
A Recursive Model for Distributed PlanningAmal El Fallah SeghrouchniLIPN - CNRS URA 1507Universit�e Paris-Nord, Franceelfallah@ura1507.univ-paris13.fr Serge HaddadLAMSADE - CNRS URA 825Universit�e Paris-Dauphine, Francehaddad@lamsade.dauphine.frAbstractDistributed planning is fundamental to the generationof cooperative activities in Multi-Agent Systems. Itrequires both an adequate plan representation and ef-�cient interacting methods allowing agents to coor-dinate their plans. This paper proposes a recursivemodel for the representation and the handling of plansby means of Recursive Petri Nets (RPN) which sup-port the speci�cation of concurrent activities, reason-ing about simultaneous actions and continuous pro-cesses, a theory of veri�cation and mechanisms oftransformation (e.g. abstraction, re�nement, merg-ing). The main features of the RPN formalism aredomain independence, broad coverage of interactingsituations and operational coordination. This paperalso provides an approach to the interleaving of exe-cution and planning which is based on the RPN se-mantics and gives some signi�cant methods allowingplan management in distributed planning. It goes onto show how this approach can be used to coordinateagents' plans in a shared and dynamic environment.Distributed Planning RequirementsMulti-agent planning is fundamental to the generationof cooperative activities. The planning process is dis-tributed when it implies autonomous agents who gen-erate and execute their own plans. Two cases can bedistinguished: task-driven planning which lies withinthe framework of distributed problem solving (Durfee& Lesser 1987) (Decker 1992) and agent-driven plan-ning which concerns the coordination problem (Martial1990). This latter (i.e. distributed planning) is charac-terized by two strongly correlated aspects: there is noglobal plan (i.e. several goals have to be reached simul-taneously) and the planning process must be dynamic(i.e. interleaving of planning and execution)(Ephrati& Rosenschein 1995) .One of the major problems in distributed planningis to de�ne an e�cient model of actions and planswhich can easily and naturally take into account thepotential concurrence between the agents' activitiesor between agents and any dynamic processes result-ing from the environment. Many up till now well-established concepts in single-agent planning (e.g. the

world state, considering an action as a relationship be-tween two states, the action history, atomic events,etc.) (George� 1990) require a new meaning. The ex-ecution of concurrent actions in a shared and dynamicenvironment introduces new problems such as orderingactions which are linked to the notion of con
ictual re-sources (i.e. consumable or not), non-instantaneousactions, non-atomic events, etc.Di�erent research has been done in distributed plan-ning, in particular incremental planning. The ap-proach suggested in (Martial 1990) o�ers a numberof advantages in that the model is a theoretical onewhich handles both positive and negative interactions.It is however limited by the fact that only two agents(point to point) can be coordinated at a time, whereasit would be more useful to be able to coordinate nagents, thus providing a really distributed coordina-tion. In addition, this approach doesn't provide forthe interleaving of planning and execution. The ap-proach put forward by (Alami et al. 1994) is based onthe paradigm of plan merging. Although it is robustand handles n agents at a time, it is centralized bythe new agent. Moreover, the existing agents are sus-pended during the process and the new plan is gener-ated in function of existing ones. This is incompatiblewith the idea of an autonomous agent who can producehis own plan to be coordinated later. Other researchfocuses on distributed planning but is based rather onorganizational structures (Werner 1990) (Osawa 1992).The approach we have described in (El Fallah & Had-dad 1996) proposes a distributed algorithm which co-ordinates n agents' plans at once but the formalismused may be improved by introducing the notions ofabstraction and dynamic re�nement in the plan.Here, we are concerned with the paradigm of agent-driven planning where it is assumed that no global planor global view are necessary, and an agent plan canchange for several reasons (e.g. environment changes,agents' requests, etc.). This paper provides a recursivemodel for plan management and an approach to the in-terleaving of execution and planning for dynamic tasksperformed by a group of agents. It tries to answer thequestion of how to get a group of self-interested agents

to carry out coordinated activities in a dynamic envi-ronment.In the following, the case study based on a transporta-tion domain scenario is brie
y introduced. An e�-cient framework for plan management is then devel-oped. The ordinary Petri Net formalism is extendedto a Recursive Petri Net (RPN) in order to ful�ll thedistributed planning requirements. An overview of themain advantages expected from introducing RPN for-malism is given and the RPN formalism itself is de-scribed. The plan management through RPN is illus-trated through some modeling aspects which allow thehandling of both positive and negative interactions.Transportation Domain ScenarioThis scenario is inspired by the case study described in(Martial 1990). It will be used to illustrate each stageof our approach. The system is made up of two typesof agents: Conveyors and Clients.- The Conveyor: A Conveyor has a maritime tra�c netmodeled as a graph where the nodes describe the portson the net and the arcs represent the channels betweenthem. He also has a boat with a given volume. From eachport, the directed neighbors are known using a routingtable. Each Conveyor has 2 hangars per port: In Hangarused for loading incoming goods, and Out Hangar usedfor unloading outgoing goods. Each hangar can stockonly one container at a time. The Conveyor's motivation(goal) is to transport goods through the net using hisboat between a source port and a destination port.- The Client: A Client produces goods near the depar-ture port and consumes them at the arrival port. TheClient puts the goods he produced in the Out Hangar ofthe departure port. He has to �nd a Conveyor who willtransport the goods to the arrival port. Then the Clientgets these goods at the In Hangar of the arrival port inorder to consume them. The Client's motivation (goal)is to get his goods transported between the productionand consumer ports.The problem now is to answer the two questions:- When must agents' coordination happen? Whenpositive interactions are detected, coordination is de-sirable and even necessary and may be considered asan optimization of the plans' execution (e.g. Cooper-ation between Conveyors and Clients and optimiza-tion of the boat �lling). On the other hand, whennegative interactions are detected, coordination be-comes indispensable to the plans' execution (e.g. ahangar is a critical resource since it can stock onegood at once (Boolean value) and the boat is lim-ited by the quantity of goods it can contain (Realvalue)).- How may agents' coordination be ensured? To an-swer this question the coordination mechanism willbe illustrated in the following.

RPN Formalism for DistributedPlanningMotivationThe synergy between agents helps the emergence of co-herent plans, i.e. it cancels negative e�ects and favorscooperation between agents. Consequently, it requiressharing information and synchronization between theparallel activities of the agents. The Petri Nets aresuitable for modeling, analyzing and prototyping dy-namic systems with parallel activities, so distributedplanning lends itself very well to this approach. Themain contribution we expect from Petri Nets is theirability to improve the representation of complex plansand to allow their dynamic coordination and execu-tion. Applied to distributed planning, the Petri Netmodel mainly o�ers the following advantages:- natural and graphical expression of the synchronizationof parallel activities that are the performance of theagents' tasks,- clear decomposition of processing (transitions) and shar-ing data (places),- scheduling of the actions (causal and temporal relation-ships) of plans,- dynamic allocation of tasks,- qualitative and quantitative analysis of Petri Net mod-eling of a plan.The Recursive Petri Net formalismwe have introducedovercomes some limitations of usual categories of PetriNets (Jensen 1991) (e.g. ordinary Petri Nets, High-Level Petri Nets (HLPN) and even Hierarchical HLPN(HHLPN)) that are apparent if one considers a PetriNet as a plan of actions:- transition �rings are instantaneous whilst an action lastssome time,- (HLPN only) transitions are elementary actions as oneneeds to see an action as an abstraction of a plan,- (HHLPN) when a transition is an abstraction, there isno clear end to its �ring,- some dynamicity is required in the structure of the netbut in a controlled way.The processing described in the next section is basedon dynamic planning which is supported by RPNthrough the interleaving of execution and planning. Inaddition, the hierarchical aspect of RPN supports thedynamic re�nement of transitions and allows a plan tobe considered at multiple levels of abstraction.A Recursive Model of Plans and ActionsPlans: A plan organizes a collection of actions whichcan be performed sequentially or concurrently in somespeci�c order. Furthermore these actions demand bothlocal and shared resources. A correct plan executionrequires that whatever the total order that extends thepartial order obtained from the plan, it must remainfeasible.

Actions: A plan involves both elementary actionsassociated with irreducible tasks (but not instanta-neous ones) and complex actions (i.e. abstract viewsof the task). Semantically, there are three types ofactions:- an elementary action represents an irreducible taskwhich can be performed without any decomposition,- an abstract action, the execution of which requiresits substitution (i.e. re�nement) by a new sub-plan.There are two types of abstract actions:- a parallel action, which can be performed whileanother action is being executed,- an exclusive action, the execution of which re-quires a coordination with other current execu-tions,- an end action, which is necessarily elementary, givesthe �nal results of the performed plan. The plangoals are implicitly given through its end actions.Methods: Intuitively, a method may be viewed assome way to perform an action. Several methods canbe associated with an action. A method requires: a la-bel, a list of formal parameters to be linked when themethod is executed, a set of Pre-Conditions (i.e. theconditions that must be satis�ed before the methodis executed), and a set of Post-Conditions (i.e. theconditions that will be satis�ed after the method hasbeen executed). Depending on the action de�nition, amethod may be elementary or abstract. An elementarymethod calls for a sub-routine in order to execute theassociated action immediately but not instantaneously.An abstract method calls for a sub-plan correspondingto the chosen re�nement of the associated abstract ac-tion. The re�nement occurs so as to detail abstractionsand display relevant information.Example: Let us assume that the Initial Con-veyor Plan (see Fig.1) is reduced to the ab-stract action Self.Work where Self represents theagent identity and Work is the method label.The associated method Ag.Work encapsulates twomethods Ag.GoTo(Dest) where Dest represents thesource location of the good (see the following ta-ble) and Ag.Transport(Good) corresponds to theabstract action in the Self.Work re�nement (seeFig.1). No method is associated with the end actionSelf.End Conv since it is just a synchronization action.Method Ag.GoTo(Dest)Type AbstractVariables ConditionsName Class Pre PostAg CONVEYOR None Ag.Cur Loc = DestDest LOCATION None NoneSyntactic De�nitions of RPNDe�nition 1 MethodA Method is de�ned through three components:- An identi�er or label

- An abstract attribute which represents the type of theassociated method (e.g. abstract, elementary)- A set of initialized RPN generated by an initializa-tion mechanism in the case of abstract method.
Abstract Transition

End Transition

Place
M0 = (1, 0, 0)

Self.Work Self.GoTo(Dest)

Self.Transport(Good)

P0

P1

P2

Self.End_Conv

First
Refinement

• RPN1RPN0Figure 1: First Re�nement of Initial Conveyor PlanDe�nition 2 Recursive Petri NetAn RPN is de�ned as a tuple< P; T; Pre; Post; V ar; Call > where:� P is the set of places� T is the set of transitions such that:T = TelemUTabsUTend where:Tabs = Tpar UTexc and U represents the disjointunion� Pre is the precondition matrix and is a mappingfrom P � T to N� Post is the postcondition matrix and is a mappingfrom P � T to N� V ar is a set of variables� Call(t) is a method call associated with t and de�nedthrough the following components:- the label of the method,- an expression (built on V ar variables) of the agentwho calls the method,- an expression of the call parameters (built on V arvariables) which represents the Pre- and Post-Conditions associated with the method.De�nition 3 An initialized RPNAn initialized RPN is de�ned as a tuple< R;M0; Bind > where:� R is the skeleton of RPN ,� M0 is the initial marking of RPN (mapping from Pto N),� Bind is the function which links all (a total link) orsome (a partial link) variables of V ar to the domainobjects.Let us note that the objects represent the domain dataand allow to instantiate the RPN variables and the pa-rameters of the methods.An RPN model represents a plan according to the pre-vious de�nitions:- The initial markingM0 allows the plan execution tostart.

- Pre(p; t) (respectively Post(p; t)) equals n > 0 if theplace p is an input (respectively output) place of atransition t and the valuation of the arc linking p tot (respectively t to p) is n. It equals 0 otherwise.- The default value of a non-valuate arc equals to 1.The RPN SemanticsA plan is executed by executing its actions. In RPNformalism, a transition models an action and its �r-ing corresponds to executing an action. The dynamicre�nement of an abstract transition when it has tobe �red is an elegant way of the handling a condi-tional plan without developing all the situations atplan generation. In addition, it allows the interleavingof planning and execution. In our model, the plannerchooses dynamically the best re�nement according tothe execution context depending on the Pre- and Post-Conditions (see cases (a), (b) and (c) in Fig.2). Thechoice heuristics are not detailed in this paper in orderto focus on the plan management.In the following the RPN semantics is given in order
The variable Z represents the next Port Location

and will be linked using the route table.

(b) the port destination is an
 immediate neighbor port
 of the Conveyor' s
 current location

Self.MoveTo(Z)

•

(c) the port destination
 is the current port

•

Self.MoveTo(Z)

•

Self.GoTo(Dest)

(a) the port destination is
 not a neighbor port

RPN2

RPN3

RPN4Figure 2: Self.GoTo(Dest) Re�nementsto illustrate the dynamic execution. An RPN modelsa plan. The successive states of a plan are representedin a tree (which may be considered as an executiontree). A node represents an initialized RPN and anarc represents an abstract transition �ring.De�nition 4 A Plan State A plan state is de�nedas a tree Tr =< S;A > where:� S is the set of nodes� A is the set of arcs a 2 A such that:- a =< s; s0 > if and only if s0 is the child of s in Tr- An arc a is labeled by a transition which is calledTrans(a) where Trans is a function from A to Twith trans(a) = t� The initial state Tr0 is a tree which is reduced toonly one node s such that: M (s) = M0 where M0 isthe initial marking.Example: Starting from the re�nement RPN1 inFig.1, the successive states of the plan are givenin Fig.3 where case (P) gives the chosen initial-ized RPN associated with the call of the methodSelf.GoTo(Good.Src Loc) and using the RPN2 re-�nement (see Fig.2); case (Q) illustrates the �r-ing of the abstract action Self.GoTo(Dest); and case

(R) illustrates the �ring of the elementary actionSelf.MoveTo(Dest) according to the following de�ni-tions.Notation: The index Tr of S (respectively of A andTrans) means that we consider the set of nodes S (re-spectively the set of arcs A and the transition Trans)relative to the tree Tr.Pre(:; t) (respectively Post(:; t)) is a mapping from Pto N induced from Pre (respectively Post) by �xingto t as a second argument.
(RPN1, (1,0,0),

B1)s
0

Tr
1

(RPN1, (0,0,0), B1)s
0

 Self.GoTo(Dest =
 X.Src_Loc)

s
1

Tr
2

{

Tr
3

Firing of Abstract
 Transition

 ns = s1{
 t = Self.MoveTo(Z)

Firing of Elementary
Transition{

(P)

(Q)
(R)

s
0

 Self.GoTo(Dest)

s
1

B1(Dest, Good)

(RPN2, (1, 0, 0), B2)

(RPN1, (0,0,0), B1)

B2(Z, Dest)

(RPN2, (0,1, 0), B2)Figure 3: States of the Conveyor PlanDe�nition 5 A Transition Firing RuleA transition t is said to be �reable from a node s 2 Sif and only if:� Pre(s; t) �M (s)� R(s) is totally initialized� The Pre-Conditions of the method associated with tare instantiated with Call(t) and are valid.De�nition 6 A situation is said to be a failure situ-ation if all the transition �ring conditions are satis�edexcept for the Pre-Conditions of the associated method.Let us now examine the transition �ring rule .Firing Rules in RPN formalismDe�nition 7 Elementary transition: Let t 2Telem. The �ring of t from s 2 S produces the newtree Tr0 with the new marking MTr0 of s such that:� Tr0 = (STr0 ; ATr0) where:- STr0 = STr such that: 8s0 6= s;MTr0 (s0) =MTr(s0) (i.e. the marking is unchanged 8s0 6= s)- ATr0 = ATr such that:8a 2 ATr ; T ransTr0(a) = TransTr(a)� MTr0 (s) = MTr(s) + Post(:; t)� Pre(:; t)This de�nition means that the only change that oc-curs concerns the node s 2 STr by �ring t. The e�ectsof this change are to add Post(:; t) to and subtractsPre(:; t) from the previous marking of s (see the nodes1 in case(R) in Fig. 3). In the plan, the change resultscorresponds to the applying of the Post-Conditions as-sociated with the �red transition.De�nition 8 Abstract transition: Let t 2 Tabs.The �ring of t from s 2 S produces the new tree Tr0with the new marking MTr0 of s such that:

� STr0 = STr Sfnsg where ns represents an initializedRPN produced by the initialization mechanism of themethod associated with t.� ATr0 = ATrSfag where a =< s; ns > andTransTr0 (a) = t� MTr0 (s) = MTr(s) � Pre(:; t)This de�nition means that the �ring of t from the nodes subtracts Pre(:; t) from the previous marking of s,creates a leaf ns in Tr0 (see the node s0 in case (Q)in Fig. 3) as a child of s. ns is labeled by one of theinitialized RPN associated with the method call of t(see s1 in case(Q) in Fig. 3). The new arc < s; ns >is labeled by the abstract transition t.De�nition 9 Let Tr(s) be a tree with the node s asits root. The function PRUNE(Tr; s) allows the treeTr to be cut from the node s as follows:Prune(Tr; s) 7! Tr0 such that Tr0 = Tr n Tr(s)Remark: Tr0 = ; if the node s is the root of Tr.De�nition 10 End transition: Let t 2 Tend.The�ring of t from s 2 S produces the new tree Tr0 withthe new marking MTr0 of s such that:� Tr0 = PRUNE(Tr; s)Let s0 be the immediate predecessor of s in the treeTr and a =< s0; s > the arc labeled by t, then:� 8a 2 ATr0 ; T ransTr0(a) = TransTr(a)� 8s00 2 (STr0 n fs0g);MTr0 (s00) = MTr(s)� MTr0(s0) = MTr(s0) + Post(:; T ransTr(a))This de�nition means that the �ring of an end actiontend belonging to an initialized RPN which has beengenerated by the �ring of tabs corresponds to the ap-plying of the Post-Conditions of the call of the abstractmethod associated with tabs. It closes the sub-net andadds the Post(:; tabs).Concurrent Plan ManagementInteracting situations are generally expressed in termsof binary relationships between actions and are oftendetected statically. The interleaving of planning andexecution requires both static and dynamic detectionof such situations which is ensured through the RPNsemantics. Moreover, these situations are usually rep-resented semantically which makes their handling dif-�cult if not impossible. The syntactic aspects of suchsituations are often required to allow their operationalmanagement.Interacting Situations through RPNHere, planning and coordination aspects are merged,thus o�ering a number of advantages. When an agentcannot execute the re�ned plan he communicates itto another agent. Communication triggers a coordi-nation mechanism which is based on the plan merg-ing paradigm. Coordination is globally initiated bythe incoming new plan (i.e. a new plan is submitted

to an agent). The most important interacting situa-tions handled by our approach include both positiveand negative interactions.Positive Interactions- Redundant Actions: Actions are redundant if theyappear in at least two plans belonging to two di�er-ent agents, have identical Pre- and Post-Conditions,and the associated methods are instantiated by thesame parameters except for the agent parameter(who has to perform the action). Hence, coordina-tion assigns action execution to one of the agents.The agent who will perform the action has to pro-vide his results. The others have to modify theirplans by including a synchronizing transition.- Helpful Actions: Actions are said to be helpful ifthe execution of one satis�es all or some of the Pre-Conditions of the others. Their execution will berespectively possible or favored. There are two waysof detecting such a situation:- dynamic detection: during the execution of an ab-stract action, the re�nement of which encapsulates anelementary action which validates another action' sPre-Conditions,- static detection: when the execution of one action pre-cedes the execution of another and validates its Pre-Conditions.Negative Interactions- Harmful Actions: Actions are said to be harmful ifthe execution of one invalidates all or some of thePre-Conditions of the others. Consequently, the ex-ecution of the latter will be respectively impossibleor at an unfair disadvantage. Such a situation mustbe detected before the new plan execution starts inorder to predict failure or deadlock. Our coordina-tion mechanism introduces an ordering between theharmful actions as in (El Fallah & Haddad 1996)which provides a coordination algorithm (COA) forhandling such interactions between n agents at once.- Exclusive Actions: Actions are said to be exclusiveif the execution of one momentarily prevents the ex-ecution of the others (e.g. their execution requiresthe same non-consumable resource). Detected dy-namically, this situation occurs when an exclusiveaction has been started (i.e. an exclusive transition�ring). In this case, execution remains possible butis deferred since it requires coordination with otherexecutions.- Incompatible Actions: Actions are said to be incom-patible if the execution of one prevents the execu-tion of the others (e.g. their execution requires thesame consumable resource). In our model, such asituation models an alternative (e.g. two transitionsshare the same input place with one token). In thiscase, execution remains possible only if the criticalresource can be replaced. In our approach, the plan-ner uses heuristics based on two alternatives which

may be combined in order to avoid con
icts: if thecon
ict concerns an abstract action, the planner triesto substitute the current re�nement. Otherwise, themethod used will be replaced.Plan Merging ParadigmHypotheses- The RPN is acyclic and the initial net is reduced toan abstract transition before starting the execution.- After plan generation, the plan actions have no neg-ative interactions.- The value of each unspeci�ed condition is assumedto be unchanged as in STRIPS formalism.- If the Pre-Conditions of an action method are valid,then the Post-Conditions are necessarily satis�ed af-ter its execution. Otherwise, no assumption is madeabout the validity of the Post-Conditions.In the following, the handling of positive and nega-tive interactions will be described through our casestudy. Let Clients fCl1; Cl2g and Conveyor Cv bethree agents who are working out their respectiveplans.Handling Positive Interactions: The main phasesof the coordination algorithm are:1. Starting coordination: An agent (e.g. Cl1) hasto perform a plan �1 corresponding to a leaf in hisexecution tree Tr but �1 is partially instantiatedi.e. some plan methods associated with plan tran-sitions have non-instantiated call parameters (e.g.Y 2 �1 the TYPE of which is CONVEYOR). Theagent (e.g. Cl1) must �nd an agent (e.g. Conveyor)who will execute these methods. He starts a selectivecommunication, based on his acquaintances, until hereceives a positive answer. Let us assume that Cl1chooses Cv and then sends him �1.2. Recognition and uni�cation: The agent whoreceives �1 (e.g. Cv) detects the methods that arepartially instantiated. Then, he examines his execu-tion tree in search of the same methods. This phaseis achieved with success if he �nds an RPN (a nodein his Tr) where appear all the methods to be instan-tiated (see Y.Transport(X) which is non-assigned in�1 and assigned in �2 in Fig. 4). Then, Cv triggersuni�cation of the methods through their call param-eters and instantiation of the variables w.r.t. thetwo plans. If both uni�cation and instantiation arepossible, Cv tries to merge the two plans �1 and �2.3. Structural merging through the transitions:Cv produces a �rst merging plan �m (see Fig. 4)through the transitions associated with the previousmethods and instantiates the call parameters. Thenhe checks that all the variables have been instanti-ated and satisfy both the Pre- and Post-Conditions.4. Consistency checking: This phase is the key-stone of the coordination mechanism since it checks

the feasibility of the new plan which results from thestructural merging. It is based on the algorithm us-ing the Pre- and Post Conditions Calculus (PPCC)described in the following.
Self1.Put(X1)

Self1.Get(X1)

Q2

Q1

•

Y.Transport(X1)

Π1: Client Plan

Self.Transport(X)

Π2: Conveyor Plan

Potential Coordination

Self.GoTo
(X.Src_Loc)

• P0

P1

P2

Self.End_Conv

Q0

Source(X1) = Environment
Y: CONVEYOR

 Source(X) = Merging

Πm: Merged Plan

P0

P

•

P2

Q0

Q1

•

Self1.Put(X)

Self.Transport(X)

Q2

Self1.Get(X)

1

Self.GoTo
(X.Src_Loc)

Self.End_Conv

Structural
MergingFigure 4: Structural MergingPre- and Post-Conditions Calculus Algorithm(PPCC) The PPCC algorithm is based on twophases:i. ReachabilityTree Construction (RTC): To be-gin with, we have to build an RT using a classicalrecursive right depth �rst algorithm which returnsthe tree root. Fig.5 shows the RT of the StructuralMerging Plan �m given in Fig.4.
i

P ,
j

Q marked places

t : the transition t
 is fired

< > : no transition can
 be fired

< > :

0
P

0
Q, ><

1P 0Q, >< 0P Q, >< 1

Self1.Put(X)

Self.Go_To(X.Src_Loc) Self1.Put(X)

1P 1Q, ><

2P 2Q >< ,
Self1.Get(X)

< >

Self.End_Conv

< >

Identical sub-tree

P 1Q >,< 1

Initial Marked Places

2P< > 2Q ><

Self.Go_To(X.Src_Loc)

Self1.Get(X)Self.End_Conv

Self.Transport(X)

Can be
exchanged

This branch
can be cutFigure 5: A Reachability Treeii. Pre- and Post-Conditions Calculus: This al-gorithm is called with the root of RT and with theparameters of the current execution context.Function Is Feasible(in s: node; in c: context):Boolean;fcontext represents the value of methods' parameters andTree is returned by RTC Algorithmgbeginfor all arcs (s, s') in Tree doif Evaluate((s, s').Trans.Method.Pre, c) thenfthe Pre-Conditions in the given Context are validgif not (Is Feasible(s, Apply((s, s').Trans.Method.Post, c))) then return(false)fthere exists a non feasible sub-treei.e. the Post-Conditions are not validgendifelse return(false)

endifendforreturn(true)end fIs Feasible g.Property: For all plan � modeled as an RPN, if thePPCC algorithm applied to the reachabilty tree (RT)of � returns true (i.e. � is consistent) and the envi-ronment is stable, then no failure situation can occur.Discussion: In order to avoid a combinatorial explo-sion, there exist algorithms which allow to construct areduced RT. In our context, the RT can be optimizedas the following: let ni and nj be two nodes of RT. TheRTC can be optimized through analysis of the methodcalls as follows:- Independent Nodes: there is no interference betweenthe Pre- and Post-Conditions of ni on the one handand the Pre- and Post-Conditions of nj on the otherhand, i.e. the associated transitions can be �red si-multaneouslywhatever their ordering (i.e. the globalexecution is una�ected). Here, an arbitrary orderingis decided (e.g. Self.Put and Self.Go To can be ex-changed) which allows many sub-trees to be cut(theright sub-tree in Fig. 5).- Semi-Independent Nodes: there is no interferencebetween the Post-Conditions of ni and nj , i.e.the associated transitions don't a�ect the same at-tributes. If the exchanged sequences (fni; njg orfnj; nig) of �ring transitions which lead to the samemarking can be detected then the sub-tree startingfrom this marking can be cut. The obtained graphis then acyclic and merges the redundant sub-trees.Handling Negative Interactions: Now an otheragent (e.g. Cl2) sends his plan to Cv who processes�1 (Cl1's plan).GCOA as Generalizationof the COA Algorithm(El Fallah & Haddad 1996) The Conveyor starts a newcoordination. The �rst and second phases are the sameas in the case of positive interactions.He chooses theplan �02. Negative interactions arise when the two re-�nements (�2 and �02) have shared attributes (e.g. theboat volume constraint). Now, Cv has to solve internalnegative interactions before proposing a merging planto Cl2. Again the GCOA is divided into two steps.i. Internal Structural Merging by Sequencing:Cv connects �2 and �02 by creating a place pi foreach pair of transitions (te; ti) in End(�2)�Init(�02)and two arcs in order to generate a merged plan �m:Function Sequencing(in �1;�2: Plan): Plan;fthis functionmerges �1 and �2; produces a merged plan�m and the synchronization places gbegin Let TE = fte 2 �1=te is an end transitiongand TI = fti 2 �2=ti is an initial transition g(i.e. ti has no predecessor in Pi2)for all (te; ti) 2 TE � TI doCreate a place pe;iCreate an input arc IAe;i from te to pe;i

Create an output arc OAe;i from pe;i to ti(i.e. Post(pe;i; te) = 1 and Pre(pe;i; ti) = 1)endfor�m := Merged Plan (�1;�2; fpe;ig; fIAe;ig; fOAe;ig)return (�m; fpe;ig)end fSequencinggii. Parallelization by Moving up arcs: Cv appliesthe PPCC algorithm to the merged net �m obtainedby sequencing. If the calculus returns true thenthe planner proceeds to the parallelization phase bymoving up the arcs recursively in order to introducea maximum parallelization in the plan.Procedure Parallelization(PL: Plan; in SP :Places): Plan;fboth the plan PL and the set of synchronization placesSP are obtained by sequencing; this algorithm returnsa new plan PL modi�ed by parallelizationgbeginwhile (9p 2 SP=p is not stamped) dobeginLet t in 2 T (PL)=Post(p; t in)and t out 2 T (PL)=Pre(p; t out)(t in is an input (t out is an output) transition of p)T Pred = ft 2 T (PL)=9q such thatPost(q; t Pred) and Pre(q; t in)g(i.e. the set of the predecessor transitions of t in)T Succ = ft 2 T (PL)=9q0 such thatPre(q0; t Succ) and Post(q0; t out)g(i.e. the set of the successor transitions of t out)P Pred = fp 2 P (PL)=Pre(p; t in)g (Pre(:; t in))if (8pi 2 P Pred ; p is not stamped) and(8tj 2 T Pred ; the �ring of tj is not started)then �2 = Copy(PL)forall t 2 T Pred doCreate in �2 a place q=Post(q; t) = 1 and Pre(q; t out) = 1endforfor all t 2 T Succ doCreate in �2 a place q0=Post(q0; t in) = 1 and Pre(q0; t) = 1endforif PPCC (RT(�2), Current Context)then PL := �2else stamp(p)endifelse stamp(p)endifendend fParallelizationg

This algorithm tries to move (or eliminate) the syn-chronization places. The predecessor transition of eachsynchronization place will be replaced by its own pre-decessor transition in two cases: the transition whichprecedes the predecessor transition is not �red or is notin �ring. If both the Pre- and Post-Conditions remainvalid, then a new arc replaces the old.The result of this parallelization is to satisfy both Cl1and Cl2 by executing the merged net �m.
QP

 The remainder of Π1

pe, i

Π1

it

te

t1 t

Π2

 The remainder of Π2

2

Moving Up Arcs
it Π2

 The remainder of Π2

QP

 The remainder of Π1

Π1

te

t1 t2

te t i; te t i/ /Figure 6: Sequencing and ParallelizationRemark: At each moving up the arcs, the PPCC algo-rithm is applied to the new net. The exchanged plansare the old ones augmented by synchronization placesupstream and downstream. This algorithm can be op-timized at the consistency control level. In fact, thecoherence checking can be applied in incremental wayto each previous plan �2.ConclusionThis paper provides a formal model for distributedplanning. Both plan representation and plan manage-ment are presented through the RPN formalism whicho�ers the main advantages:- representation and reasoning about simultaneous ac-tions and continuous processes (e.g. concurrent ac-tions, alternatives, synchronization, etc.),- the formalism is domain-independent and supportscomplex plans with di�erent levels of abstraction(i.e. only the relevant information is represented atthe earlier phases),- the formalismallows dynamicmodi�cations with theassociated veri�cation (e.g. no structural inconsis-tency) and valuation methods (e.g. robustness),- recursivity and dynamicity ensure the interleaving ofexecution and planning w.r.t. environment changes,- plan reuse allowing agents to bypass the planningprocess in the case of similar situations accordingto the execution context (library of abstract planswhich are the basic building blocks of the new plans),- agents can skip some of the planning actions, detectcon
icts early and reduce communication costs,- execution control is dynamic in accordance with theassociated re�nement and therefore minimizes the

set of revocable choices (Barrett & Weld 1993) be-cause the instantiation of actions can be deferred,- plan size remains controllable for the speci�cationand plan complexity is tractable for validation.Acknowledgments: This research was partly sup-ported by France Telecom, CNET, under contract CTI904-15-4371-123. The authors are grateful to Jean-Philippe Coumes (CNET Paris) and Gilles De
andre(CNET Lannion) for their interesting discussions.ReferencesBooksJensen, K. 1991. High-level Petri Nets, Theory andApplication. Springer-Verlag.Book ArticlesGeorge�, M.P. 1990. Planning. In Readings in Plan-ning. Morgan Kaufmann Publishers, Inc. San Mateo,California.Werner, E. 1989. Cooperating agents: a uni�ed the-ory of communication and social structure. In L.Gasser and M.N. Huhns (eds.), Distributed Arti�cialIntelligence. Vol II, pp 3-36. Pitman.Osawa, E., and Tokoro, M. 1992. Collaborative PlanConstruction for Multi-Agent Mutual Planning. InE. Werner and Y. Demazeau, DECENTRALIZEDA.I.3. Elsevier/North Holland.Journal ArticleDecker, K.S., and Lesser, V.R. 1992. Generalizingthe Partial Global Planning Algorithm. In Interna-tional Journal on Intelligent Cooperative InformationSystems.Proceedings PapersAlami, R., Robert, F., Ingrand, F., and Suzuku, S.1994. A Paradigm for Plan-Merging and its use forMulti-Robot Cooperation. In Proceedings of IEEEInternational Conference on Systems, Man and Cy-bernetics, San Antonio, Texas - USA.Barrett, A., and Weld, D.S. 1993. CharacterizingSubgoal Interactions for Planning. In Proceedings ofIJCAI-93, pp 1388-1393.Durfee, E.H., and Lesser, V.R. 1987. Using par-tial Global Plans to Coordinate distributed ProblemSolvers. In Proceedings of IJCAI-87, Milan, 1987.El Fallah Seghrouchni, A., and Haddad, S. 1996. ACoordination Algorithm for Multi-Agent Planning.In Proceedings of MAAMAW'96, LNAI:1038. Ed.Springer Verlag. Eindhoven, Netherlands.Ephrati, E., and Rosenschein, J.S. 1995. A frame-work for the interleaving of Execution and Planningfor Dynamic Tasks by Multiple Agents. In Proceed-ings of ATAL'95.Martial, V. 1990. Coordination of Plans in a Multi-Agent World by Taking Advantage of the Favor Rela-tion. In Proceedings of the Tenth International Work-shop on Distributed Arti�cial Intelligence.

