
algorithms

Article

A Recursive Least-Squares Algorithm for the
Identification of Trilinear Forms

Camelia Elisei-Iliescu 1, Laura-Maria Dogariu 1, Constantin Paleologu 1,* , Jacob Benesty 2 ,

Andrei-Alexandru Enescu 1 and Silviu Ciochină 1

1 Department of Telecommunications, University Politehnica of Bucharest, 1-3, Iuliu Maniu Blvd.,

061071 Bucharest, Romania; cameliailiescu27@gmail.com (C.E.-I.); ldogariu@comm.pub.ro (L.-M.D.);

aenescu@gmail.com (A.-A.E.); silviu@comm.pub.ro (S.C.)
2 INRS-EMT, University of Quebec, Montreal, QC H5A 1K6, Canada; benesty@emt.inrs.ca

* Correspondence: pale@comm.pub.ro

Received: 23 March 2020; Accepted: 27 May 2020; Published: 1 June 2020
����������
�������

Abstract: High-dimensional system identification problems can be efficiently addressed based on

tensor decompositions and modelling. In this paper, we design a recursive least-squares (RLS)

algorithm tailored for the identification of trilinear forms, namely RLS-TF. In our framework,

the trilinear form is related to the decomposition of a third-order tensor (of rank one). The proposed

RLS-TF algorithm acts on the individual components of the global impulse response, thus being

efficient in terms of both performance and complexity. Simulation results indicate that the proposed

solution outperforms the conventional RLS algorithm (which handles only the global impulse

response), but also the previously developed trilinear counterparts based on the least-mean-

squares algorithm.

Keywords: adaptive filters; recursive least-squares (RLS) algorithm; system identification; tensor

decomposition; trilinear forms

1. Introduction

Currently, there is an increasing interest in developing methods and algorithms that exploit tensor

decompositions and modelling [1,2]. These techniques become of significant importance in many

real-world scenarios, e.g., when dealing with large amounts of data, processing multidimensional

signals, or solving high-dimensional system identification problems. Many important applications

rely on such tensor-based techniques, which can be successfully used in the fields of big data [3],

source separation [4], machine learning [5], multiple-input multiple-output (MIMO) communication

systems [6], and beamforming [7].

Tensor decompositions and their related applications are frequently addressed based on

multilinear signal processing techniques [8,9]. For example, in the context of system identification

scenarios, the problems can be formulated in terms of identifying multilinear forms. As particular

cases, we can mention the bilinear and trilinear forms, where the decomposition is performed using

two and three components, respectively. Since the Wiener filter and adaptive algorithms represent

popular methods to address system identification problems, their applicability was also extended to

the multilinear framework. Among the recent related works, we can mention the iterative Wiener

filter for bilinear forms [10] and the subsequent adaptive filtering methods [11–13], together with their

extensions to trilinear forms [14–17].

In this context, the work in [17] provided a system identification framework based on tensor

decomposition, which was suitable for the trilinear approach. This work presents the iterative Wiener

filter and least-mean-squares (LMS) adaptive algorithms tailored for trilinear forms. Among those,

Algorithms 2020, 13, 135; doi:10.3390/a13060135 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-0379-2360
https://orcid.org/0000-0002-0036-5865
http://www.mdpi.com/1999-4893/13/6/135?type=check_update&version=1
http://dx.doi.org/10.3390/a13060135
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 135 2 of 18

the normalized LMS (NLMS) algorithm for trilinear forms, namely NLMS-TF, represents a practical

solution in terms of both performance and complexity. Nevertheless, it is known that the recursive

least-squares (RLS) algorithm [18] could provide improved performance as compared to the LMS-based

algorithms, especially in terms of the convergence rate. This represents the motivation behind the

solution proposed in this paper, which targets the development of the RLS algorithm for trilinear forms,

namely RLS-TF. Therefore, the goal of this work is mainly twofold. First, we aim to design a faster

converging algorithm as compared to the recently developed NLMS-TF. Second, we intend to outline

the performance features of the RLS-TF algorithm as compared to the conventional RLS benchmark.

Besides the conventional adaptive algorithms (which usually act as supervised methods),

we should also note that unsupervised algorithms can be used in conjunction with tensor-based

approaches, e.g., [19,20]. In this context, we can mention the single-channel blind source separation

problem, which targets the identification of individual source signals from a single mixture recording.

Such an approach can be found in [19], where the parameters of a so-called “imitated-stereo” mixture

model (i.e., one real and the other virtual microphones, which results in an artificial mixing system of

dual channels) were found by applying tensor estimation and exploiting sparsity features. The method

proposed in [20] also exploits sparsity (using the Gibbs distribution) for multichannel source separation,

by solving the underdetermined convolutive mixture separation, while considering the reverberations

of the surrounding environment. Another appealing field where such tensor-based techniques can

be applied is video processing. For example, unsupervised algorithms can be used for detecting

anomalies in a video sequence, e.g., detecting micro defects while employing a thermography imaging

system [21].

Currently, in many real-world applications related to MIMO systems, speech processing,

and image/video processing, the received signals are tensors or can be grouped in a tensorial form.

Consequently, as outlined before, utilizing estimation techniques from tensor algebra is beneficial.

Moreover, in most of these applications, the underlying parameters to be estimated are sparse, so that

specific features could be exploited, thus bringing additional advantages, especially for systems of

large dimensions. The tensor-based RLS algorithm proposed in this paper represents an improved

solution (in terms of convergence rate) as compared to the existing solution based on the NLMS

algorithm [17], but also an efficient version (in terms of computational complexity) as compared to the

conventional RLS algorithm [18].

The rest of the paper is organized as follows. Section 2 provides a background on third-order

tensors, which represents the framework of trilinear forms. The proposed RLS-TF algorithm is

developed in Section 3. Simulation results are provided in Section 4, outlining the main performance

features of the designed solution. Finally, Section 5 concludes this paper and discusses several

perspectives for future works.

2. Third-Order Tensors

In this section, we provide a brief summary on tensors, outlining the main definitions and

operations, while also establishing the notation. A tensor can be defined as a multidimensional array

of data [22,23]. For example, a matrix and a vector can be referred to as second- and first-order

tensors, respectively. Tensors of order three or higher are called higher order tensors. In the following,

the notation used for a tensor, a matrix, a vector, and a scalar is A, A, a, and a, respectively. In this

work, we are focusing only on real-valued third-order tensors, i.e., A ∈ R
L1×L2×L3 , so that the array

dimension is L1 × L2 × L3.

The entries of a tensor can be referred to by using multiple indices. In our case, for a third-order

tensor, the first and second indices l1 (with l1 = 1, 2, . . . , L1) and l2 (with l2 = 1, 2, . . . , L2) correspond to

the row and column, respectively (like in a matrix); in addition, the third index l3 (with l3 = 1, 2, . . . , L3)

corresponds to the tube and describes its depth. Consequently, these three indices describe the

three different modes. In terms of notation, the entries of the different order tensors are denoted by

(A)l1l2l3
= al1l2l3 , (A)l1l2

= al1l2 , and (a)l1
= al1 .



Algorithms 2020, 13, 135 3 of 18

In the case of a matrix, the vectorization operation leads to a vector that contains the concatenated

columns of the original matrix. In the case of a third-order tensor, the so-called matricization operation

concatenates the “slices” of the tensor and produces a large matrix. Of course, the result depends on

which index, all the elements of which are considered first. Thus, the matricization can be performed

along three different modes [8,9]. For example, considering the mode row and then varying the

columns and the tubes, we obtain:

A[1] = A:,1:L2,1:L3

=
[

A::1 · · · A::L3

]
,

where A[1] ∈ R
L1×L2L3 and the matrices A::l3 ∈ R

L1×L2 with l3 = 1, 2 . . . , L3 denote the frontal slices.

Similarly, we can take the mode column and then vary the lines and the tubes, which results in

A[2] = A1:L1,:,1:L3
, with A[2] ∈ R

L2×L1L3 . Finally, we can take the mode tube and then vary the rows

and the columns, in order to obtain A[3] = A1:L1,1:L2,:, where A[3] ∈ R
L3×L1L2 . The ranks of A[1], A[2],

and A[3] represent the mode-1, mode-2, and mode-3 ranks of the tensor, respectively. Furthermore,

the vectorization of a tensor (e.g., following mode-1) is

vec (A) = vec
(

A[1]

)

=




vec (A::1)
...

vec
(
A::L3

)


 ∈ R

L1L2L3 .

Nevertheless, there are some fundamental differences between the rank of a matrix A ∈ R
L1×L2

and the rank of a tensor A ∈ R
L1×L2×L3 . For example, the rank of A can never be larger than

min{L1, L2}, while the rank of A can be greater than min{L1, L2, L3}. A rank-1 tensor (of dimension

L1 × L2 × L3) is defined as:

B = b1 ◦ b2 ◦ b3, (1)

where b1, b2, and b3 are vectors of lengths L1, L2, and L3, respectively, ◦ is the vector outer product,

and the elements of B are given by (B)l1l2l3
= b1,l1 b2,l2 b3,l3 , where bi,li are the elements of the vector bi,

with i = 1, 2, 3 and li = 1, 2, . . . , Li. In this case, it can be easily verified that:

vec (B) = b3 ⊗ b2 ⊗ b1, (2)

where ⊗ denotes the Kronecker product [24]. In this context, the rank of a tensor A, denoted rank (A),

is defined as the minimum number of rank-1 tensors that generate A as their sum. For example, if:

A =
R

∑
r=1

a1r ◦ a2r ◦ a3r, (3)

where a1r, a2r, and a3r are vectors of lengths L1, L2, and L3, respectively, then rank (A) = R when R is

minimal and (3) is called the canonical polyadic decomposition (CPD) of A.

Another important operation is the multiplication of a tensor with a matrix [1,2], which can also

be defined in different ways. For example, the mode-1 product between the tensor A ∈ R
L1×L2×L3

and the matrix M1 ∈ R
M1×L1 gives the tensor:

U = A×1 M1, U ∈ R
M1×L2×L3 , (4)



Algorithms 2020, 13, 135 4 of 18

whose entries are um1l2l3 = ∑
L1
l1=1 al1l2l3 mm1l1 (for m1 = 1, 2, . . . , M1) and U[1] = M1A[1]. Similarly,

the mode-2 product between the same tensor A and the matrix M2 ∈ R
M2×L2 leads to the tensor:

U = A×2 M2, U ∈ R
L1×M2×L3 , (5)

with the entries ul1m2l3
= ∑

L2
l2=1 al1l2l3 mm2l2 (for m2 = 1, 2, . . . , M2) and U[2] = M2A[2]. Finally,

the mode-3 product between the tensor A and the matrix M3 ∈ R
M3×L3 results in the tensor:

U = A×3 M3, U ∈ R
L1×L2×M3 , (6)

having the entries ul1l2m3
= ∑

L3
l3=1 al1l2l3 mm3l3 (for m3 = 1, 2, . . . , M3), while U[3] = M3A[3]. Clearly, we

can multiply the tensor A with the three previously defined matrices M1, M2, and M3. In this case,

we get the tensor:

T = A×1 M1 ×2 M2 ×3 M3 (7)

= A×1 M1 ×3 M3 ×2 M2

= A×2 M2 ×1 M1 ×3 M3

= A×2 M2 ×3 M3 ×1 M1

= A×3 M3 ×1 M1 ×2 M2

= A×3 M3 ×2 M2 ×1 M1,

where T ∈ R
M1×M2×M3 . As a consequence, considering b1, b2, and b3 three vectors of lengths L1, L2,

and L3, respectively, the multiplication of the tensor A with the transposed vectors gives the scalar:

c = A×1 bT
1 ×2 bT

2 ×3 bT
3

=
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

al1l2l3 b1l1 b2l2 b3l3 , (8)

where T is the transpose operator. It is easy to check that (8) is trilinear with respect to b1, b2, and b3.

At this point, we can also define the inner product between two tensors A and B of the same

dimension (L1 × L2 × L3), which is:

〈A,B〉 =
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

al1l2l3 bl1l2l3

= vecT (B) vec (A) . (9)

Therefore, Expression (8) can also be written in a more convenient way, i.e.,

c = 〈A,B〉

= vecT (B) vec (A)

= vecT (b1 ◦ b2 ◦ b3) vec (A)

= (b3 ⊗ b2 ⊗ b1)
T vec (A) , (10)

where B = b1 ◦ b2 ◦ b3 (see (1)). Moreover, if A is also a rank-1 tensor, i.e., A = a1 ◦ a2 ◦ a3, where

the vectors ai have the lengths Li (with i = 1, 2, 3), then:

〈A,B〉 = bT
1 a1 × bT

2 a2 × bT
3 a3. (11)



Algorithms 2020, 13, 135 5 of 18

Furthermore, it is easy to check that:

B×1 M1 = M1b1 ◦ b2 ◦ b3,

B×2 M2 = b1 ◦ M2b2 ◦ b3,

B×3 M3 = b1 ◦ b2 ◦ M3b3,

where the matrices M1, M2, and M3 were previously defined (related to (4)–(6)).

The short background on tensors provided before and the main related operations

(e.g., matricization, vectorization, rank, and different types of product) aim to facilitate the development

that follows in Section 3. It is also important to outline that the trilinear forms result in the context of the

decomposition of third-order tensors. Extension to higher order tensors and multilinear forms could

be straightforward when dealing with rank-1 tensors. Otherwise, in the general case, decomposing

higher rank higher order tensors (see (3)) raises additional difficulties, as will be briefly pointed out at

the end of Section 5.

3. RLS Algorithm for Trilinear Forms

In the following, for the sake of consistency with the development of the NLMS-TF algorithm,

we will keep the framework and notation from [17]. Therefore, let us consider the output of a

multiple-input single-output (MISO) system (with real-valued data) at the discrete-time index n

defined as:

y(n) = X (n)×1 hT
1 ×2 hT

2 ×3 hT
3

=
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

xl1l2l3(n)h1,l1 h2,l2 h3,l3 , (12)

where the tensorial form X (n) ∈ R
L1×L2×L3 groups the input signals, with:

[X (n)]l1l2l3
= xl1l2l3(n), li = 1, 2, . . . , Li, i = 1, 2, 3,

and the vectors hi, i = 1, 2, 3 (of lengths L1, L2, and L3, respectively) define the three impulse responses,

i.e.,

hi =
[

hi,1 hi,2 · · · hi,Li

]T
, i = 1, 2, 3.

As we can notice, y(n) represents a trilinear form (see (12) as compared to (8)), because it is a

linear function of each of the vectors hi, i = 1, 2, 3, if the other two are fixed.

Next, we can also introduce a rank-1 tensor of dimension L1 × L2 × L3, using the three impulse

responses of the MISO system:

H = h1 ◦ h2 ◦ h3, (13)

whose elements are:

(H)l1l2l3
= h1,l1 h2,l2 h3,l3 , li = 1, 2, . . . , Li, i = 1, 2, 3.

Consequently, the output signal results in:

y(n) = vecT (H) vec [X (n)] , (14)



Algorithms 2020, 13, 135 6 of 18

where:

vec (H) =




vec (H::1)
...

vec
(
H::L3

)


 , (15)

vec [X (n)] =




vec [X::1(n)]
...

vec
[
X::L3

(n)
]


 , (16)

with H::l3 and X::l3(n) (l3 = 1, 2 . . . , L3) being the frontal slices of H and X (n), respectively. At this

point, we can introduce the notation:

h , vec (H) = h3 ⊗ h2 ⊗ h1, (17)

x(n) , vec [X (n)] , (18)

where h and x(n) are two long vectors, each of them having L1L2L3 elements. Thus, the output signal

can also be expressed as:

y(n) = hTx(n). (19)

The main goal is to estimate the output of the MISO system, which is usually corrupted by an

additive noise. Hence, the reference signal results in:

d(n) = y(n) + w(n)

= hTx(n) + w(n), (20)

where w(n) is a zero-mean additive noise, which is uncorrelated with the input signals. Alternatively,

we could estimate the global impulse response h, using an adaptive filter ĥ(n) (of length L1L2L3).

At this point, we may also define the error signal:

e(n) = d(n)− ŷ(n)

= d(n)− ĥT(n − 1)x(n), (21)

which represents the difference between the reference signal and the estimated signal, ŷ(n).

Based on (17), we can notice that the global impulse response h (of length L1L2L3) results based

on a combination of the shorter impulse responses hi, i = 1, 2, 3, of lengths L1, L2, and L3, respectively.

Consequently, the estimated impulse response can also be decomposed as:

ĥ(n) = ĥ3(n)⊗ ĥ2(n)⊗ ĥ1(n), (22)

where ĥi(n), i = 1, 2, 3 are three adaptive filters (with L1, L2, and L3 coefficients, respectively), which

aim to model the individual impulse responses hi, i = 1, 2, 3. Nevertheless, we should notice that

there is no unique solution related to the decomposition in (22). It is obvious that, for any constants

η1, η2, and η3, with η1η2η3 = 1, we have:

h = h3 ⊗ h2 ⊗ h1

= η3h3 ⊗ η2h2 ⊗ η1h1. (23)

Hence, ηihi, i = 1, 2, 3 also represent a set of solutions. However, the global impulse response h

is identified with no scaling ambiguity.



Algorithms 2020, 13, 135 7 of 18

Following the decomposition from (22), we can easily verify that:

ĥ(n) = Ĥ32(n)ĥ1(n) (24)

= Ĥ31(n)ĥ2(n) (25)

= Ĥ21(n)ĥ3(n), (26)

where:

Ĥ32(n) = ĥ3(n)⊗ ĥ2(n)⊗ IL1
, (27)

Ĥ31(n) = ĥ3(n)⊗ IL2
⊗ ĥ1(n), (28)

Ĥ21(n) = IL3
⊗ ĥ2(n)⊗ ĥ1(n), (29)

and ILi
, i = 1, 2, 3 are the identity matrices of sizes L1 × L1, L2 × L2, and L3 × L3, respectively. Moreover,

introducing the notation:

x32(n) = ĤT
32(n − 1)x(n), (30)

x31(n) = ĤT
31(n − 1)x(n), (31)

x21(n) = ĤT
21(n − 1)x(n), (32)

the error signal from (21) can be expressed in three equivalent ways as:

e(n) = d(n)− ĥT
1 (n − 1)x32(n), (33)

= d(n)− ĥT
2 (n − 1)x31(n), (34)

= d(n)− ĥT
3 (n − 1)x21(n). (35)

Based on the least-squares error criterion [18] applied in the context of (20) and (21),

the conventional RLS algorithm is derived from:

J
[
ĥ(n)

]
=

n

∑
i=1

λn−i
[
d(i)− ĥT(n)x(i)

]2
, (36)

where λ ≤ 1 is a positive constant known as the forgetting factor. On the other hand, based on (24)–(26),

the cost function from (36) can be expressed in three different ways, targeting the optimization of the

individual components, i.e.,

J
ĥ3,ĥ2

[
ĥ1(n)

]
=

n

∑
i=1

λn−i
1

[
d(i)− ĥT

1 (n)x32(i)
]2

, (37)

J
ĥ3,ĥ1

[
ĥ2(n)

]
=

n

∑
i=1

λn−i
2

[
d(i)− ĥT

2 (n)x31(i)
]2

, (38)

J
ĥ2,ĥ1

[
ĥ3(n)

]
=

n

∑
i=1

λn−i
3

[
d(i)− ĥT

3 (n)x21(i)
]2

, (39)

where λ1, λ2, and λ3 are the individual forgetting factors. The previous cost functions suggest a

“trilinear” optimization strategy [25], where we assume that two components are fixed during the



Algorithms 2020, 13, 135 8 of 18

optimization of the third one. Consequently, based on the minimization of (37)–(39) with respect to

ĥ1(n), ĥ2(n), and ĥ3(n), respectively, the following set of normal equations are obtained:

R32(n)ĥ1(n) = p32(n), (40)

R31(n)ĥ2(n) = p31(n), (41)

R21(n)ĥ3(n) = p21(n), (42)

where:

R32(n) =
n

∑
i=1

λn−i
1 x32(i)x

T
32(i)

= λ1R32(n − 1) + x32(n)x
T
32(n),

p32(n) =
n

∑
i=1

λn−i
1 x32(i)d(i)

= λ1p32(n − 1) + x32(n)d(n),

R31(n) =
n

∑
i=1

λn−i
2 x31(i)x

T
31(i)

= λ2R31(n − 1) + x31(n)x
T
31(n),

p31(n) =
n

∑
i=1

λn−i
2 x31(i)d(i)

= λ2p31(n − 1) + x31(n)d(n),

R21(n) =
n

∑
i=1

λn−i
3 x21(i)x

T
21(i)

= λ2R21(n − 1) + x21(n)x
T
21(n),

p21(n) =
n

∑
i=1

λn−i
3 x21(i)d(i)

= λ3p21(n − 1) + x21(n)d(n).

Solving (40)–(42), the updates of the individual filters result in:

ĥ1(n) = ĥ1(n − 1) + R−1
32 (n)x32(n)e(n)

= ĥ1(n − 1) + k32(n)e(n), (43)

ĥ2(n) = ĥ2(n − 1) + R−1
31 (n)x31(n)e(n)

= ĥ2(n − 1) + k31(n)e(n), (44)

ĥ3(n) = ĥ3(n − 1) + R−1
21 (n)x21(n)e(n)

= ĥ3(n − 1) + k21(n)e(n), (45)

where k32(n) = R−1
32 (n)x32(n), k31(n) = R−1

31 (n)x31(n), and k21(n) = R−1
21 (n)x21(n) are the Kalman

gain vectors, while the error signal can be computed based on (33). At this point, the main task is to



Algorithms 2020, 13, 135 9 of 18

update the inverse of the matrices R32(n), R31(n), and R21(n) efficiently. The solution relies on the

matrix inversion lemma [18], which leads to the following updates:

R−1
32 (n) =

1

λ1

[
IL1

− k32(n)x
T
32(n)

]
R−1

32 (n − 1), (46)

R−1
31 (n) =

1

λ2

[
IL2

− k31(n)x
T
31(n)

]
R−1

31 (n − 1), (47)

R−1
21 (n) =

1

λ3

[
IL3

− k21(n)x
T
21(n)

]
R−1

21 (n − 1). (48)

Therefore, the Kalman gain vectors are evaluated as:

k32(n) =
R−1

32 (n − 1)x32(n)

λ1 + xT
32(n)R

−1
32 (n − 1)x32(n)

, (49)

k31(n) =
R−1

31 (n − 1)x31(n)

λ2 + xT
31(n)R

−1
31 (n − 1)x31(n)

, (50)

k21(n) =
R−1

21 (n − 1)x21(n)

λ3 + xT
21(n)R

−1
21 (n − 1)x21(n)

. (51)

For initialization, we can choose:

ĥ1(0) =

[
1

0L1−1

]
, (52)

ĥ2(0) =
1

L2
1L2

, (53)

ĥ3(0) =
1

L3
1L3

, (54)

where 0N and 1N are two vectors of length N, all elements of which are equal to zero and one,

respectively.

The proposed RLS algorithm for trilinear forms, namely RLS-TF, is summarized in Table 1. It could

also be interpreted as an extension of the RLS-based algorithm tailored for bilinear forms, which was

presented in [12]. However, if the MISO system identification problem results based on (12), it is natural

to use the RLS-TF algorithm, which is designed for the identification of third-order (rank-1) tensors.

In terms of computational complexity, it can be noticed that the proposed RLS-TF algorithm

combines the solutions provided by three RLS-based filters, i.e., ĥ1(n) (of length L1), ĥ2(n) (of length

L2), and ĥ3(n) (of length L3). Since the complexity of a regular RLS-based algorithm is proportional

to the square of the filter length, the overall complexity of the RLS-TF algorithm roughly results in

O(L2
1 + L2

2 + L2
3). On the other hand, the system identification problem can also be handled based on

the conventional RLS algorithm, which results following (20) and (21), together with the cost function

from (36). However, in this case, there is a single adaptive filter ĥ(n), of length L = L1L2L3, so that

the computational complexity is of the order of O(L2). This could be much more computationally

expensive as compared to the proposed RLS-TF algorithm.



Algorithms 2020, 13, 135 10 of 18

Table 1. RLS algorithm for trilinear forms (RLS-TF).

Initialization:

Set ĥ1(0), ĥ2(0), and ĥ3(0) based on (52)–(54)

R−1
32 (0) = 1

δ1
IL1

, R−1
31 (0) = 1

δ2
IL2

, R−1
21 (0) = 1

δ3
IL3

(Regularization parameters: δ1 > 0, δ2 > 0, δ3 > 0)
λ1 = 1 − 1

KL1
, λ2 = 1 − 1

KL2
, λ3 = 1 − 1

KL3

(Tuning constant : K ≥ 1)
For n = 1, 2, . . . , number of iterations :

Compute Ĥ32(n − 1), Ĥ31(n − 1), and Ĥ21(n − 1) based on (27)–(29)
Compute x32(n), x31(n), and x21(n) based on (30)–(32)
Evaluate the error signal e(n) based on (33)
Compute k32(n), k31(n), and k21(n) based on (49)–(51)

Update ĥ1(n), ĥ2(n), and ĥ3(n) based on (43)–(45)

Update R−1
32 (n), R−1

31 (n), and R−1
21 (n) based on (46)–(48)

Evaluate ĥ(n) based on (22)

Basically, the RLS-TF algorithm “transforms” a large system identification problem of length

L = L1L2L3 into three “smaller” problems of lengths L1, L2, and L3, respectively, with advantages

in terms of both performance (as will be shown in simulations) and complexity. As outlined before,

the proposed RLS-TF algorithm combines the solutions provided by three adaptive filters of lengths

L1, L2, and L3, respectively, while the conventional RLS algorithm deals with a single filter of length

L = L1L2L3, which is usually much longer. Since the length of the filter highly influences the main

performance criteria, i.e., convergence rate and misadjustment [18], the proposed algorithm is able

to outperform the conventional one in terms of both criteria. In other words, the shorter the length,

the faster the convergence and the lower the misadjustment. This expected behaviour will be supported

by the simulation results provided in the next section.

Finally, we should observe that there are some extra operations specific to the RLS-TF algorithm.

For example, the “input” signals x32(n), x31(n), and x21(n) result based on (30)–(32), which rely

on (27)–(29). Furthermore, the global impulse response (if required within the application) can be

evaluated based on (22). These operations require Kronecker products, but the related computational

complexity is moderate, i.e., of the order of O(L1L2L3) = O(L).

The detailed computational complexities of the proposed RLS-TF algorithm and other benchmark

algorithms (i.e., the conventional RLS and NLMS algorithms) are summarized in Table 2. For a

better visualization, the computational complexities are also illustrated in Figure 1, in terms of the

number of multiplications and additions (per iteration), for different values of L1; the other lengths

are fixed to L2 = 8 and L3 = 4 (similar to the experimental setup from Section 4). As we can notice,

the computational complexity of the conventional RLS algorithm was significantly greater, while

the computational amount of the proposed RLS-TF algorithm was closer to the conventional NLMS

algorithm, especially for higher lengths.

Table 2. Computational complexity of the RLS-TF algorithm, as compared to the conventional RLS and

NLMS algorithms.

Algorithms × + ÷

RLS 2L2 + 2L 2L2 + L + 1 1

RLS-TF 4L + 3
(

L2
1 + L2

2 + L2
3

)
+ 3 (L1 + L2 + L3) +

min(L1, L2, L3)
3L + 2

(
L2

1 + L2
2 + L2

3

)
+ L1 + L2 + L3 +

min(L1, L2, L3)
3

NLMS 2L + 2 2L + 3 1



Algorithms 2020, 13, 135 11 of 18

L
1

10 20 30 40 50 60

M
u
lt
ip

lic
a
ti
o
n
s

102

104

106

(a)

RLS

RLS-TF

NLMS

L
1

10 20 30 40 50 60

A
d
d
it
io

n
s

102

104

106

(b)

RLS

RLS-TF

NLMS

Figure 1. Computational complexity of the proposed RLS-TF algorithm, as compared to the

conventional RLS and NLMS algorithms, as a function of L1; the other dimensions are set to L2 = 8

and L3 = 4: (a) number of multiplications per iteration and (b) number of additions per iteration.

4. Simulation Results

Simulations were performed in the framework of a tensor-based system identification problem,

which resulted following the MISO model defined by (12) and (20) and was similar to the setup used

in [17]. The input signals that form the third-order tensor X (n) are AR(1) processes; they are generated

by filtering white Gaussian noises through a first-order system 1/
(
1 − 0.9z−1

)
. The additive noise

w(n) is white and Gaussian; its variance was set to σ2
w = 0.01.

The third-order system used in the simulations and its components (h1, h2, and h3) are depicted in

Figure 2. First, the component h1 is an impulse response from the G168 Recommendation [26], of length

L1 = 64; it is provided in Figure 2a. Second, in Figure 2b, the component h2 is a random impulse

response (with Gaussian distribution) of length L2 = 8. Third, the coefficients of the last component,

i.e., the impulse response h3, are depicted in Figure 2c; those were evaluated as h3,l3 = 0.5l3−1, l3 =

1, 2, . . . , L3, using the length L3 = 4. Therefore, the global impulse response from Figure 2d resulted as

h = h3 ⊗ h2 ⊗ h1, and its length was L = L1L2L3 = 2048. This global impulse response resembled a

channel with echoes, e.g., like an acoustic echo path [27]. Finally, the third-order (rank-1) tensor H of

dimension L1 × L2 × L3 could be formed according to (13). In order to test the tracking capabilities

of the algorithms, an abrupt change of the system was introduced in the middle of each experiment,

by changing the sign of the coefficients of each impulse response.



Algorithms 2020, 13, 135 12 of 18

Samples

20 40 60

A
m

p
lit

u
d
e

-0.1

0

0.1

0.2

(a)

Samples

2 4 6 8

A
m

p
lit

u
d
e

-2

-1

0

1

(b)

Samples

1 2 3 4

A
m

p
lit

u
d
e

0.2

0.4

0.6

0.8

1
(c)

Samples

200 400 600 800 1000 1200 1400 1600 1800 2000

A
m

p
lit

u
d
e

-0.4

-0.2

0

0.2

0.4
(d)

Figure 2. The components of the third-order system used in simulations: (a) h1 is the first impulse

response (of length L1 = 64) from the G168 Recommendation [26]; (b) h2 is a randomly generated

impulse response (of length L2 = 8), with Gaussian distribution; (c) the impulse response h3 (of length

L3 = 4), with the coefficients computed as h3,l3 = 0.5l3−1, with l3 = 1, 2, . . . , L3; and (d) the global

impulse response (of length L = L1L2L3 = 2048) results based on (17), h = h3 ⊗ h2 ⊗ h1.

As shown in Section 3, the proposed RLS-TF algorithm was designed to estimate the individual

components of the global system. However, we could identify h1, h2, and h3 up to some scaling

factors, as explained using (23). Therefore, to evaluate the identification of these individual impulse

responses, a proper performance measure is the normalized projection misalignment (NPM) [28]:

NPM
[
h1, ĥ1(n)

]
= 1 −


 hT

1 ĥ1(n)

‖h1‖2

∥∥∥ĥ1(n)
∥∥∥

2




2

, (55)

NPM
[
h2, ĥ2(n)

]
= 1 −


 hT

2 ĥ2(n)

‖h2‖2

∥∥∥ĥ2(n)
∥∥∥

2




2

, (56)

NPM
[
h3, ĥ3(n)

]
= 1 −


 hT

3 ĥ3(n)

‖h3‖2

∥∥∥ĥ3(n)
∥∥∥

2




2

, (57)

where ‖·‖2 denotes the Euclidean norm. On the other hand, the global impulse response h results

without any scaling ambiguity. Consequently, we can use a performance measure based on the regular

normalized misalignment (NM):

NM
[
h, ĥ(n)

]
=

∥∥∥h − ĥ(n)
∥∥∥

2

2

‖h‖2
2

, (58)

which is also equivalent to
∥∥∥H− Ĥ(n)

∥∥∥
2

F
/ ‖H‖2

F, where Ĥ(n) = ĥ1(n) ◦ ĥ2(n) ◦ ĥ3(n) and ‖·‖F

denotes the Frobenius norm (the Frobenius norm of a third-order tensor A is defined as ‖A‖F =√
〈A,A〉 =

∥∥∥A[1]

∥∥∥
F
=

∥∥∥A[2]

∥∥∥
F
=

∥∥∥A[3]

∥∥∥
F
).



Algorithms 2020, 13, 135 13 of 18

The simulation results should provide answers to several important questions, as follows. (i) What

is the influence of the forgetting factors on the performance of the proposed RLS-TF algorithm?

(ii) What are the advantages of the RLS-TF algorithm over the previously developed NLMS-TF

counterpart [17]? (iii) What are the advantages of the RLS-TF algorithm over the conventional RLS

benchmark? The following three experiments are designed to address these issues.

In the first experiment, the performance of the proposed RLS-TF algorithm was analysed

with respect to its main parameters, i.e., the forgetting factors λ1, λ2, and λ3. In the case of an

RLS-based algorithm, the value of the forgetting factor is usually related to the filter length, following a

well-known rule of thumb, as shown in Table 1 (see “Initialization”). In our case, the forgetting factors

of the RLS-TF algorithm were set to λ1 = 1 − 1/(KL1), λ2 = 1 − 1/(KL2), and λ3 = 1 − 1/(KL3). As

we can notice, the value of each forgetting factor depended on the length of its related filter (i.e., L1,

L2, or L3), but also on the constant K. This tuning parameter could be used to adjust the values of

the forgetting factors, as indicated in Figures 3 and 4. Clearly, a higher value of K would result in a

higher value of the forgetting factor (i.e., closer to one). We could expect that a higher value of the

forgetting factor would reduce the misalignment, but slowing down the convergence/tracking [29].

On the other hand, reducing the forgetting factor improves the convergence/tracking, but increasing

the misalignment. This behaviour was supported by the results depicted in Figures 3 and 4, in terms of

NPM and NM, respectively. As we can notice, the value K = 20 lead to a good compromise between

the performance criteria, so that it would be used in the following experiments.

Iterations ×104

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
P

M
 (

d
B

)

-40

-20

0
(a)

K = 50

K = 20

K = 5

Iterations ×104

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
P

M
 (

d
B

)

-40

-20

0
(b)

K = 50

K = 20

K = 5

Iterations ×104

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
P

M
 (

d
B

)

-40

-20

0
(c)

K = 50

K = 20

K = 5

Figure 3. Normalized projection misalignment (NPM) evaluated based on (55)–(57), in dB, for the

identification of the individual impulse responses from Figure 2a–c, using the RLS-TF algorithm

with different values of the forgetting factors λi = 1 − 1/(KLi), i = 1, 2, 3 (varying the value of K):

(a) NPM
[
h1, ĥ1(n)

]
, (b) NPM

[
h2, ĥ2(n)

]
, and (c) NPM

[
h3, ĥ3(n)

]
.



Algorithms 2020, 13, 135 14 of 18

Iterations ×104

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
M

 (
d
B

)

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

RLS-TF, K = 50

RLS-TF, K = 20

RLS-TF, K = 5

Figure 4. Normalized misalignment (NM) evaluated based on (58), in dB, for the identification of

the global impulse response h (of length L = 2048) from Figure 2d, using the RLS-TF algorithm with

different values of the forgetting factors λi = 1 − 1/(KLi), i = 1, 2, 3 (varying the value of K).

Next, we compare the performance of the proposed RLS-TF algorithm with its previously

developed counterpart based on the NLMS algorithm, i.e., NLMS-TF [17]. The overall performance of

this algorithm is mainly controlled by its normalized step-sizes, which are positive constants smaller

than one. Using notation similar to that involved in [17], we set equal values for these parameters,

i.e., α1 = α2 = α3 = α. In the case of the NLMS-TF algorithm, the fastest convergence mode was

obtained when α1 + α2 + α3 ≈ 1, so that we could use α = 0.33. Smaller values of the normalized

step-sizes (e.g., α = 0.1) reduced the convergence/tracking, but led to a lower misalignment. As shown

in Figures 5 and 6 (in terms of NPM and NM, respectively), the RLS-TF algorithm clearly outperformed

the NLMS-TF counterpart, achieving a faster convergence rate and tracking, together with low

misalignment.

Finally, in the last experiment, we investigated the comparison between the RLS-TF solution and

the conventional RLS algorithm. As explained in the last part of Section 3 (related to the computational

complexity), the conventional RLS algorithm could also be used for the identification of the global

impulse response of length L, based on the cost function from (36). This algorithm uses a single

forgetting factor, which can also be set as λ = 1 − 1/(KL), where K is the same tuning constant.

The influence of the value of λ on the performance of the algorithm is also related to the well-known

compromise between low misalignment and fast tracking. In the experiment reported in Figure 7,

the conventional RLS algorithm uses two values of the forgetting factor, which were set by varying

the tuning constant to K = 1 and K = 20. As we can notice, even if the largest value of the forgetting

factor (obtained for K = 20) led to a lower misalignment, the tracking capability of the conventional

RLS algorithm was significantly reduced. Clearly, the tracking was improved when using a smaller

forgetting factor (corresponding to K = 1), but the misalignment of the conventional RLS algorithm

was much higher in this case. On the other hand, the RLS-TF algorithm outperformed by far its

conventional counterpart, in terms of both performance criteria. Moreover, the complexity of the

conventional RLS algorithm, i.e., O(L2), was prohibitive for practical implementations, due to the

long length of the global filter (L = 2048). On the other hand, the RLS-TF algorithm worked on the

individual components and combined the solutions of three shorter filters, of lengths L1, L2, and L3

(with L1L2L3 = L); thus, it was much more computationally efficient. As a trivial example related to

the last experiment given in Figure 7, we could mention that the simulation time (using MATLAB) of



Algorithms 2020, 13, 135 15 of 18

the RLS-TF algorithm was less than one minute, while the conventional RLS algorithm took hours to

reach the final result.

Iterations ×104

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
P

M
 (

d
B

)

-40

-20

0
(a) NLMS-TF α = 0.33

NLMS-TF α = 0.1

RLS-TF

Iterations ×104

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
P

M
 (

d
B

)

-40

-20

0
(b) NLMS-TF α = 0.33

NLMS-TF α = 0.1

RLS-TF

Iterations ×104

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
P

M
 (

d
B

)

-40

-20

0
(c) NLMS-TF α = 0.33

NLMS-TF α = 0.1

RLS-TF

Figure 5. Normalized projection misalignment (NPM) evaluated based on (55)–(57), in dB, for the

identification of the individual impulse responses from Figure 2a–c, using the NLMS-TF algorithm [17]

(with different normalized step-sizes α1 = α2 = α3 = α) and the RLS-TF algorithm (with the forgetting

factors λi = 1 − 1/(KLi), i = 1, 2, 3, where K = 20): (a) NPM
[
h1, ĥ1(n)

]
, (b) NPM

[
h2, ĥ2(n)

]
, and (c)

NPM
[
h3, ĥ3(n)

]
.

Iterations ×104

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
M

 (
d
B

)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

NLMS-TF α = 0.33

NLMS-TF α = 0.1

RLS-TF

Figure 6. Normalized misalignment (NM) evaluated based on (58), in dB, for the identification of the

global impulse response h (of length L = 2048) from Figure 2d, using the NLMS-TF algorithm [17]

(with different normalized step-sizes α1 = α2 = α3 = α) and the RLS-TF algorithm (with the forgetting

factors λi = 1 − 1/(KLi), i = 1, 2, 3, where K = 20).



Algorithms 2020, 13, 135 16 of 18

Iterations ×104

0 1 2 3 4 5 6

N
M

 (
d
B

)

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

RLS, K = 1

RLS, K = 20

RLS-TF, K = 20

Figure 7. Normalized misalignment (NM) evaluated based on (58), in dB, for the identification of the

global impulse response h (of length L = 2048) from Figure 2d, using the conventional RLS algorithm

(with different values of the forgetting factor λ = 1 − 1/(KL), varying the value of K) and the RLS-TF

algorithm (with the forgetting factors λi = 1 − 1/(KLi), i = 1, 2, 3, where K = 20).

5. Conclusions and Future Works

In this paper, we explored the identification of trilinear forms using the RLS algorithm.

The approach was developed in the framework of an MISO system identification problem, based on

the decomposition and modelling of third-order tensors. The resulting RLS-TF algorithm was tailored

for the identification of such trilinear forms in a more efficient way as compared to the conventional

RLS algorithm. Moreover, the proposed RLS-TF algorithm outperformed its previously developed

NLMS-TF counterpart in terms of the main performance criteria, providing a faster convergence rate

and tracking, together with low misalignment.

The ideas presented in this paper could be further exploited in an extended framework, aiming

to identify more general forms of global impulse responses, which cannot be decomposed as rank-1

tensors. Several preliminary results can be found in [30–32], but they are applicable only in the

bilinear context (i.e., second-order tensors). The extension to the trilinear case represents a very

challenging problem, since finding (and approximating) the rank of a higher order tensor is a much

more sensitive task. Furthermore, it would be interesting to extend other versions of the NLMS and

RLS algorithms (e.g., based on variable step-sizes [33] and variable forgetting factors [34], respectively)

to the trilinear forms.

Finally, it would be useful to evaluate how the proposed algorithm could benefit (in terms of

implementation) from the current technology of the tensor processing unit (TPU) and the TensorFlow

software [35]. This aspect could bring additional advantages, especially in the framework of specific

applications related to machine learning/vision, neural networks, and artificial intelligence.

Author Contributions: Conceptualization, C.E.-I.; methodology, L.-M.D.; investigation, C.P.; validation,
J.B.; software, A.-A.E.; formal analysis, S.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by UEFISCDI grant number PN-III-P1-1.1-PD-2019-0340.

Conflicts of Interest: The authors declare no conflict of interest.



Algorithms 2020, 13, 135 17 of 18

References

1. Comon, P. Tensors: A brief introduction. IEEE Signal Process. Mag. 2014, 31, 44–53. [CrossRef]

2. Cichocki, A.; Mandic, D.; De Lathauwer, L.; Zhou, G.; Zhao, Q.; Caiafa, C.; Phan, H.A. Tensor decompositions

for signal processing applications: From two-way to multiway component analysis. IEEE Signal Process. Mag.

2015, 32, 145–163. [CrossRef]

3. Vervliet, N.; Debals, O.; Sorber, L.; De Lathauwer, L. Breaking the curse of dimensionality using

decompositions of incomplete tensors: Tensor-based scientific computing in big data analysis. IEEE Signal

Process. Mag. 2014, 31, 71–79. [CrossRef]

4. Boussé, M.; Debals, O.; De Lathauwer, L. A tensor-based method for large-scale blind source separation

using segmentation. IEEE Trans. Signal Process. 2017, 65, 346–358. [CrossRef]

5. Sidiropoulos, N.; De Lathauwer, L.; Fu, X.; Huang, K.; Papalexakis, E.; Faloutsos, C. Tensor decomposition

for signal processing and machine learning. IEEE Trans. Signal Process. 2017, 65, 3551–3582. [CrossRef]

6. da Costa, M.N.; Favier, G.; Romano, J.M.T. Tensor modelling of MIMO communication systems with

performance analysis and Kronecker receivers. Signal Process. 2018, 145, 304–316. [CrossRef]

7. Ribeiro, L.N.; de Almeida, A.L.; Mota, J.C.M. Separable linearly constrained minimum variance beamformers.

Signal Process. 2019, 158, 15–25. [CrossRef]

8. De Lathauwer, L. Signal Processing Based on Multilinear Algebra. Ph.D. Thesis, Katholieke Universiteit

Leuven, Leuven, Belgium, 1997.

9. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]

10. Benesty, J.; Paleologu, C.; Ciochină, S. On the identification of bilinear forms with the Wiener filter. IEEE Signal

Process. Lett. 2017, 24, 653–657. [CrossRef]

11. Paleologu, C.; Benesty, J.; Ciochină, S. Adaptive filtering for the identification of bilinear forms. Digit. Signal

Process. 2018, 75, 153–167. [CrossRef]

12. Elisei-Iliescu, C.; Stanciu, C.; Paleologu,C.; Benesty, J.; Anghel, C.; Ciochină, S. Efficient recursive

least-squares algorithms for the identification of bilinear forms. Digit. Signal Process. 2018, 83, 280–296.

[CrossRef]

13. Dogariu, L.-M.; Ciochină, S.; Paleologu, C.; Benesty, J. A connection between the Kalman filter and an

optimized LMS algorithm for bilinear forms. Algorithms 2018, 11, 211. [CrossRef]

14. Ribeiro, L.N.; de Almeida, A.L.F.; Mota, J.C.M. Identification of separable systems using trilinear filtering.

In Proceedings of the 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP), Cancun, Mexico, 13–16 December 2015; pp. 189–192.

15. Rupp, M.; Schwarz, S. A tensor LMS algorithm. In Proceedings of the 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, Australia, 19–24 April 2015;

pp. 3347–3351.

16. Dogariu, L.-M.; Ciochină, S.; Benesty, J.; Paleologu, C. An iterative Wiener filter for the identification of

trilinear forms. In Proceedings of the 2019 42nd International Conference on Telecommunications and Signal

Processing (TSP), Budapest, Hungary, 1–3 July 2019; pp. 88–93.

17. Dogariu, L.-M.; Ciochină, S.; Benesty, J.; Paleologu, C. System identification based on tensor decompositions:

A trilinear approach. Symmetry 2019, 11, 556. [CrossRef]

18. Haykin, S. Adaptive Filter Theory, 4th ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 2002.

19. Parathai, P.; Tengtrairat, N.; Woo, W.L.; Gao, B. Single-channel signal separation using spectral basis

correlation with sparse nonnegative tensor factorization. Circuits Syst. Signal Process. 2019, 38, 5786–5816.

[CrossRef]

20. Woo, W.L.; Dlay, S.S.; Al-Tmeme, A.; Gao, B. Reverberant signal separation using optimized complex

sparse nonnegative tensor deconvolution on spectral covariance matrix. Digit. Signal Process. 2018, 83, 9–23.

[CrossRef]

21. Gao, B.; Lu, P.; Woo, W.L.; Tian, G.Y.; Zhu, Y.; Johnston, M. Variational Bayes sub-group adaptive sparse

component extraction for diagnostic imaging system. IEEE Trans. Ind. Electron. 2018, 65, 8142–8152.

[CrossRef]

22. Kiers, H.A.L. Towards a standardized notation and terminology in multiway analysis. J. Chemom. 2000, 14,

105–122. [CrossRef]

23. Kroonenberg, P. Applied Multiway Data Analysis; Wiley: Hoboken, NJ, USA, 2008.

http://dx.doi.org/10.1109/MSP.2014.2298533
http://dx.doi.org/10.1109/MSP.2013.2297439
http://dx.doi.org/10.1109/MSP.2014.2329429
http://dx.doi.org/10.1109/TSP.2016.2617858
http://dx.doi.org/10.1109/TSP.2017.2690524
http://dx.doi.org/10.1016/j.sigpro.2017.12.015
http://dx.doi.org/10.1016/j.sigpro.2018.12.010
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1109/LSP.2017.2685461
http://dx.doi.org/10.1016/j.dsp.2018.01.010
http://dx.doi.org/10.1016/j.dsp.2018.09.005
http://dx.doi.org/10.3390/a11120211
http://dx.doi.org/10.3390/sym11040556
http://dx.doi.org/10.1007/s00034-019-01156-4
http://dx.doi.org/10.1016/j.dsp.2018.07.018
http://dx.doi.org/10.1109/TIE.2018.2801809
http://dx.doi.org/10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I


Algorithms 2020, 13, 135 18 of 18

24. Van Loan, C.F. The ubiquitous Kronecker product. J. Comput. Appl. Math. 2000, 123, 85–100. [CrossRef]

25. Bertsekas, D.P. Nonlinear Programming, 2nd ed.; Athena Scientific: Belmont, MA, USA, 1999.

26. Digital Network Echo Cancellers; ITU-T Recommendations G.168; ITU: Geneva, Switzerland, 2002.

27. Gay, S.L.; Benesty, J. (Eds.) Acoustic Signal Processing for Telecommunication; Kluwer Academic Publisher:

Boston, MA, USA, 2000.

28. Morgan, D.R.; Benesty, J.; Sondhi, M.M. On the evaluation of estimated impulse responses. IEEE Signal

Process. Lett. 1998, 5, 174–176. [CrossRef]

29. Ciochină, S.; Paleologu, C.; Benesty, J.; Enescu, A. A. On the influence of the forgetting factor of the RLS

adaptive filter in system identification. In Proceedings of the 2009 International Symposium on Signals,

Circuits and Systems, Iasi, Romania, 9–10 July 2009; pp. 205–208.

30. Paleologu, C.; Benesty, J.; Ciochină, S. Linear system identification based on a Kronecker product

decomposition. IEEE/ACM Trans. Audio Speech Lang. Process. 2018, 26, 1793–1808. [CrossRef]

31. Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Ciochină, S. A recursive least-squares algorithm based

on the nearest Kronecker product decomposition. In Proceedings of the ICASSP 2019—2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May

2019; pp. 4843–4847.

32. Elisei-Iliescu, C.; Paleologu, C.; Benesty, J.; Stanciu, C.; Anghel, C.; Ciochină, S. Recursive least-squares

algorithms for the identification of low-rank systems. IEEE/ACM Trans. Audio Speech Lang. Process. 2019, 27,

903–918. [CrossRef]

33. Benesty, J.; Rey, H.; Rey Vega, L.; Tressens, S. A non-parametric VSS NLMS algorithm. IEEE Signal Process. Lett.

2006, 13, 581–584. [CrossRef]

34. Paleologu, C.; Benesty, J.; Ciochină, S. A robust variable forgetting factor recursive least-squares algorithm

for system identification. IEEE Signal Process. Lett. 2008, 15, 597–600. [CrossRef]

35. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.;

Borchers, A.; et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the

44th Annual International Symposium on Computer Architecture, Toronto, ON, Canada, 24–28 June 2017;

pp. 1–12.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0377-0427(00)00393-9
http://dx.doi.org/10.1109/97.700920
http://dx.doi.org/10.1109/TASLP.2018.2842146
http://dx.doi.org/10.1109/TASLP.2019.2903276
http://dx.doi.org/10.1109/LSP.2006.876323
http://dx.doi.org/10.1109/LSP.2008.2001559
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Third-Order Tensors
	RLS Algorithm for Trilinear Forms
	Simulation Results
	Conclusions and Future Works
	References

