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A Recursive Least M-Estimate Algorithm for Robust
Adaptive Filtering in Impulsive Noise: Fast Algorithm

and Convergence Performance Analysis
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Abstract—This paper studies the problem of robust adaptive
filtering in impulsive noise environment using a recursive least
M-estimate algorithm (RLM). The RLM algorithm minimizes a
robust M-estimator-based cost function instead of the conventional
mean square error function (MSE). Previous work has showed
that the RLM algorithm offers improved robustness to impulses
over conventional recursive least squares (RLS) algorithm. In this
paper, the mean and mean square convergence behaviors of the
RLM algorithm under the contaminated Gaussian impulsive noise
model is analyzed. A lattice structure-based fast RLM algorithm,
called the Huber Prior Error Feedback-Least Squares Lattice
(H-PEF-LSL) algorithm1 is derived. It has an order ( )
arithmetic complexity, where is the length of the adaptive filter,
and can be viewed as a fast implementation of the RLM algorithm
based on the modified Huber M-estimate function and the conven-
tional PEF-LSL adaptive filtering algorithm. Simulation results
show that the transversal RLM and the H-PEF-LSL algorithms
have better performance than the conventional RLS and other
RLS-like robust adaptive algorithms tested when the desired and
input signals are corrupted by impulsive noise. Furthermore, the
theoretical and simulation results on the convergence behaviors
agree very well with each other.

Index Terms—Adaptive filter, contaminated Gaussian dis-
tribution, impulsive noise suppression, lattice structure, Prior
Error Feedback-Least Square Lattice Algorithm, recursive least
M-estimate algorithm, robust statistics, system identification.

I. INTRODUCTION

CONVENTIONAL adaptive filters minimizing least
squares (LS) or mean square criterion are very sensitive

to impulsive noise. This is of increasing importance in modern
communication systems, where the performance is usually
limited by interference of impulsive nature. Such impulsive
noise, which results from natural or man-made electromagnetic
waves [1], usually has a long tail distribution and violates
the commonly used Gaussian noise assumption. Under such
circumstances, the performance of linear adaptive filters
will deteriorate significantly. Nonlinear techniques are often
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employed to reduce the hostile effect on the system due to such
impulsive interference. For example, in the order-statistic least
mean square LMS (OSLMS) and the order-statistic fast Kalman
filtering (OSFKF) algorithms [2], [3], median filtering is ap-
plied to the conventional LMS and the recursive least squares
(RLS) algorithms to protect the filter weights from the adverse
effects of impulsive noise. Similarly, in the adaptive threshold
nonlinear (ATNA) and nonlinear RLS (N-RLS) algorithms [4],
[5], nonlinear clipping functions are used to limit the transient
fluctuation of the estimation error in conventional adaptive
filters caused by the impulses. Using a cost function combining
the and the norms, a mixed-norm LMS (RMN) algorithm
has also been proposed for combating impulsive noise [6]. Re-
cently, the authors have proposed a RLS-like algorithm, called
the recursive least M-estimate (RLM) algorithm, for impulsive
noise suppression [7]. It minimizes a new cost function based
on robust M-estimate functions, instead of the conventional
mean square error (MSE). Simulation results showed that the
RLM algorithm is more robust than the conventional RLS,
N-RLS, RMN, OSFKF, and ATNA algorithms when the input
and desired signals are corrupted by contaminated Gaussian
(CG) noise or alpha-stable distributed noise [7], [11], [16]. Like
the RLS algorithm, the RLM algorithm has a computational
complexity of order , where is the number of taps in
the adaptive transversal filter.

In this paper, we analytically analyze the convergence of the
RLM algorithm under the contaminated Gaussian impulsive
noise model and show, both theoretically and experimentally,
its robustness over the conventional RLS algorithm. Both
mean and mean square convergence are studied. A lattice
structure based fast RLM algorithm, called the Huber Prior
Error Feedback-Least Squares Lattice (H-PEF-LSL) algorithm,
with order arithmetic complexity, is also derived, which
can be viewed as a fast implementation of the RLM algorithm
based on the modified Huber M-estimate function and the
conventional PEF-LSL adaptive filtering algorithm. Extensive
computer simulations are also carried out to evaluate the perfor-
mance of the proposed RLM and H-PEF-LSL algorithms under
impulsive noise environment. Simulation results show that the
transversal RLM and the H-PEF-LSL algorithms have better
performance than the conventional RLS and other RLS-like
robust adaptive algorithms when the desired and input signals
are corrupted by impulsive noise. Moreover, it is found that the
theoretical and simulation results on the mean and mean square
convergence of the RLM algorithm agree very well with each
other.
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Fig. 1(a). System identification structure. (b) Modified Huber M-estimate
function.

The paper is organized as follows. In Section II, the principle
of the robust M-estimate filtering and the RLM algorithm are
briefly reviewed. The proposed Huber PEF-LSL algorithm is
then derived in Section III. Section IV presents the mean and
mean square convergence analyses of the proposed RLM algo-
rithm. The simulation results and performance comparison of
the proposed RLM and H-PEF-LSL algorithms with other con-
ventional algorithms are evaluated in Section V. Finally, conclu-
sions are drawn in Section VI.

II. TRANSVERSAL RECURSIVE LEAST

M-ESTIMATE ALGORITHM

Without loss of the generality, let us consider the system iden-
tification problem shown in Fig. 1(a). The signals and
are, respectively, the input and output of the linear transversal
adaptive filter. The estimation error is given by

, where the superscript denotes the transposition
operation. , , and

are, respectively, the filter length, the
filter weight and the input vectors. The observed desired signal

is assumed to be the sum of the output of
the unknown system and the interference noise . To
provide robust filtering in impulsive noise environment, the fol-
lowing cost function, instead of the conventional LS cost func-
tion , was proposed by the authors
in [7]:

(1)

where is the positive forgetting factor, and is an M-es-
timate function. The purpose of using an M-estimate function

, instead of the squaring function in the conventional LS
cost function, is to limit the adverse effect of impulsive noise
on the cost function, when the error signal becomes very large.
Fig. 1(b) shows the following modified Huber M-estimate func-
tion used in this paper.

otherwise
(2)

where is the threshold parameter. It can be seen that the func-
tion is a real-valued even function and is quadratic when is
smaller than . However, for values greater than , is equal
to a constant, which helps to suppress impulses with large am-
plitude. The degree of impulsive noise suppression, on the other
hand, is controlled by the threshold parameter . The smaller
the value of , the greater will be the suppression of the im-
pulses. The threshold parameter is usually chosen according to
the application at hand or estimated continuously. This will be
discussed later in this section. From the above discussion, it is
apparent that the objective function , as defined in (1), can
be used to smooth out momentary fluctuation due to impulsive
noise. In [7], is chosen as a class of M-estimates called the
Hampel’s three part redescending function. The M-estimate, or
maximum likelihood-type estimator, was originally proposed to
improve the robustness of statistical estimators subject to small
deviations from the assumption in [10, pp. 1]. An important
example is distributional robustness, which is concerned with
slight deviation from the assumed model (usually the Gaussian
distribution). If is chosen as , the M-esti-
mate gives the ordinary maximum likelihood estimate (MLE)
[10, pp. 43], where is the observed random variable with prob-
ability density function (pdf) , and is the parameter vector
to be estimated. In practical situations, the underlying pdf of the
noises are difficult to estimate, and is usually chosen
as a fixed function of only, that is, . Hence, the M-es-
timate approximates the MLE, where the pdfs are assumed to
be known exactly. More general redescending M-estimators can
be applied, and they have similar behaviors [9], [10]. The main
reason for choosing the modified Huber M-estimate function in
this paper is due to its good performance and simplicity, which
makes the order and time updates in the conventional PEF-LSL
algorithm feasible. The performance analysis is also simplified
considerably. This will be further elaborated upon in Section III.
Simulation results showed that the performance of the RLM al-
gorithm using the modified Huber M-estimate function and the
Hampel’s three part redescending function are very close to each
other under the contaminated Gaussian and the alpha-stable dis-
tributed noise environment [11].

The optimal solution for minimizing can be ob-
tained by differentiating (1) with respect to and setting the
derivatives to zero. This yields the following M-estimate normal
equation:

(3)
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where

(4)

(5)

Moreover, and are the
weighting function and score function of , respectively,
whereas and are called the M-estimate
correlation matrix of and the M-estimate cross-cor-
relation vector of and , respectively. They serve
similar purpose as the conventional correlation matrix of

and the cross-correlation vector of and ,
respectively. Applying the matrix inversion lemma [8, pp. 565]

to (4) and letting , ,
and , the following recursive Least M-estimate
(RLM) algorithm is derived for solving the M-estimate normal
equation in (3):

(6)

(7)

(8)

where , and is the M-estimate gain
vector. It can be observed that when is smaller than ,
the weight function is equal to one, and (7) becomes
identical to the gain vector in the conventional RLS algorithm.
However, when is larger than , , and hence,
are equal to zero. From (6), it can be seen that the impulse cor-
rupted input vector is prevented from entering , if is
larger than the threshold . At the same time, the filter weight
is not updated to prevent it from being affected by the possibly
impulse corrupted desired or input signal vector. These prop-
erties make the proposed RLM algorithm more robust to the
N-RLS algorithm, which only limits, but does not eliminate,
the effect of the impulses. As mentioned earlier, the choice of
the threshold parameter can significantly affect the perfor-
mance of the RLM algorithm. In [7], a systematic approach
for estimating the threshold was proposed. More precisely,
the error signal is assumed, for simplicity, to be a mixture of
Gaussian distributed random process (the so-called “impulse-
free” signal or component) and additive impulsive noise. Sup-
pose we can estimate the variance of this “impulse-free” com-
ponent . Then, the probability

, where is the
complementary error function [15], because of the Gaussian as-
sumption of . By choosing different values of , we have
different confidence in detecting the impulsive noise that ap-
pears either at the desired or the input signals. For example, if

is chosen to be 0.01, we have 99% confidence to detect and

reject the impulse. In this case, the threshold in (2) can be
chosen as

(9)

where , and is the estimated variance of the
“impulse-free” estimation error. Other values of and can
be used according to the degree of impulsive noise suppression.
From experimental results, it is observed that the performance of
RLM algorithm is not sensitive to the selection of , provided
they are not at the tail part of the distribution. To estimate ,
the following formula from [7] can be used:

(10)

where , med de-
notes the sample median operation [12], is the length of
the estimation window, is the forgetting factor, and

is a finite sample correction factor [12,
pp. 44]. The term is the robust instantaneous es-
timate of , where the medium operation helps to remove
the additive impulsive noise. Due to the recursive nature of the
estimation in (10), the estimation window is of infinite length,
giving rise to a more stable estimation against impulsive noise.
Computer simulations also show that the tracking ability of this
estimation is very good. See [7], [11] for more details.

Comparing the RLM and the RLS algorithms, it can be seen
that the computational complexity of the RLM algorithm is
similar to the conventional RLS algorithm, requiring order

arithmetic operations and more multiplications in
(7) for computing and operations in
(10) for computing . In the following section, a lattice
structure-based fast RLM algorithm called the Huber Prior
Error Feedback-Least Square Lattice (H-PEF-LSL) algorithm
with complexity is proposed.

III. HUBER PRIOR ERROR FEEDBACK-LEAST SQUARE LATTICE

(H-PEF-LSL) ALGORITHM

In conventional adaptive filtering using the LS cost function,
in (1) is chosen as the squaring function, that is,

. The corresponding optimal solu-
tion is governed by the following normal equation [8]:

(11)

where

(12)
and

(13)

are the autocorrelation matrix of , and the cross-cor-
relation vector between and , respectively. In the
transversal RLS algorithm, the time recursive property of
in (12) is used to reduce the arithmetic complexity to .
The lattice structure-based LSL-type algorithms explore both
the time-recursive and order-recursive properties of , and
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Fig. 2. Adaptive lattice ladder filter (ALLF) structure and the PEF-LSL algorithm [8].

its complexity is further reduced to . Fig. 2 shows the
general structure of the adaptive lattice ladder filter (ALLF)
and the prior error feedback-least square lattice (PEF-LSL)
algorithms. More details of the PEF-LSL algorithm and other
related algorithms can be found in the text books [8] and
[23]–[25]. Like its RLS counterpart, the PEF-LSL algorithm is
very sensitive to impulsive noise appearing in either or

, due to possible corrupt values of
and in the time and order recursions. It is
therefore desirable to generalize the RLM algorithm introduced
earlier to the PEF-LSL setting, where efficient order and time
recursions can be utilized to reduce the arithmetic complexity.

Unfortunately, examination of (4) reveals that both the time-
and order-recursive properties of are lost due to the in-

troduction of the nonlinear function . In other words,
it is very difficult, if not impossible, to develop an exact time
and order recursions similar to those in the LSL-like algorithms.
Fortunately, we found that the M-estimate normal equation in
(3) to (5) can be simplified further if is chosen as the mod-
ified Huber estimate function in (2). Of more importance still,
it makes the order and time recursions feasible, which are al-
most identical to the conventional PEF-LSL algorithm. More
precisely, when the input or desired signal is corrupted by im-
pulses, is likely to be larger than , and will be
zero. In this case, (4) and (5) will be simplified to

and . In other words,
and are simply multiplied by but not up-

dated using the PEF-LSL iteration when impulses are detected.
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TABLE I
HUBER PEF-LSL ALGORITHM

On the other hand, when no impulse is detected, is less
than , and is equal to one. Equations (4) and (5) are
then identical to (12) and (13), and the order and time updates
in the PEF-LSL algorithm will be performed as usual. In sum-
mary, the robust Huber PEF-LSL algorithm performs the normal
order and time updates when no impulse is detected.

Another point worth mentioning is that due to the order re-
cursion, the estimation error will be available at the last
stage of the ALLF (see Fig. 2) . As mentioned
earlier, if , then or are suspected to be
corrupted by impulses. No updating will be performed, and the
previous filtering parameters should be used instead of those
generated in the current iteration. The case of input impulses,
however, deserves further consideration. Although we can also
detect this impulse from and stabilize the filtering param-
eters by using their values in the previous iteration, its ad-
verse effect on the lattice parameters cannot be effectively sup-
pressed. Therefore, it is better to suppress the impulse in
before it enters the ALLF, using the method proposed in [13]. A
similar idea has also been proposed by Kim et al. [14] in robust
AR estimation under impulsive noise, where a prefilter based
on linear prediction is used to remove the impulses in . In
the proposed algorithm, an additional prefilter is not needed be-
cause such a prediction of is already available from the lat-
tice prediction part, similar to the robust gradient adaptive lattice

filter in [13]. More precisely, a predictor for can be formed
as follows:

(14)

If is greater than a certain threshold , then the
input to the ALLF will be replaced by to avoid pos-
sibly intrusion of the impulses. The selection of the threshold
can be done in the same way as described in (9) and (10). Details
of the final H-PEF-LSL algorithm are summarized in Table I.
This algorithm can be viewed as an effective implementation of
the robust RLM algorithm, which preserves the advantages of
the RLM and the lattice-based algorithms.

IV. MEAN AND MEAN SQUARE CONVERGENCE ANALYSIS

In this section, mean, and mean square behaviors of the RLM
algorithm are evaluated under the following assumptions.

Assumption 1) The input signal is ergodic with zero
mean.
Assumption 2) The interference noise is modeled as
a contaminated Gaussian (CG) noise, which is a frequently
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used model for analyzing impulsive interference [2], [4].
More specifically, the CG noise is given by

(15)

where and are independent zero mean
Gaussian noises with variances and , respectively;

is a switch sequence of ones and zeros, which is mod-
eled as an independently and identically distributed (i.i.d)
Bernoulli random process with occurrence probability

and . The
variance of is chosen to be much larger than that of

so that when , a large impulse is experi-
enced in . The ratio
is used to determine the impulsive characteristic of ,
where is the variance of the effective impulsive
noise. For fixed value of , the larger the parameter

, the more impulsive the interference will be. The
corresponding pdf of in (15) is given by

(16)
where is the variance of

.
Assumption 3) and have a jointly Gaussian dis-
tribution. , , and are statistically indepen-
dent. Although this assumption is not completely valid in
general applications, it is commonly used to simplify the
convergence analysis of a lot of adaptive filtering algo-
rithms [2], [4], [14].
Assumption 4) , where is the
optimal Wiener solution given by .

is the ensemble averaged corre-

lation matrix of , and is the
ensemble averaged cross-correlation vector between
and . Here, the subscript indicates that the average
is taken over the ensemble.
Assumption 5)

when is large enough, where
is the normalization factor, and is estimated in (4).
Remarks of Assumption 5) It should be noted that
when is ergodic, the matrix can be ap-
proximated by [5], where

is the conventional
time-averaged value [8], whereas, when there is impulsive
noise, in (4) is a small biased approximation
to due to the use of and . An
experiment was carried out to evaluate the effect of using

in (4) when the desired signal is corrupted by
a CG distributed interference under different impulsive
noise density. For to 0.1 and , it
was found that the value
( to 2048), averaged over 100 independent runs,
is within 1.1 to 1.9%. This shows that the proposed esti-
mator for in (4) is robust to different impulsive

noise density, and Assumption 5 is justified. This is also
confirmed by the simulation results to be presented in
Section V. Further theoretic results regarding the esti-
mation error of can be found in [20]. Finally, it
should be noted that if is corrupted by impulsive
noise, is a more robust estimator of the “impulse
free” covariance matrix than .

Before proceeding to the convergence analysis, it should be
noted that Weng and Leung [5] have presented convergence
analysis for the N-RLS algorithm under the mixture of Gaussian
noise. It was an extension of their previous works on Class A
impulsive noise [22]. In their approach, the error sequence is
assumed to be a zero mean Gaussian noise, which is based on
the central limit theorem. Apart from the inherent differences of
the RLM and N-RLS algorithms, our performance analysis dif-
fers from [5] in that we do not assume that the error sequence
is Gaussian and instead rely on approximation (25), to be in-
troduced in the sequel, in the analysis. This allows closed-form
expressions for the mean and mean square analyzes to be ob-
tained. At the same time, it also provides much insight into the
behaviors of the RLM algorithm, as we will see later in this sec-
tion. Finally, we remark that both approaches are based on the
classical techniques in [17], which were originally developed
for the performance analysis of LMS algorithm with Gaussian
inputs.

For notational convenience, define as the
weight-error vector. Substituting and
into (8), one gets

(17)

where
. From Assumption 5, can be

approximated by , and (17) becomes

(18)

where . The second equation in (18) is ob-
tained by using the property of the weighting function

otherwise
.

A. Mean Behavior of the RLM Algorithm

Taking expectation over on both sides of (18), one
gets

(19)

where on the right-hand side of (19) denotes the expecta-
tion over , which is more clearly written
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here as . Dropping the time index from all vari-
ables, one gets

(20)

where the second equation is obtained from the independence
assumption of , , and in Assumption 3. The de-
tails for evaluating
are given in Appendix A. From (A.14), we have

(21)

where , ,
is the exponential integral

function, and

(22)

which is bounded by . It is rather difficult to
obtain a closed-form expression for the integral inside the
of (21). An approximation of is therefore sought to
simplify (21). First, it is noted that the threshold parameter
in (22) is estimated as , where is the standard
deviation of the “impulse-free” estimation error. In the proposed
algorithm, the impulsive component of is likely
to be rejected, and the corresponding “impulse-free” estimation
error can be approximated by .
Dropping the time index and using the condition that , , and

are uncorrelated, one gets

(23)

If , will be much larger than . Further-
more, if the probability density function of decays suffi-
ciently fast, it follows that

(24)

where denotes the probability operator. Equation (24) is a
consequence of the condition and the

Chernoff bound (see [15, p. 54]), although the latter bound is
rather loose. This observation together with the property of the
error function and the rapidly decaying exponential function

in (21) allows us to use the following
approximation of in (22):

(25)
during the evaluation of the expectation. Since ,
in (25) is bounded by . From simulation results
in Examples 3 and 4, it is found that in (25) is a very good
approximation to under the specified simulation con-
ditions. Inserting (25) into (21) yields

(26)

Substituting (26) and (20) into (19), the following relation be-
tween and is obtained:

(27)
It can be verified that the term within the brace in (27)
is less than one because and

. The latter inequality results from the fol-
lowing properties of the function :

(28)

(29)

and the fact that and . Consequently,
. This indicates that the RLM algorithm con-

verges in the mean, and converges approximately to the
system parameter under the stated assumptions. It should
be noted that Assumption 3 does not apply to the conventional
RLS algorithm when the impulse density is high. The reason
is that the impulses will change significantly the value of
and, hence, in successive iterations. Therefore, , and

becomes correlated, whereas in the proposed RLM algo-
rithm, the impulses will most likely be rejected, and can be
stabilized. Therefore, the independent assumption in Assump-
tion 3 remains valid. In fact, if is taken as infinity as in the con-
ventional RLS algorithm, the impulses cannot be detected, and
Assumption 3 is violated. The performance of the resulting al-
gorithm will be inferior to one predicted here. Practical choices
of and their sensitivities are studied in Example 2. It was found
that within a wide range of the threshold parameters, the RLM
algorithm together with the robust parameter estimation method
introduced in Section II is robust to impulsive noise. In addi-
tion, it can be seen from Example 3 that the theoretical result
using the approximation in (27) agrees very well with the sim-
ulation results. This substantiates the validity of the proposed
mean convergence analysis and theoretically explains the ad-
vantages of using the M-estimate cost function and the proposed
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Fig. 3. MSE results of the various algorithms in the presence of the impulses (Example 1): RLS (dotted line with square), RLM (bold solid line with circle),
N-RLS (solid line with triangle), and OSFKF (solid line with diamond). Impulses in the desired signal appear at D(n) = 1500, 1900, 2200, and 2600. Impulses
in the input signal appear at I(n) = 3350. System abruptly changes at S(n) = 5500.

threshold estimation method over the conventional RLS algo-
rithm. Next, we consider the mean square convergence of the
RLM algorithm.

B. Mean Square Convergence of the RLM Algorithm

Postmultiplying (18) by its transpose and taking expectations
on both sides over gives

(30)

where is defined as the weight-error
vector correlation matrix [8], and

(31)

(32)

where is evaluated in Appendix A and is given in (21). Note
that the approximation introduced in (26) has been used:

(33)

where is
evaluated in Appendix B, and

(34)

Substituting (31)–(33) into (30) yields

(35)

where

(36)
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Fig. 4. MSE performance of the various algorithms in impulsive noise (Example 1). (1) PEF-LSL (square); (2) H-PEF-LSL (bold diamond); (3) RLM (triangle);
(4) RLS (x sign). N = 9, � = 0:01, N = N = 5 (for H-PEF-LSL), � = � = 0:99, SNR = 30 dB, �̂ (0) = d (0), �̂ (0) = f (0), N = 13 (for RLM),
RRR (0) = III (for RLS and RLM).

and

(37)

It can be seen from (35) that is prevented from going to
zero by the last term. Postmultiplying and taking the trace
operation on both sides of (35) yields

(38)

where trace is defined as the misadjust-
ment. Specifically, using the properties described in (28) and
(29) with , , and , the bound for

from (36) can be deduced as . Similarly, with
and , from (37) is found to be a small positive

value with bound: .
Therefore, from (38), it can be seen that the weight-error vector
converges in the mean square sense under the stated assump-
tions and that the steady-state error is mainly decided by the pa-
rameter given in (34). Furthermore, the convergence of
is verified numerically by solving (38) under specified parame-
ters, and the results are presented in Example 4 of Section V.

V. SIMULATION RESULTS

In order to evaluate the performance of the transversal RLM
algorithm and the lattice-based H-PEF-LSL algorithm, the fol-
lowing simulations are performed on the system identification
problem shown in Fig. 1 and Fig. 2 with impulsive interferences.

A. Example 1: Robustness and Convergence Performance of
the RLM and the H-PEF-LSL Algorithms

This example compares the convergence speed and
robustness of the RLM, N-RLS [5], OSFKF [3], and
RLS algorithms with impulsive noise in the desired
and input signals. The unknown system in Fig. 1(a) is
modeled as a FIR filter with impulse response

and is changed
suddenly to at time instant in order to evaluate
the robustness of the algorithms to sudden change in system
parameters. The input signal of the unknown system
is a colored signal with eigenvalue spread 46.821, which
is generated by passing a zero-mean, unit variance, white
Gaussian process through a linear time-invariant filter with
coefficients [0.3887, 1, 0.3887]. These parameters are chosen
for ease of comparison, and they are adopted from [8, pp. 581].
The signal-to-noise ratio (SNR) at the system output is given
by SNR , where is the variance of the
output of the unknown system. Unless otherwise specified,
the following parameters will be used: Adaptive filter length

is 9, , SNR dB, the forgetting factors
and are 0.99, and the thresholds in (9) and (10) are

used. The following initial values are used: ,
, , and ,

where and are the zero and identity matrices
of dimension , respectively, and the constant 20 is
chosen to ensure that consists of reasonable value. For
illustration purposes, the noise is an additive Gaussian
noise from to 1499 and 2801 to 7000 .
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Fig. 5. MSE results for the RLM algorithm with different parameter thresholds k (Example 2). (1) k = 1:2817 (diamond); (2) k = 1:96 (circle); (3) k =

2:576 (star); (4) k = 3:091 (triangle).

From to 2800, a CG noise generated by (15) with
is used. To visualize more clearly

the effect of impulses in the desired signal, the appearing
positions of impulses are fixed throughout this simulation;
however, the amplitudes of impulses are independent random
variables governed by (15). In addition, for simplicity in visu-
alizing the effect of impulses in the input signal, one impulse is
added to the input at . The time instant for the system
change is set as . is computed by (10), and
the estimation window length is chosen as 14 for the RLM
and the OSFKF algorithms. The MSE results averaged over 300
independent runs are plotted in Fig. 3. It can be seen that the
RLM, N-RLS, and the RLS algorithms have almost identical
initial convergence speed, low steady-state error, and robustness
to the system change. The RLS algorithm is not robust to any of
the impulses, and the N-RLS algorithm is sensitive to impulses
in the desired signal. It is clear that the performances of the
N-RLS, RLS, and the OSFKF algorithms are deteriorated
significantly by the impulse in the input signal at .
The impact of this impulse lasts for several hundred iterations.
On the other hand, the RLM algorithm is able to recover very
quickly from this adverse impact (about three times the filter
length). The OSFKF algorithm can effectively suppress the
impulses in the desired signal, but its convergence speed is
slower, and the steady-state error is higher compared with other

RLS-type algorithms. Its robustness against the sudden system
change is the worst. Comparisons with other robust LMS-like
algorithms, such as ATNA, RMN, and the OSLMS algorithms,
have also been performed. Due to space limitations, the results
are not shown here. See [11] and [16] for more details. It is
found that the RLM algorithm has faster initial convergence and
lower steady-state error than those of the ATNA, RMN, and the
OSLMS algorithms, due to its RLS-like nature. Moreover, the
ATNA, RMN, and OSLMS algorithms are more susceptible to
consecutive impulses either in the desired or the input signals.
It should be noted that, because of the shifting property of the
linear transversal filter, the effect of a single impulse at the
input signal is similar to a series of consecutive impulses in the
desired signal, which generates a sequence of estimation errors
with large amplitudes. As the N-RLS algorithm only limits
the effect of impulses instead of removing them completely,
this algorithm is not robust to consecutive impulses. This also
explains why it is not robust to the impulse in the input signal
at .

For clarity of presentation, the performance comparison of
the proposed H-PEF-LSL, RLS, RLM, and PEF-LSL algo-
rithms in an impulsive noise environment are separately plotted
in Fig. 4, which is obtained by averaging the MSE results over
300 independent runs. From Fig. 4, we have the following
observations.
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Fig. 6. Mean convergence of the RLM algorithm by independent 200 runs (Example 3). The bold solid line is the theoretical result in (27) and the solid line is
the simulation result.

1) The performances of the H-PEF-LSL and the RLM algo-
rithms are very close to each other, with the latter being
slightly better.

2) The performances of the RLS and the PEF-LSL al-
gorithms are significantly degraded by the impulses,
although the former is slightly better. The effect of a
single impulse in and will last for more than
250 and 800 iterations for the RLS and the PEF-LSL
algorithms, respectively.

3) The performance of the RLM and the H-PEF-LSL algo-
rithms is very robust to the impulses in and .

4) The initial convergence, steady state-error, and the
tracking ability to sudden change of the system param-
eters of the H-PEF-LSL algorithm are comparable with
other algorithms considered.

B. Example 2: Choice of the Thresholds

This experiment evaluates the performance of the transversal
RLM algorithm with different choices of the threshold values
. The desired signal , the input signal , and additive

interference are generated in the same way as in Example 1.
The method proposed in (10) is used to estimate , and
the threshold parameters are computed using (9) with different
choices of the parameter . Four different sets of threshold
values with different confidence of impulse detection are used.

Specifically, the parameter is chosen as 1.2817, 1.96, 2.576,
and 3.091, respectively. This corresponds to , 0.05,
0.01, and 0.005, respectively. The MSE for the RLM algorithm
over 300 independent runs are plotted in Fig. 5. It can be seen
that the performance of the RLM algorithm together with the pa-
rameter estimation method introduced in Section IV is robust to
the impulsive noise in the desired signal within a wide range of
threshold values. Moreover, it is also not sensitive to the choices
of when the input signal is corrupted by impulsive noise pro-
vided that they are not at the tails part of the signal distribution
(such as in Fig. 5), where impulse with large ampli-
tude appears.

C. Example 3: Mean Convergence Performance of the RLM
Algorithm

In this section, the mean convergence performance of the
RLM algorithm will be evaluated. The norm of the mean
squared weight-error vector is used as a performance measure

(39)

where is the th component of the weight-error vector
at time in the th independent run. is the total number
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Fig. 7. Mean square convergence of the RLM algorithm by 200 independent runs (Example 4). The bold solid line is the theoretical result in (38), and the solid
line is the simulation result.

of independent runs. In this example, the simulation result is ob-
tained over independent runs. The interference noise

is generated by (15) with .
However, the locations of impulses, unlike Example 1, are not
fixed for each independent run. Only impulses in the desired
signal are considered. The window length is set to 9. The
theoretical result is obtained from (27) with ,
where is obtained by averaging over 200 indepen-
dent runs. The resulting numerical and simulation results are
plotted in Fig. 6. It can be seen that there is a good match be-
tween the theoretical and simulation results, especially when
is sufficiently large. The small discrepancy at the beginning may
result from the inaccurate estimation of and the approxi-
mations used in the performance analysis.

D. Example 4: Mean Square Convergence Performance of
the RLM Algorithm

This experiment follows the same settings in Example 3
to evaluate the mean square convergence performance of the
RLM algorithm. The misadjustment trace
is considered. The numerical result obtained from (38) and
the simulation results averaged over 200 independent runs are
plotted in Fig. 7. Again, there is a good match between the
theoretical and simulation results.

VI. CONCLUSION

This paper presents the convergence analysis of the RLM
algorithm under the contaminated Gaussian (CG) impulsive
noise model and a new lattice structure based fast algorithm,
called the Huber Prior Error Feedback-Least Squares Lat-
tice (H-PEF-LSL) algorithm, for its implementation. The
H-PEF-LSL algorithm has an arithmetic complexity of
and is based on the modified Huber M-estimate function and the
conventional PEF-LSL adaptive filtering algorithm. Simulation
results show that the transversal RLM and the H-PEF-LSL
algorithms have better performance than the conventional RLS
and other RLS-like robust adaptive algorithms tested when the
desired and input signals are corrupted by impulsive noise.
Furthermore, the simulation and theoretical convergence results
agree very well with each other and suggests that the RLM
algorithm is more robust than the RLS algorithm under the CG
noise model.

APPENDIX A

In this Appendix, the expectation
is evaluated. The subscript indicates that the

expectation is taken over . The classical approach pro-
posed by Bershard in [17] is employed to evaluate this expecta-
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tion. As and are assumed to be statistically indepen-
dent, and are jointly Gaussian with covariance matrix ,
one gets

(A.1)

where . Similar to [17], let us con-
sider the integral

(A.2)

It can be seen that

(A.3)

Differentiating (A.2) with respect to , one gets (A.4), shown at
the bottom of the page, where ,

, and is
the expectation of conditioned on when ,
are jointly Gaussian with covariance matrix . Since and

are assumed as jointly Gaussian in Assumption 3, the Price
theorem [18] for and can be invoked to obtain the following:

(A.5)

where , is the co-

variance of and , , and
. These expectations will be evaluated as fol-

lows. First of all, it is noted that

(A.6)

Moreover, considering and are statistically independent,
it follows that

(A.7)

because , as evaluated in the following, is
an odd function:

(A.8)

Here, we have used the identities and
, where is the Dirac delta function.

Equation (A.8) is an odd function because is an even
function. Next, we consider . Similar to deriving , we
have

(A.9)

where . Substituting
given in (16) into (A.9), one gets

(A.4)
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(A.10)

where , and .
Using the result in (A.7), (A.5) can be simplified to

(A.11)
Integrating (A.11) with respect to and using the expres-
sion of in (A.6), one gets

(A.12)

where is the constant of
integration, which can be shown to be zero. Inserting (A.12) into
(A.4) and integrating with respect to yields

(A.13)

where the constant of integration is equal to zero because of the
boundary condition . Finally, from (A.3) and (A.13),
we have the desired result

(A.14)

APPENDIX B

In this Appendix,
is evaluated. It is the expectation of

taken over
conditioned on . Similar to deriving in Appendix A, is
given by

(B.1)

where is the pdf of the contaminated Gaussian noise
given in (16). Similar to [17], let us define

(B.2)

Comparing (B.2) with (B.1), it can be seen that

(B.3)

To evaluate , differentiating (B.2) twice with respect to ,
one gets (B.4), shown at the bottom of the page, where the cor-
relation matrix and have been defined in Appendix A,
and is the expectation of

(B.4)
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taken over and conditioned on , where
, are jointly Gaussian variables with covariance ma-

trix . Following a similar approach used in [19], one gets, from
the Price theorem, the following:

(B.5)

where , and
. Again, applying a similar approach

to derive and with the same argument in deriving (25),
one gets

(B.6)

(B.7)

where . Inserting the

weighting function
otherwise

, we have

(B.8)

Following the same argument in deriving (25), (B.8) can also be
approximated by

(B.9)

Note that is identical to that given in (25). Inserting (B.9)
into (B.7) gives

(B.10)

Substituting (B.6) and (B.10) into (B.5) yields

(B.11)

Integrating (B.11) with respect to and using
, one gets

(B.12)

where is the integration constant, which can be determined
from conditioned on

. In other words, the variables and are now uncorrelated.
Then, we have

(B.13)

where . Following the definition
of , one gets

(B.14)
where , which can be further
simplified as follows:
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(B.15)

Using the same argument in deriving (25), (B.15) can be ap-
proximated as

(B.16)

where is given in (25), and

(B.17)

Inserting the result in (B.16) into (B.14) gives

(B.18)

Combining (B.15) and (B.18) yields the following:

(B.19)
Finally, substituting (B.19) into (B.12), one gets

(B.20)
From (B.20) and (B.4), we have

(B.21)

Integrating (B.21) with respect to yields

(B.22)

with the boundary conditions and
. Equation (B.22) is obtained from (B.3) and

the explicitly evaluation of the integrations. Actually, the
integrations in (B.22) are double integral in the first half of the
first quadrant in the , plane. Interchanging the order of
integration [17], we have

(B.23)

where . Similarly

(B.24)
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