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Functionals of Poisson processes arise in many statistical problems. They appear in problems involving

heavy-tailed distributions in the study of limiting processes, while in Bayesian nonparametric statistics

they are used as constructive representations for nonparametric priors. We describe a simple recursive

method that is useful for characterizing Poisson process functionals that requires only the use of

conditional probability. Applications of this technique to convex hulls, extremes, stable measures,

infinitely divisible random variables and Bayesian nonparametric priors are discussed.
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1. Introduction

Let fˆkg be arrival times of a Poisson process with Lebesgue mean measure, independent of

fZ kg, which are independent and identically distributed (i.i.d.) random elements on some

arbitrary measurable space (X , B). Thus ˆk ¼ E1 þ . . . þ Ek , where fEkg are i.i.d. standard

Exp(1) random variables independent of fZ kg. Functionals of the Poisson process

—(�) ¼
X1
k¼1

�( Z k ,ˆk )(�), (1)

where �x is a discrete measure concentrated at x, appear frequently in the Bayesian

nonparametric literature. For example, they are used to represent the Dirichlet process

(Ferguson 1973; 1974) and the gamma process (Ferguson and Klass 1972; Kingman 1975) in

a constructive form as an infinite sum representation. See Lo (1982) and Lo and Weng (1989)

for applications of the gamma process in Bayesian nonparametric statistics, and Ferguson et

al. (1992), Escobar and West (1998) and MacEachern (1998) for applications of the Dirichlet

process. Applications of constructive sum representations for the Dirichlet process can be

found in Ishwaran and James (2001).

Functionals of —, and closely related expressions, also appear routinely in problems
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involving heavy-tailed distributions. Suppose X , X 1, X2, . . . are i.i.d. random variables such

that

PfjX j . xg ¼ x�ÆL(x), (2)

for some slowly varying function L at 1 with Æ . 0, and

PfX . xg
PfjX j . xg ! p 2 [0, 1], as x!1: (3)

Let ‘)’ denote weak convergence with respect to some appropriate topology. Under

assumptions (2) and (3), there exists a sequence of non-negative constants an !1 such thatXn

k¼1

�(k=n,a�1
n X k )(�))

X1
k¼1

�
( Z k ,� kˆ

�1=Æ
k

)
(�), (4)

where f�kg are i.i.d. binary variables such that Pf�k ¼ 1g ¼ p ¼ 1� Pf�k ¼ �1g, Z k are

i.i.d. Uniform[0, 1] random variables and fˆk , �k , Z kg are mutually independent. See, for

example, Davis and Resnick (1985a; 1985b) or Resnick (1986).

The limiting process in (4) is closely related to —. It is a Poisson point process with

mean measure dt 3 d
Æ, where dt is Lebesgue measure on [0, 1] and 
Æ is the Lévy

measure defined by


Æ(dx) ¼ Æ( px�Æ�1 If0 , x ,1gþ (1� p)jxj�Æ�1 If�1 , x , 0g) dx: (5)

This point process limit and its functionals often appear in the heavy-tail literature. For

example, LePage et al. (1981) study this process in developing representations of stable

random variables and stable processes. Davis and Resnick (1985a; 1985b), Resnick (1987,

Chapter 4) and Mikosch et al. (1995) study (4) and its functionals in time series models with

infinite-variance innovations, while de Haan (1984) used it for the representation of max-

stable processes. The expected number of level crossings for a stationary, harmonizable,

symmetric stable processes is described by Adler et al. (1993) as a functional of this point

process. This limit process is also used by Rachev and Samorodnitsky (1993) in finance for

option pricing formulae. A bootstrap application involving this process can be found in

Knight (1989) and Zarepour (1999).

In this paper we introduce a new recursive method based on a simple conditioning

technique that can be used for studying functionals of Poisson processes (see Embrechts

et al. 1998 for other recursive methods). We use this approach to obtain characteristic

functions and the distributions for some relatively complicated functionals. Despite the fact

that this technique is not applicable in general, we find it a handy and useful method in

many cases. Moreover, our approach is simple to use, requiring only knowledge of

conditional probability.

We apply our recursion method to a variety of problems to illustrate its utility. In Section

2 we show how it can be used to establish the Ferguson and Klass (1972) almost sure sum

representation for infinitely divisible random variables. We also give an elementary proof for

the well-known stable law series representation on separable Hilbert spaces (LePage

et al. 1981). Sections 3 and 4 look at the gamma process and the Dirichlet process, two

widely used priors in Bayesian nonparametric statistics. There we apply our method to
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verify two well-known sum representations for these processes. Section 5 uses our recursion

technique to find the distribution of the area of convex hulls from bivariate samples with

coordinatewise regularly varying tails. We also look at the distribution for the maxima from

bivariate heavy-tailed distributions.

2. Infinitely divisible random variables and stable laws

For our first illustration, we give an elementary proof of the Ferguson and Klass (1972) sum

representation for infinitely divisible random variables. Specifically, we are interested in

infinitely divisible non-Gaussian random variables with positive support whose characteristic

functions can be expressed as

�(Ł) ¼ exp �
ð1

0

(exp(iŁu)� 1) dN (u)

� �
, �1 , Ł ,1, (6)

where N (the Lévy measure) is a Borel measure defined on (0, 1) by N (x) ¼
Ð1

x
dN (u) andð1

E
N�1(u) du ,1, for each E . 0, (7)

in which N�1(u) ¼ supfx : N (x) < ug. We further require that N is continuous. Thus, N is

positive, continuous and non-increasing.

As shown in Ferguson and Klass (1972), an infinitely divisible random variable J with

characteristic function (6) has an almost sure representation in terms of a homogeneous

Poisson process:

Theorem 1. Suppose that J has a characteristic function (6) with Lévy measure N as

described above. Then J has the almost sure representation J ¼
P1

k¼1 N�1(ˆk).

The proof of the theorem is given in detail below, but it is worthwhile to give an

informal description here as the same recursion method will be used repeatedly throughout

the paper. A pattern that will emerge is that our technique generally involves conditioning

on the value of 1̂ in some kind of inifinte-term expression. Doing so allows us to work

with a resulting recursive distributional equation, which we then set about solving by using

the fact that 1̂ has a standard Exp(1) distribution.

For example, to prove Theorem 1, we condition on the value of 1̂ in the infinite sum

J (t) ¼
X1
k¼1

N�1(ˆk þ t), t > 0,

and from this work out its characteristic function. Here, conditioning on the value 1̂ ¼ y

gives us the recursive distributional equation

(J (t)j 1̂ ¼ y)¼D N�1(yþ t)þ J (t þ y):
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Using this to solve for the characteristic function of J (t) and then setting t ¼ 0 will show that

J ¼ J (0) has characteristic function (6), thus establishing the result.

Proof. First notice that the sequence J (t) converges almost surely due to the integrability

condition (7) and from the fact that N is decreasing. Thus, J (t) is well defined. Conditioning

on 1̂, it follows from out discussion above that the characteristic function of J (t) equals

�(Ł, t) ¼ E(exp(iŁJ (t))) ¼
ð1

0

exp(�y) exp(iŁN�1(yþ t))�(Ł, t þ y) dy:

Use the change of variables u ¼ yþ t and then multiply both sides by exp(�t). Dif-

ferentiating both sides with respect to t, we obtain

exp(�t)
@�(Ł, t)

@ t
� �(Ł, t)

� �
¼ �exp(�t þ iŁN�1(t))�(Ł, t),

which, rearranged, gives

@�(Ł, t)

@ t
¼ (1� exp(iŁN�1(t)))�(Ł, t):

The unique solution to this differential equation is

�(Ł, t) ¼ exp �
ðN�1( t)

0

(exp(iŁu)� 1) dN (u)

( )
:

Setting t ¼ 0 and using N (1) ¼ 0 gives (6). h

Another interesting application of our recursion method is a simple proof for establishing

the series representation for a stable law on a Hilbert space (see LePage et al. 1981). Here

we give a proof using a characteristic function argument. Let X , X1, X 2, . . . be a sequence

of i.i.d. random elements with a regularly varying tail defined on a separable Hilbert space

X . That is, assume there exists a sequence of positive constants an !1 such that

nP a�1
n kXk . x,

X

kXk 2 �
� �

!v x�ÆQ(�), Æ . 0, (8)

where Q is a probability measure on S ¼ fx 2 X : kxk ¼ 1g and ‘!v ’ denotes vague

convergence. The assumption of a regularly varying tail implies that G(x) ¼ PfkXk . xg
must equal x�ÆL(x) for some slowly varying function L at 1. Moreover, Zarepour (1999)

shows that if 0 , Æ , 1, or 0 , Æ , 2 and Q is a symmetric probability measure (i.e.

Q(B) ¼ Q(�B) for each Borel set B), thenXn

k¼1

�a�1
n

X k(�)¼D
Xn

k¼1

�a�1
n G�1(ˆ k=ˆ nþ1)S k

(�))
a:s:X1

k¼1

�
S kˆ

�1=Æ
k

(�), (9)

where fSkg are i.i.d. random elements with distribution Q. Here we will show that the

functional
P1

k¼1Skˆ
�1=Æ
k of the above limiting Poisson process has a stable law for the case

when 0 , Æ , 2 and ˆ� is symmetric. Our method of proof will be quite similar to the

298 D. Banjevic, H. Ishwaran and M. Zarepour



recursion method used in proving Theorem 1. Our proof will show that the above functional

has the same characteristic function as that derived in Kuelbs (1973).

For t > 0 define

X (t) ¼
X1
k¼1

Sk(ˆk þ t)�1=Æ, 0 , Æ , 2,

and let �(A, t) ¼ PX (t) 2 Ag for each Borel set A. By conditioning on 1̂ and S1, deduce

that

�(A, t) ¼
ð
S

ð1
0

PfX (t þ u) 2 A� s(t þ u)�1=Æg exp(�u) du dQ(s)

¼
ð
S

ð1
0

�(A� s(t þ u)�1=Æ, t þ u) exp(�u) du dQ(s):

Let Ł 2 X . The characteristic function for X (t) is

�(Ł, t) ¼
ð
X

exp(ihŁ, xi)�(dx, t)

¼
ð
S

ð1
0

ð
X

exp(ihŁ, xi) �(dx� s(t þ u)�1=Æ, t þ u) exp(�u) du dQ(s)

¼
ð
S

ð1
0

�(Ł, t þ u) exp(ihŁ, s(t þ u)�1=Æi) exp(�u) du dQ(s)

¼
ð
S

ð1
t

�(Ł, w) exp(ihŁ, sw�1=Æi) exp(�(w� t)) dw dQ(s):

The assumption of symmetry for Q implies that

exp(�t)�(Ł, t) ¼
ð
S

ð1
t

�(Ł, w) coshŁ, sw�1=Æi exp(�w) dw dQ(s):

Taking the derivative with respect to t and solving this differential equation, we have

�(Ł, t) ¼ exp �
ð1

t

ð
S

(1� coshŁ, sw�1=Æi) dQ(s) dw

� �
:

For t ¼ 0, we obtain the characteristic function

�(Ł, 0) ¼ exp �C

ð
S
jhŁ, sijÆdQ(s)

� �
,

where (see, for example, Samorodonitsky and Taqqu 1994, Section 2.3)

C ¼
cos(�Æ=2)ˆ(1� Æ) if 0 , Æ , 1

�(2� Æ)=(2Æ) if Æ ¼ 1

cos(�Æ=2)ˆ(3� Æ)=(Æ2 � Æ) if 1 < Æ , 2,

8><
>:
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and ˆ(�) denotes the gamma function. This is the desired characteristic function, similar to

the result in Kuelbs (1973).

3. Sum-representations for the gamma process

Ferguson and Klass (1972) provided a sum representation for the gamma process based on

the Lévy measure of a Gamma(Æ) random variable (i.e. a random variable with a gamma

distribution having a shape parameter Æ and scale parameter 1). The Lévy measure of such a

variable is the Borel measurable function N defined by

N (x) ¼ Æ

ð1
x

exp(�u)u�1du, for x . 0: (10)

(Notice that N satisfies the conditions of Theorem 1.) Call G� a gamma process over a

measurable space (X , B) with shape � (a finite measure) if (i) G�(A) is a Gamma(�(A))

random variable for each measurable set A, and (ii) for each measurable partition A1, . . . , Ad

of X , G�(Ak) are independent Gamma( �(Ak)) random variables for k ¼ 1, . . . , d. It is well

known that the gamma process can be defined over arbitrary measurable spaces (see Kingman

1975).

Ferguson and Klass (1972) showed that the gamma process can also be defined con-

structively. Although they only specifically considered the unit interval X ¼ [0, 1], their

representation holds for arbitrary measurable spaces. For the Lévy measure (10) with

Æ ¼ �(X ), they showed

G�(�) ¼
X1
k¼1

N�1(ˆk)�Z k
(�), (11)

where fZ kg are i.i.d. H(�) ¼ �(�)=�(X ) over (X , B) independent of fˆkg. Thus G� can be

written as a functional of a Poisson process — of the form (1).

A difficulty in working with the Ferguson and Klass representation (11) is that no closed-

form solution exists for the inverse of (10). Bondesson (1982) developed another Poisson

process construction which avoided the need to work with Lévy measures. There it was

shown that

G�(�) ¼
X1
k¼1

exp �ˆk

Æ

� �
Vk�Z k

(�), (12)

where fVkg is a sequence of i.i.d. standard Exp(1) random variables and fZ kg are i.i.d. H . It

is assumed that fˆk , Vk , Z kg are mutually independent.

Here we will give a simple proof of the Bondesson construction using our recursive

conditioning technique (the same method can be used to prove (11)). Let

X (t, �) ¼
X1
k¼1

exp �ˆk þ t

Æ

� �
Vk� Z k

(�), t > 0:

To establish (12) we need to show that for an arbitrary partition A1, . . . , Ad , X (0, Ak) are
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independent Gamma(�(Ak)) random variables for k ¼ 1, . . . , d. However, as X (t, �) is a pure

jump process, independence follows automatically (Breiman 1992, Section 14.7), and thus it

suffices to show that X (0, A) is a Gamma( �(A)) random variable for each set A. We show

this by evaluating the moment generating function for X (t, A).

By conditioning on 1̂, notice that

(X (t, A)j 1̂ ¼ u)¼D exp � uþ t

Æ

� �
V1 IfZ1 2 Ag þ X (t þ u, A),

where on the right-hand side X (t þ u, A) is independent of V1 and Z1. From this it follows

that the moment generating function M(Ł, t, A) ¼ E(exp(ŁX (t, A))) equals

H(A)

ð1
0

ð1
0

exp(�u� v) exp Łv exp � uþ t

Æ

� �� �
M(Ł, t þ u, A) du dv

þ H(Ac)

ð1
0

exp(�u)M(Ł, t þ u, A) du,

where Ł , 1 is selected to ensure all integrals are finite. Now use the change of variable

uþ t ¼ w to write

exp(�t)M(Ł, t, A) ¼ H(A)

ð1
t

ð1
0

exp(�w� v) exp Łv exp � w

Æ

� �� �
M(Ł, w, A) dv dw

þ H(Ac)

ð1
t

exp(�w)M(Ł, w, A) dw

¼ H(A)

ð1
t

exp(�w) 1� Ł exp � w

Æ

� �� ��1

M(Ł, w, A) dw

þ H(Ac)

ð1
t

exp(�w)M(Ł, w, A) dw:

Differentiate both sides with respect to t to obtain

@M(Ł, t, A)

@ t
¼ M(Ł, t, A) H(A) 1� 1� Ł exp � t

Æ

� �� ��1
 !" #

:

Therefore,

M(Ł, t, A) ¼ exp ŁH(A)

ð1
t

exp(�u=Æ)

1� Ł exp(�u=Æ)
du

� �
:

Setting t ¼ 0, we see that the moment generating function for X (0, A) equals

M(Ł, 0, A) ¼ exp ŁH(A)

ð1
0

exp(�u=Æ)

1� Ł exp(�u=Æ)
du

� �
¼ (1� Ł)��(A),

and the result follows from this.
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4. Poisson process representations for the Dirichlet process

Call P� a Dirichlet process (Ferguson, 1973; 1974) with parameter � ¼ ÆH (a finite non-null

measure), written P� # DP(ÆH), if, for each measurable partition A1, . . . , Adþ1,

(P�(A1), . . . , P�(Ad)) # Dir( �(A1), . . . , �(Adþ1)),

where Æ . 0 and H is a probability measure over an arbitary measurable space (X , B).

Although primarily introduced as a stochastic process by Ferguson, the Dirichlet process can

also be written as a sum construction expressible as a functional of a Poisson process. For

example, as one can also define P� in terms of a gamma process as P�(�) ¼ G�(�)=G�(X ), it

follows that P� can be defined in terms of the Ferguson and Klass representation (11) for the

gamma process discussed earlier. Indeed, Ferguson (1973) showed that

P�(�) ¼
X1
l¼1

N�1(ˆk)P1
l¼1 N�1(ˆl)

� Z k
(�),

where N is the Lévy measure (10) for a Gamma(Æ) random variable and fZ kg are i.i.d. H (it

is interesting to note that Ferguson established the above construction for a Dirichlet process

over arbitrary measurable spaces by working only with a gamma process over the unit

interval X ¼ [0, 1]). Yet another Poisson process functional representation of the Dirichlet

process includes the stick-breaking construction of Sethuraman (1994); see also McCloskey

(1965), Patil and Taillie (1977), Sethuraman and Tiwari (1982), Hoppe (1987), Donnelly and

Joyce (1989), Perman et al. (1992) and Pitman (1996) who discuss this stick-breaking

construction. Ishwaran and Zarepour (2002) give a general discussion of sum representations

for the Dirichlet process. See also Freedman (1963) and Fabius (1964) for earlier discussions

of the Dirichlet process in the context of tail-free measures.

In the rest of this section we will focus on the Sethuraman (1994) stick-breaking

construction. Sethuraman (1994) showed that the Dirichlet process P� # DP(ÆH) could be

written as

P�(�) ¼ V1�Z1
(�)þ

X1
k¼2

((1� V1)(1� V2) . . . (1� Vk�1)Vk)�Z k
(�), (13)

where fVkg are i.i.d. Beta(1, Æ) random variables, independent of fZ kg, which are i.i.d. H .

Notice that (13) has the equivalent representation

P�(�) ¼
X1
k¼1

exp �ˆk�1

Æ

� �
� exp �ˆk

Æ

� �� �
�Z k

(�), 0̂ ¼ 0, (14)

which is a functional of a Poisson process of the form (1). The equivalence in distribution

between (13) and (14) follows since
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exp �ˆk�1

Æ

� �
� exp �ˆk

Æ

� �

¼ exp � E1

Æ

� �
exp � E2

Æ

� �
� � � exp � Ek�1

Æ

� �
1� exp � Ek

Æ

� �� �

¼D (1� V1)(1� V2) � � � (1� Vk�1)Vk ,

as exp(�E1=Æ)¼D Beta(Æ, 1)¼D 1� Beta(1, Æ), where fEkg are i.i.d. Exp(1) random variables.

Lemma 1. For each non-negative integer r > 0 and each ª . 0,

Xr

j¼0

ª( j)

j!
¼ ª(rþ1)

ªr!
,

where ª(0) ¼ 1 and ª( j) ¼ ª(ªþ 1) � � � (ªþ j� 1) for j > 1.

A simple application of this lemma, in combination with our conditioning argument, will

show that (14) is the DP(ÆH) process.

Theorem 2. For each measurable partition A1, . . . , Adþ1,

X ¼ (X 1, . . . , X d) ¼ (P�(A1), . . . , P�(Ad)) # Dir(ÆÆ1, . . . , ÆÆdþ1),

where Æ j ¼ PfZ1 2 A jg for j ¼ 1, . . . , d þ 1. (Notice that
Pdþ1

j¼1Æ j ¼ 1.)

Proof. The theorem is proved if we can show that M(r1, . . . , rd) ¼ E(X r1

1 � � � X
rd

d ), the joint

moments for X, agree with the joint moments for a Dir(ÆÆ1, . . . , ÆÆdþ1) distribution (see Lo

1991, Lemma 1). First observe that P�(�) can be written recursively as

P�(�)¼D 1� exp � 1̂

Æ

� �� �
� Z1

(�)þ exp � 1̂

Æ

� �
P�(�),

where, on the right-hand side, P� is independent of 1̂ and Z1.

Let � ¼ (� Z1
(A1), . . . , �Z1

(Ad)). Let edþ1 ¼ (0, . . . , 0) and, for j ¼ 1, . . . , d, write e j for

the d-dimensional vector with jth coordinate one and zero elsewhere. Conditioning on �, it

follows that

(Xj� ¼ e j)¼D 1� exp � 1̂

Æ

� �� �
e j þ exp � 1̂

Æ

� �
X, for j ¼ 1, . . . , d þ 1,

where, on the right-hand side, X is independent of 1̂. Therefore, by conditioning on �, and

using the independence between X and 1̂, write M(r1, . . . , rd) as
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Xdþ1

j¼1

Æ jE(X r1

1 � � � X
rd

d j� ¼ e j)

¼
Xd

j¼1

Æ jE 1� exp � 1̂

Æ

� �� �
þ exp � 1̂

Æ

� �
X j

� �r j

exp � (r � r j) 1̂

Æ

� �
X r1

1 � � � X
rd

d

X
r j

j

" #

þ Ædþ1 M(r1, . . . , rd)E exp � r 1̂

Æ

� �� �
,

where r ¼ r1 þ . . . þ rd .

Expand the binomial term. Then simplify the last term on the right-hand side, combining

its value with the left-hand side. Remembering that X and 1̂ are independent, deduce that

M(r1, . . . , rd) 1� Ædþ1

Æ

Æþ r

� �
¼
Xd

j¼1

Æ j

Xr j

i¼0

M(r1, . . . , r j�1, i, r jþ1, . . . , rd)Ui, j, (15)

where

Ui, j ¼
r j

i

� �
E[V

r j�i

1 (1� V1)r�r jþi] ¼ Æ(r�r jþi)Ær j!

Æ(r) (Æþ r)i!
:

Because M(0, . . . , 0) ¼ 1, there must be a unique solution to (15). In fact, this is

M(r1, . . . , r j�1, i, r jþ1, . . . , rd)

¼ (ÆÆ1)(r1) � � � (ÆÆ j�1)(r j�1)(ÆÆ j)
(i)(ÆÆ jþ1)(r jþ1) � � � (ÆÆd)(rd )

Æ(r�r jþi)
,

which is the (r1, . . . , r j�1, i, r jþ1, . . . , rd)th joint moment for a Dir(ÆÆ1, . . . , ÆÆdþ1)

distribution. To check that this is the correct solution, plug this value into the right-hand side

of (15), and use Lemma 1 to obtain

Xd

j¼1

Æ j

(ÆÆ1)(r1) � � � (ÆÆd)(rd )Ær j!

(ÆÆ j)
(r j)Æ(r)(Æþ r)

Xr j

i¼0

(ÆÆ j)
(i)

i!
¼ M(r1, . . . , rd)

Æþ r

Xd

j¼1

(ÆÆ j þ r j),

which can be seen to be equal to the left-hand side of (15). h

5. Joint distribution for sums and maxima

Let fX kg be an i.i.d. sequence of random variables such that there exist constants an . 0 and

bn such that a�1
n

Pn
k¼1 X k � bn has a non-degenerate limiting distribution. Also assume there

exist constants cn . 0 and d n such that c�1
n

Wn
k¼1 X k � d n has a non-degenerate limiting

distribution. Chow and Teugels (1979) show that these two limits are dependent if and only if

the sum is in the domain of attraction of a stable law and the maximum is in the domain of

attraction of a Fréchet distribution. Distributional results for the joint distribution of the sum
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and maximum in the dependent case are generally hard to come by. Here we focus on this

case using our recursive technique to study functionals from the resulting joint distribution.

Suppose, then, that the fX kg satisfy conditions (2) and (3) for 0 , Æ , 1, or that they

satisfy these conditions with 0 , Æ , 2 and p ¼ 1
2
. Then there exists a positive sequence

an !1 and �k as before such that

a�1
n

Xn

k¼1

X k , a�1
n

_n
k¼1

X k

 !
)

X1
k¼1

�kˆ
�1=Æ
k ,

_1
k¼1

�kˆ
�1=Æ
k

 !
:

We will consider functions of the right-hand side, which are functionals of a Poisson process

of the form (4). In fact, we will study a more general problem by considering functions of the

bivariate vector

(X (t), Y (t)) ¼
X1
k¼1

U k

(ˆk þ t)1=Æ
,
_1
k¼1

Vk

(ˆk þ t)1=Æ

 !
, t > 0,

where f(Uk , Vk)g are i.i.d. and are assumed to be independent of fˆkg. Write F(�) and G(�)
for the distribution of U1 and V1 respectively, and let G(�jU1 ¼ u) denote the conditional

distribution of V1 given U1 (we allow U1 to be conditionally dependent on V1). In what

follows we shall assume that the series X (t) is convergent (conditions ensuring convergence

will be developed shortly).

As our first step, we obtain a representation for

�(Ł, y, t) ¼ E[exp(iŁX (t))IfY (t) < yg], �1 , Ł, y ,1,

which can help in characterizing certain Poisson process functionals. For example, later in

Section 5.2 these calculations will help in finding the limiting distribution of the area of a

convex hull from a bivariate sample with coordinatewise regularly varying tails. We will also

be able to work out the distribution for the bivariate maximum from a heavy-tailed dis-

tribution (Section 5.1).

By conditioning on 1̂ and (U1, V1), we obtain

�(Ł, y, t) ¼
ð1

0

ð1
�1

ð y(zþ t)1=Æ

�1
expf�zþ iŁu(zþ t)�1=Æg�(Ł, y, t þ z) dG(vju) dF(u) dz

¼
ð1

0

ð1
�1

expf�zþ iŁu(zþ t)�1=Æg�(Ł, y, zþ t) G(y(zþ t)1=Æju) dF(u) dz:

Use the change of variable s ¼ zþ t to obtain

�(Ł, y, t) ¼
ð1

t

ð1
�1

exp(�sþ t) exp(iŁus�1=Æ)�(Ł, y, s)G(ys1=Æju) dF(u) ds:

Thus,

@�(Ł, y, t)

@ t
¼ �(Ł, y, t) 1�

ð1
�1

exp(iŁut�1=Æ) G(yt1=Æju) dF(u)

� �
:

The solution to this differential equation is
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�(Ł, y, t) ¼ exp �
ð1

t

1�
ð1
�1

exp(iŁuz�1=Æ) G(yz1=Æju) dF(u)

� �
dz

� �
:

Thus, by taking Ł ¼ 0, we have

P
_1
k¼1

Vk

(ˆk þ t)1=Æ
< y

( )
¼ exp �

ð1
t

[1� G(yz1=Æ)] dz

� �
: (16)

In particular, if Vk ¼ �k ,

P
_1
k¼1

�k

(ˆk þ t)1=Æ
< y

( )
¼ expf� py�Æ þ ptgIfy 2 (0, t�1=Æ)g þ Ify 2 [t�1=Æ, 1)g: (17)

Also, letting y!1,

E[exp(iŁX (0))] ¼ exp �
ð1

0

[1� E(exp(iŁU1z�1=Æ))] dz

� �
:

Now we see that X (t) converges if and only if the integral in the exponent of the above

expression is finite. This holds, for example, if fUkg are symmetric or 0 , Æ , 1.

5.1. Applications to bivariate maxima

Expression (16) above can be used to derive the limiting distribution for the coordinatewise

maximum of a bivariate sample from a heavy-tailed distribution. Suppose X, X1, X2, . . . are

i.i.d. random vectors on R2 with a regularly varying tail. That is, suppose there exist positive

constants an !1 so that (8) holds (with respect to Euclidean norm). Equivalently,Xn

k¼1

�a�1
n X

k
(�))

X1
k¼1

�J
k
(�),

where the right-hand side is a Poisson point process similar to the limit given in (9). In

particular, Jk ¼ ˆ�1=Æ
k (cos¨k , sin¨k), where f¨kg is an i.i.d. sequence taking values in

[0, 2�].

The limiting bivariate maximum is the functional

_1
k¼1

cos¨k

ˆ1=Æ
k

,
_1
k¼1

sin¨k

ˆ1=Æ
k

 !

of the above Poisson process. Without loss of generality, we can assume Æ ¼ 1. To find its

distribution, let x . 0, y . 0 and consider

Vk ¼
cos¨k

x

_ sin¨k

y
, k ¼ 1, 2, . . . :

Let

306 D. Banjevic, H. Ishwaran and M. Zarepour



K(x, y) ¼ P
_1
k¼1

cos¨k

ˆk

< x,
_1
k¼1

sin¨k

ˆk

< y

( )
¼ P

_1
k¼1

Vk

ˆk

< 1

( )
:

Therefore by (16),

K(x, y) ¼ exp �
ð1

0

(1� G(u)) du

� �
,

where G is the distribution function for fVkg. For example, if f¨kg are uniformly distributed

on [0, 2�] (the bivariate Cauchy case) we obtainð1
0

(1� G(u)) du ¼ 1

2�

ð1
0

ð2�

0

I
cos Ł

x

_ sin Ł

y
> u

( )
dŁ du

¼ 1

2�

ð2�

0

cos Ł

x

_ sin Ł

y

 !
dŁ:

Simple calculations now show that

K(x, y) ¼ exp � 1

2�
(x�1 þ y�1 þ (x2 þ y2)�1=2)

� �
:

5.2. Applications to bivariate convex hulls

The convex hull of observations in Rd , the smallest closed convex set containing the ob-

servations, is an alternative statistic to extremes in multivariate observations. If d ¼ 1 the

convex hull of the random sample X 1, . . . , X n is the closed random interval [
Vn

k¼1 X k ,Wn
k¼1 X k].

Write Conv for the convex hull. By using a continuity argument, Davis et al. (1987)

show that if Xk are random elements in R2 with a regularly varying tail, then

Convfa�1
n X1, . . . , a�1

n Xng ) ConvfJ1, J2, . . .g,
where convergence is with respect to the Hausdorff topology (see Matheron 1975), and fJkg
are points of a Poisson point process with mean measure 
. The asymptotic behaviour of

functions such as Area (the area of a convex hull), Peri (the perimeter of a convex hull) and

Vert (the number of vertices of a convex hull) were also studied thoroughly in Davis et al.

(1987). They showed that (for d ¼ 2)

Area(Convfa�1
n X1, . . . , a�1

n Xng)) Area(ConvfJ1, J2, . . .g):
Analogous convergence results were shown to hold for Peri, as well as for Vert.

In general, the limiting distribution of functionals such as the area and perimeter of a

convex hull can be expressed in terms of fJkg, but their distributions remain intractable.

Moreover, direct simulations from such distributions are not feasible in general. Zarepour

(1999) suggests a bootstrap technique for evaluating distributions. There, under a specific

Recursive method for functionals of Poisson processes 307



resampling plan, it is shown that the bootstrap can be used to consistently estimate dis-

tributions for functionals such as Area and Peri.

However, under specific choices for the mean measure 
, explicit representations for

distributions of functionals are possible using our recursion method. We will consider the

case d ¼ 2. Assume that f(X k , Yk)g is an i.i.d. sequence of random vectors on R2 such that

there exist non-negative sequences of constants an !1 and bn !1 such that

nPf(a�1
n X k , b�1

n Yk) 2 (dx, dy)g!v 
Æ(dx)�0(dy)þ �0(dx)
�(dy), (18)

where 
Æ and 
� are Lévy measures of the form (5). For example, such a limit holds if fX kg
and fYkg are independent with each sequence satisfying conditions (2) and (3) for exponents

Æ and � respectively (note that the ps need not be the same). However, in general, condition

(18) only requires independence in the limit.

Under (18), we have

Xn

k¼1

�(a�1
n X

k
,b�1

n Y
k
)(�))

X1
k¼1

�
(J

(1)

k
,0)

(�)þ
X1
k¼1

�
(0,J

(2)

k
)
(�),

where
P1

k¼1�(J
(1)

k
,0)

(�) and
P1

k¼1�(0,J
(2)

k
)
(�) are independent Poisson point processes with mean

measures 
Æ and 
�, respectively. Thus, if 0 , p , 1,

Convf(a�1
n X 1, b�1

n Y1), . . . , (a�1
n X n, b�1

n Yn)g

) Conv
_1
k¼1

J
(1)
k , 0

 !
,

1̂

k¼1

J
(1)
k , 0

 !
, 0,

_1
k¼1

J
(2)
k

 !
, 0,

1̂

k¼1

J
(2)
k

 !( )

and

Vertf(a�1
n X 1, b�1

n Y1), . . . , (a�1
n X n, b�1

n Yn)g)
p

4:

Moreover,

Area(Convf(a�1
n X1, b�1

n Y1), . . . , (a�1
n X n, b�1

n Yn)g)) R1(X )R1(Y )

2
,

where R1(X ) ¼
W1

k¼1 J
(1)
k �

V1
k¼1 J

(1)
k and R1(Y ) ¼

W1
k¼1 J

(2)
k �

V1
k¼1 J

(2)
k . Thus, the con-

vex hull for observations from a heavy-tailed distribution corresponds to the extreme points

from each coordinate. Consequently, such a region would then have only four vertex points

(for some empirical evidence of this, see Figure 1 which plots the convex hull for a bivariate

sample from a Cauchy distribution).

We can work out the distribution for Area using our recursive method and our earlier

derivation (17). First observe that R1(X ) ¼
W1

k¼1 �kˆ
�1=Æ
k �

V1
k¼1 �kˆ

�1=Æ
k . A similar

representation holds for R1(Y ) (the two terms are independent). Conditioning on �1 and 1̂,

and then using (17), deduce that
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PfR1(X ) < xg ¼ P
_1
k¼1

�kˆ
�1=Æ
k þ

_1
k¼1

��kˆ
�1=Æ
k < x

( )

¼ p

ð1
0

P
_1
k¼1

��k(ˆk þ y)�1=Æ < x� y�1=Æ

( )
exp(�y) dy

þ (1� p)

ð1
0

P
_1
k¼1

�k(ˆk þ y)�1=Æ < x� y�1=Æ

( )
exp(�y) dy

¼ exp � x

2

� ��Æ( )
þ p

ð(x=2)�Æ

0

expf�p(x� y�1=Æ)�Æ � (1� p)yg dy

þ (1� p)

ð(x=2)�Æ

0

expf�(1� p)(x� y�1=Æ)�Æ � pyg dy:

A similar result holds for PfR1(Y ) < yg.
When p ¼ 1 (the case where the observations are positive), it follows that

Vertf(a�1
n X1, b�1

n Y1), . . . , (a�1
n X n, b�1

n Yn)g)
p

3,

Figure 1. The convex hull from 1000 observations of a bivariate Cauchy distribution with independent

components (observations indicated by points). Notice that the diameters of the convex hull are near

perpendicular.
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and from an argument similar to that above that

Area(Convf(a�1
n X 1, b�1

n Y1), . . . , (a�1
n X n, b�1

n Yn)g)) E
�1=Æ
1 E

�1=�
2 =2,

where E1 and E2 are independent standard Exp(1) random variables.
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