
A Recursive Paradigm for Aligning Observed Behavior
of Large Structured Process Models

Farbod Taymouri and Josep Carmona

Universitat Politècnica de Catalunya, Barcelona (Spain)
{taymouri,jcarmona}@cs.upc.edu

Abstract. The alignment of observed and modeled behavior is a crucial prob-
lem in process mining, since it opens the door for conformance checking and
enhancement of process models. The state of the art techniques for the compu-
tation of alignments rely on a full exploration of the combination of the model
state space and the observed behavior (an event log), which hampers their ap-
plicability for large instances. This paper presents a fresh view to the alignment
problem: the computation of alignments is casted as the resolution of Integer
Linear Programming models, where the user can decide the granularity of the
alignment steps. Moreover, a novel recursive strategy is used to split the problem
into small pieces, exponentially reducing the complexity of the ILP models to be
solved. The contributions of this paper represent a promising alternative to fight
the inherent complexity of computing alignments for large instances.

1 Introduction

As business processes become more complex and change frequently, companies and
organizations use information systems to handle the processing and execution of their
business transactions. These systems generate event logs which are the footprints left
by process executions. Process mining is an emerging field that focuses on analyzing
these event logs with the purpose of extracting, analyzing and enhancing evidence-
based process models [13].

One of the current challenges for process mining techniques is the computation of an
alignment of a process model with respect to observed behavior [1]. Intuitively, given
a trace representing a real process execution, an optimal alignment provides the best
trace the process model can provide to mimic the observed behavior. Then observed and
model traces are rendered in a two-row matrix denoting the synchronous/asynchronous
moves between individual activities of model and log, respectively. Alignments are ex-
tremely important in the context of process mining, since they open the door to evaluate
the metrics that asses the quality of a process model to represent observed behavior: fit-
ness and generalization [1] and precision [2]. Additionally, alignments are a necessary
step to enhance the information provided in a process model [13].

Unfortunately, the current algorithmic support to compute alignments is defined as
search for a minimal path on the product of the state space of the process model and the
observed behavior, an object that is worst-case exponential with respect to the size of
the model. This hampers the application of these techniques for medium/large instances.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-45348-4_12

Hence, in the process mining field we are facing an interesting paradox: while the cur-
rent research for process discovery is capable to be applied to large inputs (e.g., [7]),
the obtained models often cannot be optimally aligned due to their size. Addressing this
paradox is the main motivation of the work presented in this paper.

This paper presents a technique to compute a particular type of alignments, called
approximate alignments. In an approximate alignment, the granularity of the moves is
user-defined (from singletons like in the original definition of alignments, to non-unitary
sets of activities), thus allowing for an abstract view, in terms of step-sequences, of the
model capability of reproducing observed behavior. The implications of generalizing
the concept of alignment to non-singleton steps are manifold: conformance checking
techniques can be discretized to a desired (time) granularity, e.g., when the ordering
of activities in a period is not important for the diagnosis. Also, other techniques like
model repair [6] may be guided to only repair coarse-grain deviating model parts. Fi-
nally, in domains where a fine-grained ordering of activities is not needed approximate
alignments can play an important role (e.g., health care [9]).

We assume the input models to be specified as Petri nets. This is without loss of
generality, since there exist transformations from other notations to Petri nets. Given a
Petri net and a trace representing the observed behavior, we use the structural theory of
Petri nets [12] to find an approximate alignment. This means that at the end we solve
Integer Linear Programming (ILP) models whose resolution provide a model firing se-
quence that mimics the observed behavior. Importantly, these ILP models are extended
with a cost function that guarantees (under certain structural conditions on the process
model) a global optimality criteria: the obtained firing sequence is mostly similar to
the observed trace in terms of the number of firings of each transition. This optimality
capability represents one clear difference with respect to current distributed approaches
for conformance checking which focus on the decisional problem of checking fitness,
but not to compute optimal alignments [14,10].

Since ILP is NP-hard, casting the problem of computing approximate alignments as
the resolution of ILP models is not sufficient for alleviating the complexity of the prob-
lem. As the complexity of ILP is dominated by the number of variables and constraints,
we present a recursive framework to compute approximate alignments that transforms
the initial ILP encoding into several smaller and bounded ILP encodings. This approach
reduces drastically both the memory and the CPU time required for computing approx-
imate alignments. Remarkably, it can be applied not only with the ILP encoding used in
this paper, but also in combination with current techniques for computing alignments.

The organization of this paper is as follow, related work is presented in Section
2. Preliminaries will be presented in section 3. The formalization of approximate align-
ments is described in Section 4. Section 5 describes the ILP encoding for computing ap-
proximate alignments, while Section 6 presents the recursive framework. Experiments,
conclusions and future work are presented in sections 7 and 8 respectively.

2 Related Work

The seminal work in [1] proposed the notion of alignment, and developed a technique
to compute optimal alignments for a particular class of process models. For each trace

σ in the log, the approach consists on exploring the synchronous product of model’s
state space and σ. In the exploration, the shortest path is computed using the A∗ algo-
rithm, once costs for model and log moves are defined. The approach is implemented
in ProM, and can be considered as the state-of-the-art technique for computing align-
ments. Several optimizations have been proposed to the basic approach: for instance,
the use of ILP techniques on each visited state to prune the search space [1]. In con-
trast to the technique of this paper, these ILP techniques only alleviate the search space
while in our case they form the basis to compute an alignment. Alignment techniques
from [1] have been extended recently in [3] for the case of process trees, presenting
techniques for the state space reduction with stubborn sets1. Also, high-level deviations
are proposed in [1] in form of deviation patterns that, as the work in this paper, aim at
providing less detailed diagnostics.

Decompositional techniques have been presented [14,10] that instead of computing
optimal alignments, they focus on the decisional problem of whereas a given trace fits
or not a process model. The underlying idea is to split the model into a particular set
of transition-bordered fragments which satisfy certain conditions, and local alignments
can be computed for each one of the fragments, thus providing a upper bound on the
cost of an alignment. In contrast, the technique presented in this paper does not split the
model, hence enabling the computation of alignments at a global (model) level.

Finally, the work in [9,8] focuses on dealing with partially ordered information, a
common situation in contexts like health care. The notion of partially ordered alignment
is introduced, and a variation of the techniques presented in [1] described.

3 Preliminaries

3.1 Petri nets, Process Mining and Step Sequences

A Petri Net [11] is a 3-tuple N = 〈P, T,F〉, where P is the set of places, T is the
set of transitions, P ∩ T = ∅, F : (P × T) ∪ (T × P)→ {0, 1} is the flow relation. A
marking is an assignment of non-negative integers to places. If k is assigned to place p
by markingm (denotedm(p) = k), we say that p is marked with k tokens. Given a node
x ∈ P ∪T , its pre-set and post-set (in graph adjacency terms) are denoted by •x and x•

respectively. A transition t is enabled in a marking m when all places in •t are marked.
When a transition t is enabled, it can fire by removing a token from each place in •t
and putting a token to each place in t•. A marking m′ is reachable from m if there is a
sequence of firings t1t2 . . . tn that transforms m into m′, denoted by m[t1t2 . . . tn〉m′.
A sequence of transitions t1t2 . . . tn is a feasible sequence if it is firable from the initial
marking m0.

Definition 1 (Trace, Event Log, Parikh vector). Given an alphabet of events T =
{t1, . . . , tn}, a trace is a word σ ∈ T ∗ that represents a finite sequence of events. An
event log L ∈ B(T ∗) is a multiset of traces2. |σ|a represents the number of occurrences

1 There is no fundamental difference between aligning Petri nets or process trees: only the latter
allows for a slightly better memory representation.

2 B(A) denotes the set of all multisets of the set A.

of a in σ. The Parikh vector of a sequence of events σ is a function̂: T ∗ → Nn defined
as σ̂ = (|σ|t1 , . . . , |σ|tn). For simplicity, we will also represent |σ|ti as σ̂(ti). The sup-
port of a Parikh vector σ̂, denoted by supp(σ̂) is the set {ti|σ̂(ti) > 0}. Finally, given a
multiset m, tr(m) provides a trace σ such that supp(σ̂) = {x|m(x) > 0}.

Workflow processes can be represented in a simple way by using Workflow Nets
(WF-nets). A WF-net is a Petri net where there is a place start (denoting the initial
state of the system) with no incoming arcs and a place end (denoting the final state of
the system) with no outgoing arcs, and every other node is within a path between start
and end. The transitions in a WF-net represent tasks. For the sake of simplicity, the
techniques of this paper assume models are specified with WF-nets3.

In this paper we are interested not only in sequential observations of a model, but
also in steps. A step is a sequence of multisets of activities. The following definitions
relate the classical semantics of models and its correspondence to step semantics. Like-
wise, we lift the traditional notion of fitness to this context.

Definition 2 (System Net, Full Firing Sequences). A system net is a tuple SN =
(N,mstart,mend), whereN is a WF-net and the two last elements define the initial and
final marking of the net, respectively. The set {σ | (N,mstart)[σ〉(N,mend)} denotes
all the full firing sequences of SN .

Definition 3 (Full Model Step-Sequence). A step-sequence σ̄ is a sequence of multi-
sets of transitions. Formally, given an alphabet T : σ̄ = V1V2 . . . Vn, with Vi ∈ B(T).
Given a system net N = (〈P, T,F〉,mstart,mend), a full step-sequence in N is a step-
sequence V1V2 . . . Vn such that there exists a full firing sequence σ1σ2 . . . σn in N such
that σ̂i = Vi for 1 ≤ i ≤ n.

The main metric in this paper to asses the adequacy of a model in describing a log
is fitness [13], which is based on the reproducibility of a trace in a model:

Definition 4 (Fitting Trace). A trace σ ∈ T ∗ fits SN = (N,mstart,mend) if σ coin-
cides with a full firing sequence of SN , i.e.,(N,mstart)[σ〉(N,mend).

Definition 5 (Step-Fitting Trace). A trace σ1σ2 . . . σn ∈ T ∗ step-fits SN if there ex-
ists full model step-sequence V1V2 . . . Vn of SN such that Vi = σ̂i for 1 ≤ i ≤ n.

3.2 Petri nets and Linear Algebra

Let N = 〈P, T,F〉 be a Petri net with initial marking m0. Given a feasible sequence
m0

σ→ m, the number of tokens for a place p in m is equal to the tokens of p in m0

plus the tokens added by the input transitions of p in σ minus the tokens removed by
the output transitions of p in σ:

m(p) = m0(p) +
∑
t∈•p
|σ|t F(t, p)−

∑
t∈ p•
|σ|t F(p, t)

3 The theory of this paper can deal with models having silent transitions. For the sake of sim-
plicity, we do not consider them in the formalization.

10000

01100

00011

01001 00101

1(−1)010

p5

t2

p4

t1

p1

t5 t6

p3p2

t3 t4

(a) (b)

t3 t4

t3 t4 t3
t4

t1

t2

t4

t5 t6

t3

t1

t5

negative
marking

01010

00002

00110

00200

00020

02000

m m0 N σ
0
0
1
1
0

 =


1
0
0
0
0

 +


−1 0 0 0 +1 +1
+1 −1 +1 0 −1 0
+1 −1 0 +1 0 −1
0 +1 −1 −1 0 0
0 +1 0 0 −1 −1



2
1
0
0
1
0


(c)

Fig. 1: (a) Petri net, (b) Potential reachability graph, (c) Marking equation.

The marking equations for all the places in the net can be written in the following
matrix form (see Fig. 1(c)): m = m0 +N · σ̂, where N ∈ ZP×T is the incidence matrix
of the net: N(p, t) = F(t, p) − F(p, t). If a marking m is reachable from m0, then
there exists a sequence σ such that m0

σ→ m, and the following system of equations
has at least the solution X = σ̂

m = m0 + N ·X (1)

If (1) is infeasible, then m is not reachable from m0. The inverse does not hold in
general: there are markings satisfying (1) which are not reachable. Those markings (and
the corresponding Parikh vectors) are said to be spurious [12]. Figure 1(a)-(c) presents
an example of a net with spurious markings: the Parikh vector σ̂ = (2, 1, 0, 0, 1, 0) and
the marking m = (0, 0, 1, 1, 0) are a solution to the marking equation, as is shown in
Fig. 1(c). However,m is not reachable by any feasible sequence. Figure 1(b) depicts the
graph containing the reachable markings and the spurious markings (shadowed). The
numbers inside the states represent the tokens at each place (p1, . . . , p5). This graph
is called the potential reachability graph. The initial marking is represented by the
state (1, 0, 0, 0, 0). The marking (0, 0, 1, 1, 0) is only reachable from the initial state
by visiting a negative marking through the sequence t1t2t5t1, as shown in Fig. 1(b).
Therefore, equation (1) provides only a sufficient condition for reachability of a marking
and replayability for a solution of (1).

For well-structured Petri nets classes equation (1) characterizes reachability. The
largest class is free-choice [11], live, bounded and reversible nets. For this class, equa-
tion (1) together with a collection of sets of places (called traps) of the system com-
pletely characterizes reachability [4]. For the rest of cases, the problem of the spurious
solutions can be palliated by the use of traps [5], or by the addition of some special

places named cutting implicit places [12] to the original Petri net that remove spurious
solutions from the original marking equation.

4 Approximate Alignment of Observed Behavior

Fig. 2: Process model

As outlined above, the fitness dimension re-
quires an alignment of trace and model, i.e.,
transitions or events of the trace need to be re-
lated to elements of the model and vice versa.
Such an alignment reveals how the given trace
can be replayed on the process model. The clas-
sical notation of aligning event log and process model was introduced by [1]. To achieve
an alignment between process model and event log we need to relate moves in the trace
to moves in the model. It may be the case that some of the moves in the trace can not be
mimicked by the model and vice versa, i.e., it is impossible to have synchronous moves
by both of them. For instance, consider the model in Fig. 2 and the trace σ = t1t1t4t2;
some possible alignments are:

γ1=
t1 t1 ⊥ t4 t2
t1 ⊥ t2 t4 ⊥

γ2=
t1 t1 ⊥ t4 t2
⊥ t1 t2 t4 ⊥

γ3=
t1 t1 t4 t2 ⊥
t1 ⊥ ⊥ t2 t4

γ4=
t1 t1 t4 t2 ⊥
⊥ t1 ⊥ t2 t4

The moves are represented in tabular form, where moves by trace log are at the top
and moves by model are at the bottom of the table. For example the first move in γ2 is
(t1,⊥) and it means that the log moves t1 while the model does not make any move.
Cost can be associated to alignments, with asynchronous moves having greater cost
than synchronous ones [1]. For instance, if unitary costs are assigned to asynchronous
moves and zero cost to synchronous moves, alignment γ2 has cost 3.

In this paper we introduce a different notion of alignment. In our notion, denoted
as approximate alignment, moves are done on multisets of activities (instead of sin-
gletons, as it is done for the traditional definition of alignment). Intuitively, this allows
for observing step-moves at different granularities, from the finest granularity (η = 1,
i.e., singletons) to the coarse granularity (η = |σ|, i.e., the Parikh vector of the model’s
trace). To illustrate the notion of approximate alignment, consider again the process
model in Fig. 2 and trace σ = t1t1t4t2. Some possible approximate alignments with
different level of granularities are:

α1=
{t1, t1, t4, t2}
{t2, t1, t4}

α2=
t1 t1 {t4, t2}
t1 ⊥ {t4 ,t2}

α3=
t1 t1 t4 t2 ⊥
⊥ t1 ⊥ t2 t4

For instance, approximate alignment α2 computes a step-sequence t1{t4, t2}, meaning
that to reproduce σ, the model first fires t1 and then the step {t4, t2} is computed, i.e.,
the order of the firings of the transitions of this step is not specified.

Definition 6 (Approximate Alignment). Let AM and AL be the set of transitions in
the model and the log, respectively, and ⊥ denote the empty multiset.

– (X,Y) is a synchronous move if X ∈ B(AL), Y ∈ B(AM) and Y = X
– (X,Y) is a move in log if X ∈ B(AL) and Y =⊥.

Fig. 3: Schematic of ILP approach for computing approximate alignments.

– (X,Y) is a move in model if X =⊥ and Y ∈ B(AM).
– (X,Y) is a approximate move if X ∈ B(AL), Y ∈ B(AM), X 6=⊥, Y 6=⊥,
X 6= Y , and X ∩ Y 6=⊥

– (X,Y) is an illegal move, otherwise.

The set of all legal moves is denoted as ALM . Given a trace σ, an approximate align-
ment is a sequence α ∈ A∗LM . The projection of the first element (ignoring ⊥ and
reordering the transitions in each move as the ordering in σ) results in the observed
trace σ, and projecting the second element (ignoring ⊥) results in a step-sequence.

Similar to the classical alignment, for a given trace different alignments can be de-
fined with respect to the level of agreement with the trace. Hence, a distance func-
tion Ψ : B(AL) × B(AM) → N must be defined for this goal. We propose the
following implementation of the function: Ψ(X,Y) = |X∆Y |, although other pos-
sibilities could be considered4. For example Ψ(α2) = Ψ({t1}, {t1}) + Ψ({t1},⊥
) + Ψ({t2, t4}, {t2, t4}) = 0 + 1 + 0 = 1. For the other approximate alignments
Ψ(α1) = 0 and Ψ(α2) = 3. Notice that the optimality (according to the distance func-
tion) of an approximate alignment depends on the granularity allowed.

5 Structural Computation of Approximate Alignments

Given an observed trace σ, in this paper we will compute approximate alignments using
the structural theory introduced in Section 3.2. The technique will perform the compu-
tation of approximate alignments in two pipelined phases, each phase considering the
resolution of an Integer Linear Programming (ILP) model containing the marking equa-
tion of the net corresponding to the model. The overall approach is described in Fig-
ure 3. In the first ILP model (ILP Similarity) a solution (the Parikh vector of a full firing
sequence of the model) is computed that maximizes the similarity to σ̂. Elements in σ
that cannot be replayed by the model in the Parikh vector found are removed for the next
ILP, resulting in the projected sequence σ′. These elements are identified as moves on
log cf. Definition 6, and will be inserted in the approximate alignment computed α. In
the second ILP model (ILP Ordering), it is guaranteed that a feasible solution contain-
ing at least the elements in σ′ exists. The goal of this second ILP model is to compute
the approximate alignment given a user-defined granularity: it can be computed from
the finest level (η = 1) to the most coarse level (η = |σ|).

4 X∆Y = (X \ Y) ∪ (Y \X).

5.1 ILP for Similarity: Seeking for an Optimal Parikh Vector

This stage will be centered on the marking equation of the input Petri net. Let J =
T ∩ supp(σ̂), the following ILP model computes a solution that is as similar as possible
with respect to the firing of the activities appearing in the observed trace:

Minimize
∑
t∈J

Xs[t]−
∑
t∈J

X[t], Subject to:

mend = mstart + N.X (2)
∀t ∈ J : σ̂[t] = X[t] +Xs[t]

X,Xs ≥ 0

Hence, the model searches for a vector X that both is a solution to the marking equa-
tion and maximizes the similarity with respect to σ̂. Notice that the ILP problem has an
additional set of variables Xs ∈ N|J|, and represents the slack variables needed when
a solution for a given activity cannot equal the observed number of firings. By mini-
mizing the variables Xs, and the variables Xs (negated), solutions to (2) clearly try to
both assign zeros as much as possible to the Xs variables, and the opposite for the X
variables in J (i.e., variables denoting activities appearing in σ).

Given an optimal solutionX to (2), activities ai such thatX[i] < σ̂(ai) are removed
from σ; in the simplest case, when X[i] = 0 and σ̂(ai) > 0, every occurrence of ai
in σ will not appear in σ′. However, if X[i] > 0 and X[i] < σ̂(ai), all possibilities of
removal should be checked when computing σ′5.

5.2 ILP for Ordering: Computing an Aligned Step-Sequence

The schematic view of the ILP model for the ordering step is shown in Fig. 4. Given
a granularity η, λ = d |σ

′|
η e steps are required for a step-sequence in the model that is

aligned with σ′. Accordingly, the ILP model has variablesX1 . . . Xλ withXi ∈ N|T | to
encode the λ steps of the marking equation, and variables Xs

1 . . . X
s
λ, with Xs

i ∈ N|J|
and J = T ∩supp(σ′), to encode situations where the model cannot reproduce observed
behavior in some of these steps. We now describe the ILP model in detail.

Objective Function The goal is to compute a step-sequence which resembles as much
as possible to σ′. Therefore transitions in supp(σ′) have cost 0 in each step Xi whilst
the rest have cost 1. Also, the slack variables Xs

i have cost 1.

Marking Equation Constraints The computation of a model’s step-sequence m0
X1→

m1
X2→ m2 . . .mλ−1

Xλ→ mend is enforced by using a chain of λ connected marking
equations.

Parikh Equality Constraints To enforce the similarity of the Parikh vectors X1 . . . Xλ

with respect to σ̂′, this constraints require the sum of the assignments to variables Xi

and Xs
i for every variable t ∈ J should be greater or equal to σ̂′(t). Given the cost

function, solutions that minimize the assignment for the Xs
i variables are preferred.

5 In our experiments, only the simplest cases were encountered.

Fig. 4: ILP model schema for the ordering step of Figure 3.

Step Granularity Constraints Require that the sum of model’s steps Xi and the slack
variables Xs

i is lower bounded by the given granularity η. Since the cost of variables
Xi is lesser than the cost of Xs

i variables, the solutions will tend to assign as much
as possible to Xi. Last step Xλ is not constrained in order to ensure the feasibility of
reaching the final marking mend.

Mimic Constraints The input sequence σ′ is split into λ consecutive chunks, i.e., σ′ =
σ′1σ

′
2 . . . σ

′
λ, with |σ′i| = η, for 1 ≤ i < λ. This set of constraints require at each step

that the multiset of observed transitions (Xi) must only happen if it has happened in the
corresponding chunk σ′i. It is worth to note that events with multiple occurrences are
distinguished based on their positions.
Once the two steps of Fig. 3 are performed, the gathered information is sufficient to

obtain an approximate alignment: on the one hand, the removed activities from the ILP
model (2) are inserted as “moves in the log”. On the other hand, the solution obtained
from the ILP model of Fig. 4 provide the steps that can be appended to construct the
final approximate alignment.
A note on completeness and optimality The global optimality guarantee provided in
the approach of this paper is with respect to the similarity between the Parikh vectors
of the computed and the observed trace. Informally, the technique searches for traces as
similar as possible (c.f., ILP models (2)) and then computes the ordering (with respect
to a given granularity). However, as the reader may have realized, by relying on the
marking equation the approach presented in this section may be sensible to the existence
of spurious solutions (see Sect. 3.2). This may have negative consequences since the

Fig. 5: Schema of the recursive approach.

marking computed may not be possible in the model, and/or the Parikh vectors may not
correspond to a real model trace. For the former problem (marking reachability), in case
of free-choice, live, bounded and reversible nets, this problem does not exists since the
structural theory completely characterizes reachability [12]. For non-structured process
models (e.g., spaghetti-like) or when the Parikh vector is spurious, the technique of this
paper may still be applied, if the results obtained are verified a-posteriori by replaying
the step-sequence computed. In Section 7 an evaluation over both well-structured and
unstructured process models is reported, showing the potentials of the technique in
practice for both situations.

6 The Recursive Algorithm

Section 5 shows how to compute approximate alignments using the structural theory
of Petri nets through the marking equation. The complexity of the approach, which is
NP-hard, can be measured by the size of the ILP formulation in the minimization step,
in terms of number of variables: given a trace σ and a model with |T | transitions and |P |
places, (|T |+|J |+|P |)·(|σ|/η) variables are needed, where η is the desired granularity
and J = T ∩supp(σ̂). This poses a problem for handling medium/large process models.

In this section we will present a way to fight the aforementioned complexity, by
using a recursive strategy that will alleviate significantly the approach presented in the
previous section. The first step will be done as before, so we will focus on the second
step (Ordering), and will assume that σ is the input sequence for this step. The overall
idea is, instead of solving a large ILP instance, solve several small ILP instances that
combined represent a feasible solution of the initial problem. Figure 5 illustrates the

recursive approach: given a trace σ, on the top level of the recursion a couple of Parikh
vectors X1, X2 are computed such that m0

X1→ m1
X2→ mend, by using the Ordering ILP

strategy of the previous section with granularity |σ|/2, with σ = σ1σ2. Some crucial
observations can now be made:

1. X1 and X2 represent the optimal Parikh vectors for the model to mimic the ob-
served behavior in two steps.

2. Elements from X1 precede elements from X2, but no knowledge on the orderings
within X1 or within X2 is known yet.

3. Marking m1 is the intermediate marking, being the final marking of X1, and the
initial marking of X2.

4. Elements in supp(X1) ∩ supp(σ̂1) denote those elements in σ1 that can be repro-
duced by the model if one step of size |σ|/2 was considered.

5. Elements in S1 = X1 \ supp(σ1|supp(X1)), denote the additional transitions in the
net that are inserted to compute the final ordering. They will denote skipped “model
moves” in the final alignment.

6. Elements in supp(Xs
1) denote those elements in σ2 that the model needs to fire in

the first part (but they were observed in the second part). They will denote asyn-
chronous “model moves” in the final alignment.

7. 4, 5, and 6 hold symmetrically for X2, Xs
2 and σ2.

The combination of these observations implies the independence between the com-
putation of an approximate alignment for σ1|supp(X1) · tr(S1) · tr(Xs

1) and tr(Xs
2) ·

σ2|supp(X2) · tr(S2), if the intermediate marking m1 is used as connecting marking be-
tween these two independent problems6. This gives rise to the recursion step: each
one of these two problems can be recursively divided into two intermediate sequences,
e.g., m0

X11→ m11
X12→ m1, and m1

X21→ m21
X22→ mend, with X1 = X11 ∪ X12 and

X2 = X21 ∪X22. By consecutive recursive calls, more precedence relations are com-
puted, thus progressing towards finding the full step sequence of the model.

Now the complexity analysis of the recursive approach can be measured: at the top
level of the recursion one ILP problem consisting of (|T | + |J1|) · 2 + |P | variables is
solved, with J1 = T ∩ supp(σ̂). In the second level, two ILP problems consisting of at
most (|T |+ |J2|) · 2 + |P | variables, with J2 = max(T ∩ (supp(σ̂1)∪X1 ∪Xs

1), T ∩
(supp(σ̂2)) ∪ X2 ∪ Xs

2). Hence as long as the recursion goes deeper, the ILP models
have less variables. The depth of the recursion is bounded by log(|σ|), but in practice
we limit the depth in order to solve instances that are small enough.

Fig. 6: Example with loop

Let us show how the method works step
by step for an example. Consider the model
in Fig. 6 and a given non-fitting trace like
σ = t5t1t3t4t4t3t4t3. On this trace ILP
model (2) will not remove any activity from
σ. We then concentrate on the recursive or-
dering step. First at the top level of Fig. 5 the solutions X1, Xs

1 , X2 and Xs
2 will be

computed, with λ = 2 .
6 Note the different way the traces are obtained, e.g., in the right part tr(Xs

2) is the leftmost part
since it denotes log moves that the model can produce on the left step.

α0=
σ1 = t5t1t3t4 σ2 = t4t3t4t3

X1 ∪Xs
1 = {t1, t3, t4, t2} X2 ∪Xs

2 = {t3, t3, t4, ts5, t2, t4}

Notice that when seeking for an optimal ordering, t5 does not appears in X1 since
then its firing will empty the net, and hence it appears in Xs

2 (to guarantee reaching
the final marking). The intermediate marking computed is m1 = {P2}. Accordingly,
σ1|supp(X1) · tr(S1) · tr(Xs

1) = t1t3t4 · t2 · ∅, and σ2|supp(X2) · tr(S2) · tr(Xs
2) = t5 ·

t4t3t4t3 · t2. Let us assume the recursion stops with subtraces of length less than 5, and
then the ILP approach (with granularity 1 in this example) is applied. The left part will
then stop the recursion, providing the optimal approximate alignment:

t5 t1 t3 t4 ⊥
⊥ t1 t3 t4 t2

For the subtrace on the right part, i.e., t5t4t3t4t3t2 the recursion continues. Apply-
ing again the ILP with two steps, with m1 = {P2} as initial marking, results in the
following optimal approximate alignment:

α1=
σ21 = t5t4t3 σ22 = t4t3t2

X21 ∪Xs
21 = {t3, t4, t2} X22 ∪Xs

22 = {t4, t3, ts5}

With m1 = {P2} as intermediate marking. Whenever the recursion goes deeper, tran-
sitions are re-arranged accordingly in the solutions computed (e.g., t2 moves to the left
part of α1, whilst t5 moves to the right part). The new two subtraces induced from α1

are t4t3t2 and t5t4t3. Since the length of both is less than 5, the recursion stops and the
ILP model with granularity 1 is applied for each one, resulting in the solutions:

α31=
t4 t3 ⊥
⊥ {t3, t4} t2

α32=
t4 t3 ⊥
⊥ {t3, t4} t5

So the final optimal approximate alignment can be computed by concatenating the
individual alignments found in preorder traversal:

α=
t5 t1 t3 t4 ⊥ t4 t3 ⊥ t4 t3 ⊥
⊥ t1 t3 t4 t2 ⊥ {t3, t4} t2 ⊥ {t3, t4} t5

which represents the step-sequence σ̄ = t1t3t4t2{t3, t4}t2{t3, t4}t5 from the model of
Fig. 6. Informally, the final approximate alignment reports that two activities t2 were
skipped in the trace, the ordering of two consecutive pair of events (t4t3) was wrong,
and transition t5 was observed in the wrong order. Also, as mentioned in previous sec-
tions, the result of proposed method is an approximation to the corresponding optimal
alignment, since some moves have non-singleton multisets (e.g., {t3, t4}). For these
moves, the exact ordering is not computed although the relative position is known.

7 Experiments

The techniques of this paper have been implemented in Python as prototype tool that
uses Gurobi for ILP resolution7. The tool has been evaluated over two different fami-
lies of examples: on the one hand, large and well-structured synthetic benchmarks used

7 The experiments have been done on a desktop computer with Intel Core i7-2.20GHz, and 5GB
of RAM. Source code and benchmarks can be provided by contacting the first author.

in [10] for the distributed evaluation of fitness (see Table 1). On the other hand, a col-
lection of large realistic examples from the literature has been also considered, some
of them very unstructured (see Table 2). We compare our technique over η = 1 with
the reference three approaches for computing optimal alignments from [1]8: With or
without ILP state space pruning, and the swap+replacement aware9.

Table 1: BPM2013 artificial benchmark datasets

Model |P | |T | |Arc| Cases Fitting |σ|avg
prAm6 363 347 846 1200 No 31
prBm6 317 317 752 1200 Yes 43
prCm6 317 317 752 500 No 43
prDm6 529 429 1140 1200 No 248
prEm6 277 275 652 1200 No 98
prFm6 362 299 772 1200 No 240
prGm6 357 335 826 1200 No 143

Table 2: Real benchmark datasets

Model |P | |T | |Arc| Cases Fitting |σ|avg
Banktransfer 121 114 276 2000 No 58
Documentflow 334 447 2059 12391 No 5
Documentflow2 337 456 2025 12391 No 5
BPIC15 2 78 420 848 832 No 53
BPIC15 4 178 464 954 1053 No 44
BPIC15 5 45 277 558 1156 No 51

Comparison for Well-Structured and Synthetic Models Figure 7 provides the compari-
son in CPU time for the two families of approaches. One can see that for event logs with
many short traces the approach from [1] takes advantage of the optimizations done in
the implementation, e.g., caching and similar. Notice that those optimizations can also
be implemented in our setting. But clearly, in large models and event logs with many
long traces (prDm6, prFm6 and prGm6) the three approaches from [1] either provide a
solution in more than 12 hours or crash due to memory problems (N/A in the figure),
while the recursive technique of this paper is able to find approximate alignments in a
reasonable time. We have monitored the memory usage: our techniques use an order of
magnitude less memory than the techniques from [1]. Finally, for these well-structured
benchmarks, the approach presented in this technique never found spurious solutions.

8 In spite of using η = 1, still the objects computed by our technique and the technique
from [1] are different, and hence this comparison is only meant to provide an estimation on
the speedup/memory/quality one can obtain by opting for approximate alignments.

9 The plugin ”Replay a log on Petri net for conformance analysis” from ProM with parame-
ters “A∗ cost-based fitness express with/without ILP and being/not being swap+replacement
aware”. We instructed the techniques from [1] to compute one-optimal alignment.

Fig. 7: Comparison of computation time for well-structured synthetic benchmarks.

Comparison for Realistic Benchmarks Figure 8 provides the comparison for the realis-
tic examples from Table 2. The figure is split into structured and unstructured models10.
Benchmark Banktransfer is taken from [15] and Documentflow benchmarks are taken
from [16]. Some event logs from the last edition of the BPI Challenge were used, for
which the models BPIC15 2, BPIC15 4, BPIC15 2 were generated using Inductive
Miner plugin of ProM with noise threshold 0.99, 0.5 and 0.2, respectively. For the struc-
tural realistic models, the tendency of the previous structured benchmarks is preserved.
For the two unstructured benchmarks, the technique of this paper is able to produce ap-
proximate alignments in considerably less time than the family ofA∗-based techniques.
Moreover, for the benchmarks from the BPI challenge, theA∗-based techniques crashes
due to memory problems, whilst our technique again can handle these instances. The
memory usage of our technique is again one order of magnitude less than the compared
A∗-based techniques, but for the unstructured models spurious solutions were found.

Table 3: Quality comparison.

Model/ Case ED Jaccard MSE

prAm6 0.25 0 0.0002
prBm6 0 0 0
prCm6 2.99 0.01 0.0093
prEm6 0 0 0
Banktransfer 4.30 0.04 0.0400
Documentflow 3.16 0.27 0.0310
Documentflow2 3.17 0.29 0.0330

Quality of Approximate Alignments Table 3
reports the evaluation of the quality of the re-
sults obtained by the two approaches for the
cases where [1] provides a solution. We con-
sidered two different comparisons: i) fine-
grained comparison between the sequences
computed by [1] and the step-sequences of
our approach, and ii) coarse-grained com-
parison between the fitness value of the two
approaches. For i), we considered two possi-
bilities: using the Edit or Jaccard distances.
For the first, given a trace σ and a step-sequence γ̄, we simply take the minimal edit
distance between σ and any of the linearizations of γ̄. For the Jaccard distance, which
measures similarities between sets, we considered both objects as sets and used this
metric to measure their similarity. In the table, we provide the average of these two

10 Most of the realistic benchmarks in Table 2 have silent transitions.

Fig. 8: Comparison of computation time for realistic benchmarks.

metrics per trace, e.g. for prAm6 the two approaches are less than 1 edit operation
(0.25) different on average. For measuring ii), the Mean Square Root (MSE) over the
fitness values provided by both metrics is reported. Overall, one can see that both in
fine-grained and coarse-grained comparisons, the approach of this paper is very close
to the optimal solutions computed by [1], specially for well-structured models.

8 Conclusions and Future Work

Approximate alignments generalize the notion of alignment by allowing moves to be
non-unitary, thus providing a user-defined mechanism to decide the granularity for ob-
serving deviations of a model with respect to observed behavior. A novel technique for
the computation of approximate alignments has been presented in this paper, based on
a divide-and-conquer strategy that uses ILP models both as splitting criteria and for ob-
taining partial alignments. The technique has been implemented as a prototype tool and
the evaluation shows promising capabilities to handle large instances.

As future work, we see many possibilities. On the one hand, a thorough evaluation
of the quality of the obtained results over a large set of benchmarks will be carried out.
Second, extending the current theory to deal with models having duplicate transitions
will be considered. Also, the incorporation of natural optimizations like parallelization
and caching would have an strong impact. Finally, as the recursive method presented
in this paper can be used as a high-level strategy for partitioning the alignment com-
putations, we plan to combine it with the A∗ approach from [1] for computing partial
alignments on the leafs of the recursion.

Acknowledgments. This work was supported by the Spanish Ministry for Economy
and Competitiveness (MINECO) and the European Union (FEDER funds) under grant
COMMAS (ref. TIN2013-46181-C2-1-R).

References

1. Arya Adriansyah. Aligning observed and modeled behavior. PhD thesis, Technische Uni-
versiteit Eindhoven, 2014.

2. Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen, and Wil
M. P. van der Aalst. Measuring precision of modeled behavior. Inf. Syst. E-Business Man-
agement, 13(1):37–67, 2015.

3. Joos C. A. M. Buijs. Flexible Evolutionary Algorithms for Mining Structured Process Mod-
els. PhD thesis, Technische Universiteit Eindhoven, 2014.

4. J. Desel and J. Esparza. Reachability in cyclic extended free-choice systems. TCS 114,
Elsevier Science Publishers B.V., 1993.

5. J. Esparza and S. Melzer. Verification of safety properties using integer programming: Be-
yond the state equation. Formal Methods in System Design, (16):159–189, 2000.

6. Dirk Fahland and Wil M. P. van der Aalst. Model repair - aligning process models to reality.
Inf. Syst., 47:220–243, 2015.

7. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Scalable process discovery
with guarantees. In Enterprise, Business-Process and Information Systems Modeling - 16th
International Conference, BPMDS 2015, 20th International Conference, EMMSAD 2015,
Held at CAiSE 2015, Stockholm, Sweden, June 8-9, 2015, Proceedings, pages 85–101, 2015.

8. Xixi Lu, Dirk Fahland, and Wil M. P. van der Aalst. Conformance checking based on par-
tially ordered event data. In Business Process Management Workshops - BPM 2014 Interna-
tional Workshops, Eindhoven, The Netherlands, September 7-8, 2014, Revised Papers, pages
75–88, 2014.

9. Xixi Lu, Ronny Mans, Dirk Fahland, and Wil M. P. van der Aalst. Conformance checking in
healthcare based on partially ordered event data. In Proceedings of the 2014 IEEE Emerging
Technology and Factory Automation, ETFA 2014, Barcelona, Spain, September 16-19, 2014,
pages 1–8, 2014.

10. Jorge Munoz-Gama, Josep Carmona, and Wil M. P. van der Aalst. Single-entry single-exit
decomposed conformance checking. Inf. Syst., 46:102–122, 2014.

11. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–574, April 1989.

12. M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear programming techniques
for the analysis of place/transition net systems. In Reisig, W. and Rozenberg, G., editors,
Lecture Notes in Computer Science: Lectures on Petri Nets I: Basic Models, volume 1491,
pages 309–373. Springer-Verlag, 1998.

13. Wil M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement of
Business Processes. Springer, 2011.

14. Wil M. P. van der Aalst. Decomposing Petri nets for process mining: A generic approach.
Distributed and Parallel Databases, 31(4):471–507, 2013.

15. Seppe K. L. M. vanden Broucke, Jorge Munoz-Gama, Josep Carmona, Bart Baesens, and
Jan Vanthienen. Event-based real-time decomposed conformance analysis. In On the Move
to Meaningful Internet Systems: OTM 2014 Conferences - Confederated International Con-
ferences: CoopIS, and ODBASE 2014, Amantea, Italy, October 27-31, 2014, Proceedings,
pages 345–363, 2014.

16. Jochen De Weerdt, Seppe K. L. M. vanden Broucke, Jan Vanthienen, and Bart Baesens.
Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng.,
25(12):2708–2720, 2013.

