-TW. We demonstrate that a more general version carminimum weight treel” = (V(T'), E(T)) in G such that
also be cast as a special case of SOP-TW. Consider théd’(T) N g; # 0 for 1 < i < k. We focus on the rooted

following problem. As in orienteering, we are given an
arc weighted graphG and we are interested in astt
walk of maximum profit. The profit function is defined
as follows. Each node has ¢ disjoint time windows
[B1(v), D1(v)], [Ra(v), D2(v)], ..., [Re(v), De(v)] and
corresponding profit valueg; (v), p2(v), ... ,pe(v). Vis-
iting v in its ith time window yields a profit op,(v) and
if v is visited multiple times, only the most profitable visit

version of the problem: we are given a special root node
and we require that € V(T'). The covering Steiner prob-
lem generalizes the group Steiner problem. In this problem
each groupy; has a positive integer coverage requirement
d;. Now the goal is to find a minimum cost tréesuch that

In this section we obtain algorithm for the above two
problems via an algorithm for SOP. We discuss the cov-

is retained. We are assuming that all nodes have the sameéring Steiner problem since it captures the group Steiner
number of time windows for simplicity - the case where problem as a special case. From the given problem in-
they have different numbers is easily captured by the uni- stance we define a monotone submodular set funcfion
form case by adding dummy time windows. It is relatively as follows: for each sef C V(G), we definef(S) =
easy to show that this version of the orienteering problem Zle min(d;, |S N g;|). The quantityf(S) is the covering
with multiple disjoint time windows for each node is a spe- requirement that is satisfied 8. It is easy to verify that
cial case of SOP-TW and hence we obtain a logarithmic f is indeed a monotone submodular set function. Further,
approximation for this as well. By choosing the number givensS, f(S) can be computed in polynomial time.

of time windows appropriately, we can closely approximate

any arbitrary time varying profit function for each node.

Given an instance of the covering Steiner problem, con-
sider an optimum solutiofi* of cost OPT. Since the graph

Most common profit functions can be approximated by a is undirected, by taking an Euler tour @t we obtain a
polynomial humber of time windows. The most general tour fromr of length at mos2OPT that covers all groups.

case is when the profit for visiting at time ¢, p(v,t) is
given as an oracle.
ning time quasi-polynomial inB. Using a stronger oracle,
that for a given a time intervat, , ¢2] and vertexv, returns

Suppose we have an upper bouBdfor OPT. By using

For this case we can obtain a run-SOP with functionf defined as above we obtain a talir

of length at mos2B that coversf (V(T%))/log f(V(T™)).
Note thatf(V(7*)) = ", d;. We can remove the nodes



in P, reduce the requirements of the groups that are alreadydependence oV stems from the LP relaxation on which
partially covered and repeat the above procedure. Usingthe algorithms are based. The integrality gap of the LP
standard set cover style arguments,O(ﬂogz(Zi d;) it- improves asN decreases because the graphrslirected
erations, all the groups will be covered to their requisite (whenN = 1 the problem becomes a Steiner tree problem).
amount. Putting together the tours yields tree of length In contrast, our algorithm yields a ratio O]f(log2 > di)
O(log? >, d;)B that is a feasible solution. We can use bi- irrespective ofV since it does not distinguish between di-
nary search to find & that is within a constant factor of rected and undirected instances. We note that, on trees,
OPT and hence we obtain ad(log? > d;) approxima-  the known approximation ratio for covering Steiner tree is
tion. When specialized to the group Steiner problem the O(log N log k) and the additionalog n factor for general
ratio becomeQ(log2 k) wherek is the number of groups.  graphs is the result of approximating a graph by a tree.
The above discussion implies that amapproximation It is an open problem whether this extra factor is neces-
for SOP in undirected graphs implies @« logk) ap- sary. The worst integrality gap for the natural relaxation
proximation for the group Steiner problem in undirected is Q(log N log k/ log log N) and it applies to trees [19] and
graphs. Halperin and Krauthgamer [20] have shown that no worse gap is known for graphs. Our results indicate that
the group Steiner problem is hard to approximate to within an O(log N log k) approximation ratio is possible even in
anQ(log®~* k) factor unless NP has quasi-polynomial time graphs.
Las-Vegas algorithms. Under the same assum2ption, they
also establish an inapproximability bound @flog”™“n) .
wheren is the number of nodes in the group Steiner in- 5 Conclusions
stance. Using this and the above lemma, we obtain the fol-
lowing. The most interesting open problem resulting from our
work is to obtain polynomial time algorithms for SOP and
Theorem 4.1 The submodular orienteering problem (SOP) SOP-TW that have a poly-logarithmic approximation ra-
in undirected graphs is hard to approximate to within a fac- tio. The hardness of approximation for SOP is based on
tor of Q(log' ~¢ OPT) unless NRC ZTIME(nPoYodn)), the hardness of the group Steiner problem. The hardness
applies also to undirected graphs because we allow a sub-
Note that, using the algorithm in Section 3.3, we can modular reward function - otherwise the basic orienteering
obtain anO(log' ~° OPT) approximation for SOP in time  problem has a constant factor approximation in undirected
exp(O(log? n - 21°g5”)) which is sub-exponential for any graphs [7]. An interesting question is whether the basic
fixedo < 1. Combined with Theorem 4.1, this might appear orienteering problem in directed graphs has a constant fac-
to imply that NP is contained in sub-exponential time. This tor approximation. The approximability of the orienteering
is not the case since the hardness in Theorem 4.1 relies oproblem with time windows is open in both undirected and
a quasi-polynomial size reduction. However, it shows that directed graphs. In fact the problem is open even on the line
the reduction size in [20] cannot be improved to polynomial, where the best approximation ratio knownGglog OPT)
unless NP has sub-exponential time algorithms. Indeed, as{6] while we know only NP-hardness [26]. For the group
suming NP is not contained in sub-exponential time, any Steiner and covering Steiner problems, our results present
reduction showing that the group Steiner problem is hard good evidence that the extiagn factor lost in approxi-
to approximate withir2(log®> “n) for somee < 1, must mating a graph by a tree is perhaps not inherent and better
necessarily have superpolynomial size. We formalize this rounding procedures might yield &log N log k) approx-
in the theorem below. imation via the natural LP, matching the ratio achieved for
trees.
Theorem 4.2 For some0 < ¢ < 1, suppose there is a
reduction ¢ that maps 3SAT instances of sizeo group Acknowledgments: We are grateful to Rajat Bhattachar-
Steiner instances of sizZ&€ = exp(o(log'/° n)) such that  jee and Amit Kumar for collaborations on related problems
an 0(10g2_5 N) approximation for the group Steiner prob- that led to this work. We thank Sanjeev Khanna for dis-
lem would decide the satisfiability of 3SAT. In addition sup- cussions and comments on quasi-polynomial time, reduc-
poseg runs in sub-exponential time as a functiomofThen tions, and complexity, in particular for help in establishing
3SAT has a sub-exponential time algorithm. Theorem 4.2. Thanks to Guy Even, Ashish Goel, and Guy
Kortsarz for discussions on the group Steiner problem. We
For the covering Steiner problem, an approximation ra- also thank the reviewers for suggestions that improved the
tio of O(min{N,lognlog Nlogk}) is known from prior presentation. Chandra Chekuri acknowledges support from
work [18, 23, 11]. Heren is the number of nodes in the an ONR grant MA14681000 to Lucent Bell Labs. Martin
given graph andV is the maximum size of a group. Thus Pal was supported by an NSF grant EIA 02-05116 while at
the ratio improves with decreasiig. We commentthatthe DIMACS.
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