A Recursive Model for Distributed Planning

Amal El Fallah Seghrouchni
LIPN - CNRS URA 1507
Université Paris-Nord, France

elfallah@ural507.univ-paris13.fr

Abstract

Distributed planning is fundamental to the generation
of cooperative activities in Multi-Agent Systems. It
requires both an adequate plan representation and ef-
ficient interacting methods allowing agents to coor-
dinate their plans. This paper proposes a recursive
model for the representation and the handling of plans
by means of Recursive Petri Nets (RPN) which sup-
port the specification of concurrent activities, reason-
ing about simultaneous actions and continuous pro-
cesses, a theory of verification and mechanisms of
transformation (e.g. abstraction, refinement, merg-
ing). The main features of the RPN formalism are
domain independence, broad coverage of interacting
situations and operational coordination. This paper
also provides an approach to the interleaving of exe-
cution and planning which is based on the RPN se-
mantics and gives some significant methods allowing
plan management in distributed planning. It goes on
to show how this approach can be used to coordinate
agents’ plans in a shared and dynamic environment.

Distributed Planning Requirements

Multi-agent planning is fundamental to the generation
of cooperative activities. The planning process is dis-
tributed when it implies autonomous agents who gen-
erate and execute their own plans. Two cases can be
distinguished: task-driven planning which lies within
the framework of distributed problem solving (Durfee
& Lesser 1987) (Decker 1992) and agent-driven plan-
ning which concerns the coordination problem (Martial
1990). This latter (i.e. distributed planning) is charac-
terized by two strongly correlated aspects: there 1s no
global plan (i.e. several goals have to be reached simul-
taneously) and the planning process must be dynamic
(i.e. interleaving of planning and execution)(Ephrati
& Rosenschein 1995) .

One of the major problems in distributed planning
1s to define an efficient model of actions and plans
which can easily and naturally take into account the
potential concurrence between the agents’ activities
or between agents and any dynamic processes result-
ing from the environment. Many up till now well-
established concepts in single-agent planning (e.g. the

Serge Haddad
LAMSADE - CNRS URA 825
Université Paris-Dauphine, France

haddad@lamsade.dauphine.fr

world state, considering an action as a relationship be-
tween two states, the action history, atomic events,
etc.) (Georgeff 1990) require a new meaning. The ex-
ecution of concurrent actions in a shared and dynamic
environment introduces new problems such as ordering
actions which are linked to the notion of conflictual re-
sources (i.e. consumable or not), non-instantaneous
actions, non-atomic events, etc.

Different research has been done in distributed plan-
ning, in particular incremental planning. The ap-
proach suggested in (Martial 1990) offers a number
of advantages in that the model is a theoretical one
which handles both positive and negative interactions.
It is however limited by the fact that only two agents
(point to point) can be coordinated at a time, whereas
it would be more useful to be able to coordinate n
agents, thus providing a really distributed coordina-
tion. In addition, this approach doesn’t provide for
the interleaving of planning and execution. The ap-
proach put forward by (Alami et al. 1994) is based on
the paradigm of plan merging. Although it is robust
and handles n agents at a time, 1t is centralized by
the new agent. Moreover, the existing agents are sus-
pended during the process and the new plan is gener-
ated in function of existing ones. This is incompatible
with the idea of an autonomous agent who can produce
his own plan to be coordinated later. Other research
focuses on distributed planning but is based rather on
organizational structures (Werner 1990) (Osawa 1992).
The approach we have described in (El Fallah & Had-
dad 1996) proposes a distributed algorithm which co-
ordinates n agents’ plans at once but the formalism
used may be improved by introducing the notions of
abstraction and dynamic refinement in the plan.
Here, we are concerned with the paradigm of agent-
driven planning where it is assumed that no global plan
or global view are necessary, and an agent plan can
change for several reasons (e.g. environment changes,
agents’ requests, etc.). This paper provides a recursive
model for plan management and an approach to the in-
terleaving of execution and planning for dynamic tasks
performed by a group of agents. It tries to answer the
question of how to get a group of self-interested agents

to carry out coordinated activities in a dynamic envi-
ronment.

In the following, the case study based on a transporta-
tion domain scenario is briefly introduced. An effi-
cient framework for plan management is then devel-
oped. The ordinary Petri Net formalism is extended
to a Recursive Petri Net (RPN) in order to fulfill the
distributed planning requirements. An overview of the
main advantages expected from introducing RPN for-
malism is given and the RPN formalism itself is de-
scribed. The plan management through RPN is illus-
trated through some modeling aspects which allow the
handling of both positive and negative interactions.

Transportation Domain Scenario

This scenario is inspired by the case study described in
(Martial 1990). Tt will be used to illustrate each stage
of our approach. The system is made up of two types
of agents: Conveyors and Clients.

- The Conveyor: A Conveyor has a maritime traffic net
modeled as a graph where the nodes describe the ports
on the net and the arcs represent the channels between
them. He also has a boat with a given volume. From each
port, the directed neighbors are known using a routing
table. Each Conveyor has 2 hangars per port: In_Hangar
used for loading incoming goods, and Out_Hangar used
for unloading outgoing goods. FEach hangar can stock
only one container at a time. The Conveyor’s motivation
(goal) is to transport goods through the net using his
boat between a source port and a destination port.

- The Client: A Client produces goods near the depar-
ture port and consumes them at the arrival port. The
Client puts the goods he produced in the Out_Hangar of
the departure port. He has to find a Conveyor who will
transport the goods to the arrival port. Then the Client
gets these goods at the In_Hangar of the arrival port in
order to consume them. The Client’s motivation (goal)
is to get his goods transported between the production
and consumer ports.

The problem now is to answer the two questions:

- When must agents’ coordination happen? When
positive interactions are detected, coordination is de-
sirable and even necessary and may be considered as
an optimization of the plans’ execution (e.g. Cooper-
ation between Conveyors and Clients and optimiza-
tion of the boat filling). On the other hand, when
negative interactions are detected, coordination be-
comes indispensable to the plans’ execution (e.g. a
hangar is a critical resource since it can stock one
good at once (Boolean value) and the boat is lim-
ited by the quantity of goods it can contain (Real
value)).

- How may agents’ coordination be ensured? To an-
swer this question the coordination mechanism will
be illustrated in the following.

RPN Formalism for Distributed
Planning

Motivation

The synergy between agents helps the emergence of co-
herent plans, i.e. it cancels negative effects and favors
cooperation between agents. Consequently, it requires
sharing information and synchronization between the
parallel activities of the agents. The Petri Nets are
suitable for modeling, analyzing and prototyping dy-
namic systems with parallel activities, so distributed
planning lends itself very well to this approach. The
main contribution we expect from Petri Nets is their
ability to improve the representation of complex plans
and to allow their dynamic coordination and execu-
tion. Applied to distributed planning, the Petri Net
model mainly offers the following advantages:

- natural and graphical expression of the synchronization
of parallel activities that are the performance of the
agents’ tasks,

- clear decomposition of processing (transitions) and shar-
ing data (places),

- scheduling of the actions (causal and temporal relation-
ships) of plans,

- dynamic allocation of tasks,

- qualitative and quantitative analysis of Petri Net mod-
eling of a plan.

The Recursive Petri Net formalism we have introduced
overcomes some limitations of usual categories of Petri
Nets (Jensen 1991) (e.g. ordinary Petri Nets, High-
Level Petri Nets (HLPN) and even Hierarchical HLPN
(HHLPN)) that are apparent if one considers a Petri
Net as a plan of actions:

- transition firings are instantaneous whilst an action lasts
some time,

- (HLPN only) transitions are elementary actions as one
needs to see an action as an abstraction of a plan,

- (HHLPN) when a transition is an abstraction, there is
no clear end to its firing,

- some dynamicity is required in the structure of the net
but in a controlled way.

The processing described in the next section is based
on dynamic planning which is supported by RPN
through the interleaving of execution and planning. In
addition, the hierarchical aspect of RPN supports the
dynamic refinement of transitions and allows a plan to
be considered at multiple levels of abstraction.

A Recursive Model of Plans and Actions

Plans: A plan organizes a collection of actions which
can be performed sequentially or concurrently in some
specific order. Furthermore these actions demand both
local and shared resources. A correct plan execution
requires that whatever the total order that extends the
partial order obtained from the plan, it must remain
feasible.

Actions: A plan involves both elementary actions
associated with irreducible tasks (but not instanta-
neous ones) and complex actions (i.e. abstract views
of the task). Semantically, there are three types of
actions:

- an elementary action represents an irreducible task
which can be performed without any decomposition,

- an abstract action, the execution of which requires
its substitution (i.e. refinement) by a new sub-plan.
There are two types of abstract actions:

- a parallel action, which can be performed while
another action is being executed,

- an exclusive action, the execution of which re-
quires a coordination with other current execu-
tions,

- an end action, which is necessarily elementary, gives
the final results of the performed plan. The plan
goals are implicitly given through its end actions.

Methods: Intuitively, a method may be viewed as
some way to perform an action. Several methods can
be associated with an action. A method requires: a la-
bel, a list of formal parameters to be linked when the
method is executed, a set of Pre-Conditions (i.e. the
conditions that must be satisfied before the method
is executed), and a set of Post-Conditions (i.e. the
conditions that will be satisfied after the method has
been executed). Depending on the action definition, a
method may be elementary or abstract. An elementary
method calls for a sub-routine in order to execute the
assoclated action immediately but not instantaneously.
An abstract method calls for a sub-plan corresponding
to the chosen refinement of the associated abstract ac-
tion. The refinement occurs so as to detail abstractions
and display relevant information.

Example: Let us assume that the Initial Con-
veyor Plan (see TFig.l) is reduced to the ab-
stract action Self.Work where Self represents the
agent identity and Work 1is the method label.
The associated method Ag.Work encapsulates two
methods Ag.GoTo(Dest) where Dest represents the
source location of the good (see the following ta-
ble) and Ag.Transport(Good) corresponds to the
abstract action in the Self.Work refinement (see
Fig.1). No method is associated with the end action
Self.End_Conv since it is just a synchronization action.

Method Ag.GoTo(Dest)
Type Abstract
Variables Conditions
Name Class Pre Post
Ag CONVEYOR | None | Ag.Cur_Loc = Dest

Dest LOCATION None None

Syntactic Definitions of RPN

Definition 1 Method
A Method s defined through three components:

- An dentifier or label

- An abstract attribute which represents the type of the
associated method (e.g. abstract, elementary)

- A set of wnutialized RPN generated by an initializa-
tion mechanism wn the case of abstract method.

RPNO RPN1

O P,
irst
SelfWork | Refinement |_lE—|SE|f.GOTO(DES[)

=l _—
OP;
: [=== Abstract Transition
. - Self. Transport(Good)
. [End Transition

O Place g
Mo=@00) Self.End_Conv

2

Figure 1: First Refinement of Initial Conveyor Plan

Definition 2 Recursive Petri Net

An RPN is defined as a tuple

< P, T, Pre, Post, Var,Call > where:

e P is the set of places

e T is the set of transitions such that:
T = Tetem W Tavs W Tona where:
Tabs = Tpar B Tewe and |3 represents the disjoint
union

e Pre 1is the precondition matriz and is a mapping
from P xT to N

e Post is the postcondition matriz and is a mapping
from P xT to N

e Var is a set of variables

o Call(t) is a method call associated witht and defined

through the following components:

- the label of the method,

- an expression (built on Var variables) of the agent
who calls the method,

- an expression of the call parameters (built on Var
variables) which represents the Pre- and Post-
Conditions associated with the method.

Definition 3 An initialized RPN

An initialized RPN s defined as a tuple

< R, My, Bind > where:

e R is the skeleton of RPN,

o My is the initial marking of RPN (mapping from P
to N),

o Bind is the function which links all (a total link) or

some (a partial link) variables of Var to the domain
objects.

Let us note that the objects represent the domain data
and allow to instantiate the RPN variables and the pa-
rameters of the methods.

An RPN model represents a plan according to the pre-
vious definitions:

- The initial marking My allows the plan execution to
start.

- Pre(p,t) (respectively Post(p,t)) equals n > 0 if the
place p is an input (respectively output) place of a
transition ¢ and the valuation of the arc linking p to
t (respectively t to p) is n. It equals 0 otherwise.

- The default value of a non-valuate arc equals to 1.

The RPN Semantics

A plan is executed by executing its actions. In RPN
formalism, a transition models an action and its fir-
ing corresponds to executing an action. The dynamic
refinement of an abstract transition when it has to
be fired is an elegant way of the handling a condi-
tional plan without developing all the situations at
plan generation. In addition, it allows the interleaving
of planning and execution. In our model, the planner
chooses dynamically the best refinement according to
the execution context depending on the Pre- and Post-
Conditions (see cases (a), (b) and (c) in Fig.2). The
choice heuristics are not detailed in this paper in order
to focus on the plan management.

In the following the RPN semantics is given in order

‘f RPN2
RPN3

? Self.MoveTo(2Z)

Self.GoTo(Dest) (b) the port destination is an
immediate neighbor port
of the Conveyor' s
current location

—= Self.MoveTo(Z)

@f RPN4
 —

(c) the port destination
is the current port

(a) the port destination is The variable Z represents the next Port Location
not a neighbor port and will be linked using the route table.

Figure 2: Self.GoTo(Dest) Refinements

to illustrate the dynamic execution. An RPN models
a plan. The successive states of a plan are represented
in a tree (which may be considered as an execution
tree). A node represents an initialized RPN and an
arc represents an abstract transition firing.

Definition 4 A Plan State A plan state is defined
as a tree Tr =< S, A > where:

e S is the set of nodes

e A s the set of arcs a € A such that:
-a=<s,8 >if and only if s’ is the child of s in T'r
- An arc a is labeled by a transition which is called
Trans(a) where Trans is a function from A to T
with trans(a) =t

o The initial state Try s a tree which 1s reduced to
only one node s such that: M(s) = My where My is
the initial marking.

Example: Starting from the refinement RPN1 in
Fig.1, the successive states of the plan are given
in Fig.3 where case (P) gives the chosen initial-
ized RPN associated with the call of the method
Self.GoTo(Good.Src Loc) and using the RPN2 re-
finement (see Fig.2); case (Q) illustrates the fir-
ing of the abstract action Self.GoTo(Dest); and case

(R) illustrates the firing of the elementary action
Self. MoveTo(Dest) according to the following defini-
tions.

Notation: The index T'r of S (respectively of A and
Trans) means that we consider the set of nodes S (re-
spectively the set of arcs A and the transition Trans)
relative to the tree T'r.

Pre(.,t) (respectively Post(.,t)) is a mapping from P
to N induced from Pre (respectively Post) by fixing
to t as a second argument.

Tr,

T, 3
Tr, 2
1) Sia (RPNL (0,0,0), BY) Firing of Elementary % .(RPNL (000).81)
(RPN, (1,0,0) {angofAbstract e {Transmon
B1 Transition . Self.GoTo(Dest
%@) — Sef.GoTo(Dest = t = Self MoveTo(2))
{”5:51 ALY s O RPN2, 0.1, 0), B2
) (RPN2, (L, 0,0), B2) 1O ([N (04,0, B2
B1(Dest, Good) i1 (R)
(Q) B2AZ Dest)

Figure 3: States of the Conveyor Plan

Definition 5 A Transition Firing Rule

A transition t is said to be fireable from a node s € S

of and only if:

o Pre(s,t) < M(s)

o R(s) is totally initialized

e The Pre-Conditions of the method associated with t
are instantiated with Call(t) and are valid.

Definition 6 A situation is said to be a failure situ-
ation if all the transition firing conditions are satisfied
except for the Pre-Conditions of the associated method.

Let us now examine the transition firing rule .

Firing Rules in RPN formalism

Definition 7 Elementary transition: Let t €
Tetem- The firing of t from s € S produces the new
tree T'r' with the new marking My, of s such that:

o T = (STTIaATTI) where:
- Sppr = Spr such that: Vs’ # s, Mpo(s') =
My, (s") (i.e. the marking is unchanged ¥s' # s)
- Appr = Ap, such that:
VYa € Apy, Transp,(a) = Transp,(a)
o Mrp,i(s) = Mp,(s) + Post(.,t) — Pre(.,?)

This definition means that the only change that oc-
curs concerns the node s € Sy, by firing ¢. The effects
of this change are to add Post(.,t) to and subtracts
Pre(.,t) from the previous marking of s (see the node
s1 in case(R) in Fig. 3). In the plan, the change results
corresponds to the applying of the Post-Conditions as-
sociated with the fired transition.

Definition 8 Abstract transition: Let ¢ € Typ,.
The firing of t from s € S produces the new tree Tr'
with the new marking My, of s such that:

o St = St | J{ns} where ns represents an initialized
RPN produced by the initialization mechanism of the
method associated with t.

o App = Ap.\J{a} where a =< s,ns > and
Transpp (a) =1
o Mrp,i(s) = Mpy(s) — Pre(.,1)

This definition means that the firing of ¢ from the node
s subtracts Pre(.,t) from the previous marking of s,
creates a leaf ns in Tr' (see the node sy in case (Q)
in Fig. 3) as a child of s. ns is labeled by one of the
initialized RPN associated with the method call of ¢
(see s1 in case(Q) in Fig. 3). The new arc < s,ns >
is labeled by the abstract transition ¢.

Definition 9 Let Tr(s) be a tree with the node s as
its root. The function PRUNE(Tr,s) allows the tree
Tr to be cut from the node s as follows:

Prune(Tr,s) w— Tr" such that Tr' = Tr\ Tr(s)

Remark: 77 = § if the node s is the root of T'r.

Definition 10 End transition: Let ¢ € T.,4.The
firing of t from s € S produces the new tree Tr' with
the new marking My, of s such that:

o T = PRUNE(Tr,s)
Let s’ be the immediate predecessor of s in the tree
Tr and a =< s',s > the arc labeled by t, then:

e Ya € Appr, Transp, (a) = Transy,(a)
o V5" € (Stw \{5'}), Mrpo(s”) = My (5
o Mrp,i(s') = Mrp,(s") + Post(., Transrr(a))

This definition means that the firing of an end action
teng belonging to an initialized RPN which has been
generated by the firing of ¢4, corresponds to the ap-
plying of the Post-Conditions of the call of the abstract
method associated with ¢,,5. It closes the sub-net and
adds the Post(.,tqps).

Concurrent Plan Management

Interacting situations are generally expressed in terms
of binary relationships between actions and are often
detected statically. The interleaving of planning and
execution requires both static and dynamic detection
of such situations which is ensured through the RPN
semantics. Moreover, these situations are usually rep-
resented semantically which makes their handling dif-
ficult if not impossible. The syntactic aspects of such
situations are often required to allow their operational
management.

Interacting Situations through RPN

Here, planning and coordination aspects are merged,
thus offering a number of advantages. When an agent
cannot execute the refined plan he communicates it
to another agent. Communication triggers a coordi-
nation mechanism which is based on the plan merg-
ing paradigm. Coordination is globally initiated by
the incoming new plan (i.e. a new plan is submitted

to an agent). The most important interacting situa-
tions handled by our approach include both positive
and negative interactions.

Positive Interactions

- Redundant Actions: Actions are redundant if they
appear in at least two plans belonging to two differ-
ent agents, have identical Pre- and Post-Conditions,
and the associated methods are instantiated by the
same parameters except for the agent parameter
(who has to perform the action). Hence, coordina-
tion assigns action execution to one of the agents.
The agent who will perform the action has to pro-
vide his results. The others have to modify their
plans by including a synchronizing transition.

- Helpful Actions: Actions are said to be helpful if
the execution of one satisfies all or some of the Pre-
Conditions of the others. Their execution will be
respectively possible or favored. There are two ways
of detecting such a situation:

- dynamic detection: during the execution of an ab-
stract action, the refinement of which encapsulates an
elementary action which validates another action’ s
Pre-Conditions,

- static detection: when the execution of one action pre-
cedes the execution of another and validates its Pre-
Conditions.

Negative Interactions

- Harmful Actions: Actions are said to be harmful if
the execution of one invalidates all or some of the
Pre-Conditions of the others. Consequently, the ex-
ecution of the latter will be respectively impossible
or at an unfair disadvantage. Such a situation must
be detected before the new plan execution starts in
order to predict failure or deadlock. Our coordina-
tion mechanism introduces an ordering between the
harmful actions as in (El Fallah & Haddad 1996)
which provides a coordination algorithm (COA) for
handling such interactions between n agents at once.

- Ezxclusive Actions: Actions are said to be exclusive
if the execution of one momentarily prevents the ex-
ecution of the others (e.g. their execution requires
the same non-consumable resource). Detected dy-
namically, this situation occurs when an exclusive
action has been started (i.e. an exclusive transition
firing). In this case, execution remains possible but
is deferred since it requires coordination with other
executions.

- Incompatible Actions: Actions are said to be incom-
patible if the execution of one prevents the execu-
tion of the others (e.g. their execution requires the
same consumable resource). In our model, such a
situation models an alternative (e.g. two transitions
share the same input place with one token). In this
case, execution remains possible only if the critical
resource can be replaced. In our approach, the plan-
ner uses heuristics based on two alternatives which

may be combined in order to avoid conflicts: if the
conflict concerns an abstract action, the planner tries
to substitute the current refinement. Otherwise, the
method used will be replaced.

Plan Merging Paradigm
Hypotheses

- The RPN is acyclic and the initial net 1s reduced to
an abstract transition before starting the execution.

- After plan generation, the plan actions have no neg-
ative interactions.

- The value of each unspecified condition is assumed
to be unchanged as in STRIPS formalism.

- If the Pre-Conditions of an action method are valid,
then the Post-Conditions are necessarily satisfied af-
ter its execution. Otherwise, no assumption is made
about the validity of the Post-Conditions.

In the following, the handling of positive and nega-
tive interactions will be described through our case
study. Let Clients {Cly,Cls} and Conveyor Cv be
three agents who are working out their respective
plans.

Handling Positive Interactions: The main phases

of the coordination algorithm are:

1. Starting coordination: An agent (e.g. Cl;) has
to perform a plan II; corresponding to a leaf in his
execution tree T'r but II; is partially instantiated
i.e. some plan methods associated with plan tran-
sitions have non-instantiated call parameters (e.g.
Y € II; the TYPE of which is CONVEYOR). The
agent (e.g. Cly) must find an agent (e.g. Conveyor)
who will execute these methods. He starts a selective
communication, based on his acquaintances, until he
receives a positive answer. Let us assume that C'ly
chooses C'v and then sends him II;.

2. Recognition and unification: The agent who
receives II; (e.g. C'v) detects the methods that are
partially instantiated. Then, he examines his execu-
tion tree in search of the same methods. This phase
is achieved with success if he finds an RPN (a node
in his T'r) where appear all the methods to be instan-
tiated (see Y.Transport(X) which is non-assigned in
IT; and assigned in IIy in Fig. 4). Then, Cv triggers
unification of the methods through their call param-
eters and instantiation of the variables w.r.t. the
two plans. If both unification and instantiation are
possible, C'v tries to merge the two plans II; and II,.

3. Structural merging through the transitions:
C'v produces a first merging plan II,, (see Fig. 4)
through the transitions associated with the previous
methods and instantiates the call parameters. Then
he checks that all the variables have been instanti-
ated and satisfy both the Pre- and Post-Conditions.

4. Consistency checking: This phase is the key-
stone of the coordination mechanism since i1t checks

the feasibility of the new plan which results from the
structural merging. It is based on the algorithm us-
ing the Pre- and Post Conditions Calculus (PPCC)
described in the following.

Source(X1) = Environment /Source(X) = Merging
Y: CONVEYOR

Py Q Ro
SelfL.Put(X1) Self.GoTo == SelfLPut(X (S; Eﬁ”[gc)
(X.Src_Loc) -
& P Structural <<Ql POy
= (X)

i inati Merging
Potential Coordination |
Y. Transport(X1) Self.Transport(x)J
L L
Self1.Get(X1) Self.End_Con!

N1 Client Plan

Selfl.Get(X——1 [Self.End_Conv

M2: Conveyor Plan Mm: Merged Plan

Figure 4: Structural Merging

Pre- and Post-Conditions Calculus Algorithm
(PPCC) The PPCC algorithm is based on two
phases:

i.

ii.

Reachability Tree Construction (RTC): To be-
gin with, we have to build an RT using a classical
recursive right depth first algorithm which returns
the tree root. Fig.5 shows the RT of the Structural
Merging Plan Il,, given in Fig.4.

<FEJ s QO > Initial Marked Places
Self1.Put(X)” Self.Go_To(X.Src_Loc) can be
e Can be
< F’l,‘ Qo> xRy, Q> exchanged
Self.Go_To(X.Src_Loc) /w(\x)
- lQ o <R Q> This branch
Fi} 1 | Identical sub-tre¢ can be cut
Self.Transport(X) — _ _ _ _ = _ _ o
<R, Q,> '<Fi’,Qj>:markedeaces
Se|f1.Get(x)\se”_Endiconv \t‘ : thetransition t
< B> 2 - isfired .
‘FQ 92 < > : no transition can
Self.End_ConvSelfl.Get(X) be fired
<'> < T Tt

Figure 5: A Reachability Tree

Pre- and Post-Conditions Calculus: This al-
gorithm is called with the root of RT and with the
parameters of the current execution context.
Function Is_Feasible(in s: node; in ¢: context):
Boolean;

{context represents the value of methods’ parameters and

Tree is returned by RTC Algorithm}
begin

for all arcs (s, s’) in Tree do
if Evaluate((s, s’).Trans.Method.Pre, c) then
{the Pre-Conditions in the given Context are valid}
if not (Is_Feasible(s, Apply((s, s’).Trans.Method.
Post, ¢))) then return(false)
{there exists a non feasible sub-tree
i.e. the Post-Conditions are not valid}
endif

else return(false)

endif
endfor
return(true)

end {Is_Feasible }.

Property: For all plan Il modeled as an RPN if the
PPCC algorithm applied to the reachabilty tree (RT)
of TI returns true (i.e. IT is consistent) and the envi-
ronment is stable, then no failure situation can occur.
Discussion: In order to avoid a combinatorial explo-
sion, there exist algorithms which allow to construct a
reduced RT. In our context, the RT can be optimized
as the following: let n; and n; be two nodes of RT. The
RTC can be optimized through analysis of the method
calls as follows:

Independent Nodes: there 1s no interference between
the Pre- and Post-Conditions of n; on the one hand
and the Pre- and Post-Conditions of n; on the other
hand, i.e. the associated transitions can be fired si-
multaneously whatever their ordering (i.e. the global
execution is unaffected). Here, an arbitrary ordering
is decided (e.g. Self.Put and Self.Go_To can be ex-
changed) which allows many sub-trees to be cut(the
right sub-tree in Fig. 5).

Semi-Independent Nodes: there is no interference
between the Post-Conditions of n; and nj;, i.e.
the associated transitions don’t affect the same at-
tributes. If the exchanged sequences ({nj,n;} or
{n;,n;}) of firing transitions which lead to the same
marking can be detected then the sub-tree starting
from this marking can be cut. The obtained graph
is then acyclic and merges the redundant sub-trees.

Handling Negative Interactions: Now an other
agent (e.g. Cly) sends his plan to C'v who processes

II

1 (Cly’s plan).

GCOA as Generalization of the COA Algorithm
(El Fallah & Haddad 1996) The Conveyor starts a new
coordination. The first and second phases are the same
as in the case of positive interactions.He chooses the
plan IT5. Negative interactions arise when the two re-
finements (I and II5) have shared attributes (e.g. the
boat volume constraint). Now, C'v has to solve internal
negative interactions before proposing a merging plan
to Cla. Again the GCOA is divided into two steps.

i.

Internal Structural Merging by Sequencing:
C'v connects Il and II5 by creating a place p; for
each pair of transitions (., ;) in End(I12) x Indt(I15)
and two arcs in order to generate a merged plan I1,,:
Function Sequencing(in I1;,II;: Plan): Plan;
{this function merges 111 andIl2; produces a merged plan
I, and the synchronization places }
begin Let Tp = {t. € 111 /t. is an end transition}
and T7 = {t; € Tl /¢; is an initial transition }
(i.e. t; has no predecessor in Piy)

for all (t.,t;) € Te x T do

Create a place pe ;

Create an input arc [A.; from t. to pe;

Create an output arc OA.; from p.; to t;
(i.e. Post(pe,i,te) =1 and Pre(pe;,t;) =1)
endfor
IT,,, := Merged_Plan (IIy,II2,{pe: }, {{Ac;i }, {OAc i })
return (I, {pe,i})
end {Sequencing}

ii. Parallelization by Moving up arcs: Cv applies
the PPCC algorithm to the merged net I, obtained
by sequencing. If the calculus returns true then
the planner proceeds to the parallelization phase by
moving up the arcs recursively in order to introduce
a maximum parallelization in the plan.

Procedure Parallelization(PL: Plan; in SP:
Places): Plan;

{both the plan PL and the set of synchronization places
SP are obtained by sequencing; this algorithm returns
a new plan PL modified by parallelization}

begin
while (3p € SP/p is not stamped) do
begin
Let t_in € T(PL)/Post(p, t-in)
and t_out € T(PL)/Pre(p, t_out)
(tiin is an input (t_out is an output) transition of p)
T_Pred = {t € T(PL)/3q such that
Post(q,t_Pred) and Pre(q,t_in)}
(i.e. the set of the predecessor transitions of t_in)
T_Succ = {t € T(PL)/3q" such that
Pre(q', t_Succ) and Post(q', t_out)}
(i.e. the set of the successor transitions of t_out)
P_Pred={p € P(PL)/Pre(p,tin)} (Pre(.,t.in))
if (Vp; € P_Pred ; p is not stamped) and
(Vt; € T_Pred ; the firing of ¢; is not started)
then II; = Copy(PL)
forall ¢t € T'_Pred do
Create in II2 a place q/
Post(gq,t) =1 and Pre(q, t_out) =1
endfor
for all ¢t € T'_Succ do
Create in II> a place ¢’/
Post(q',t.in) =1 and Pre(q¢’,t) =1
endfor
if PPCC (RT(II2), Current_Context)
then PL :=II»
else stamp(p)
endif
else stamp(p)
endif
end

end {Parallelization}

This algorithm tries to move (or eliminate) the syn-
chronization places. The predecessor transition of each
synchronization place will be replaced by its own pre-
decessor transition in two cases: the transition which
precedes the predecessor transition is not fired or is not
in firing. If both the Pre- and Post-Conditions remain
valid, then a new arc replaces the old.

The result of this parallelization is to satisfy both C'ly
and Cly by executing the merged net Il,,.

The remainder off1
t1 t
v

te

Moving Up Arcs
te: tj ten ti

i
%ﬁ\inder a2

Figure 6: Sequencing and Parallelization

Remark: At each movingup the arcs, the PPCC algo-
rithm is applied to the new net. The exchanged plans
are the old ones augmented by synchronization places
upstream and downstream. This algorithm can be op-
timized at the consistency control level. In fact, the
coherence checking can be applied in incremental way
to each previous plan II,.

Conclusion

This paper provides a formal model for distributed
planning. Both plan representation and plan manage-
ment are presented through the RPN formalism which
offers the main advantages:

- representation and reasoning about simultaneous ac-
tions and continuous processes (e.g. concurrent ac-
tions, alternatives, synchronization, etc.),

- the formalism 1s domain-independent and supports
complex plans with different levels of abstraction
(i.e. only the relevant information is represented at
the earlier phases),

- the formalism allows dynamic modifications with the
associated verification (e.g. no structural inconsis-
tency) and valuation methods (e.g. robustness),

- recursivity and dynamicity ensure the interleaving of
execution and planning w.r.t. environment changes,

- plan reuse allowing agents to bypass the planning
process in the case of similar situations according
to the execution context (library of abstract plans
which are the basic building blocks of the new plans),

- agents can skip some of the planning actions, detect
conflicts early and reduce communication costs,

- execution control is dynamic in accordance with the
associated refinement and therefore minimizes the

set of revocable choices (Barrett & Weld 1993) be-

cause the instantiation of actions can be deferred,

- plan size remains controllable for the specification
and plan complexity is tractable for validation.

Acknowledgments: This research was partly sup-
ported by France Telecom, CNET, under contract CT1
904-15-4371-123. 'The authors are grateful to Jean-
Philippe Coumes (CNET Paris) and Gilles Deflandre
(CNET Lannion) for their interesting discussions.

References

Books

Jensen, K. 1991. High-level Petri Nets, Theory and
Application. Springer-Verlag.

Book Articles

Georgeff, M.P. 1990. Planning. In Readings in Plan-
ning. Morgan Kaufmann Publishers, Inc. San Mateo,
California.

Werner, E. 1989. Cooperating agents: a unified the-
ory of communication and social structure. In L.
Gasser and M.N. Huhns (eds.), Distributed Artificial
Intelligence. Vol 11, pp 3-36. Pitman.

Osawa, E., and Tokoro, M. 1992. Collaborative Plan
Construction for Multi-Agent Mutual Planning. In
E. Werner and Y. Demazeau, DECENTRALIZED
A.L3. Elsevier/North Holland.

Journal Article

Decker, K.S., and Lesser, V.R. 1992. Generalizing
the Partial Global Planning Algorithm. In Interna-
tional Journal on Intelligent Cooperative Information
Systems.

Proceedings Papers

Alami, R., Robert, F.; Ingrand, F., and Suzuku, S.
1994. A Paradigm for Plan-Merging and its use for
Multi-Robot Cooperation. In Proceedings of IEEE
International Conference on Systems, Man and Cy-
bernetics, San Antonio, Texas - USA.

Barrett, A., and Weld, D.S. 1993. Characterizing
Subgoal Interactions for Planning. In Proceedings of

[JCAI-93, pp 1388-1393.

Durfee, E.H., and Lesser, V.R. 1987. Using par-
tial Global Plans to Coordinate distributed Problem
Solvers. In Proceedings of IJCAI-87, Milan, 1987.

El Fallah Seghrouchni, A.; and Haddad, S. 1996. A
Coordination Algorithm for Multi-Agent Planning.
In Proceedings of MAAMAW’96, LNAI:1038. Ed.
Springer Verlag. Eindhoven, Netherlands.

Ephrati, E.; and Rosenschein, J.S. 1995. A frame-
work for the interleaving of Execution and Planning
for Dynamic Tasks by Multiple Agents. In Proceed-
wngs of ATAL’95.

Martial, V. 1990. Coordination of Plans in a Multi-
Agent World by Taking Advantage of the Favor Rela-
tion. In Proceedings of the Tenth International Work-
shop on Distributed Artificial Intelligence.

