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ABSTRACT 

A new criterion for driving a recursive partitioning decision rule 

for nonparametric classification is presented. The criterion is 

both conceptually and computationally simple, and can be shown to 

have strong statistical merit. The resulting decision rule is asymp- 

totically Bayes risk efficient. The notion of adaptively generated 

features is introduced and methods are presented for dealing with 

missing features in both training and test vectors. 
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Introduction 

In many classification problems, the underlying class conditional 

probability densities are either partially or completely unknown. Con- 

sequently, the classification logic must be designed from information 

measured from representative samples drawn from each class. The non- 

parametric classification problem may be stated in the following manner. 

A random p-dimensional vector of observed features, x", is thought to be- 

long to one of M populations, K~, f12...flM, characterized by density dis- 

tributions that are unspecified. On the basis of these features, a de-. 

cision is made as to which distribution function characterizes x", using 

a training set of vectors drawn from each of the populations, 7c1, 7~2."~~. 

The nonparametric decision rules that have received the most atten- 

tion are the k-nearest neighbor decision rules first introduced by Fix and 

Hodges [1,2]. The training samples from the M populations are combined 

into a single population with each vector tagged as to the class from 

which it originated. The k closest training vectors to ?(with respect 

to a specified distance function and metric) are located,and x"is assigned 

to the class with the largest representation in this set. These authors 

investigated the rule for k +oo and showed that the procedure is asymp- 

totically Bayes risk efficient, if k is chosen to be a function of the 

training sample size, N, such that lim k(N) = co, while lim[k(N)/N] = 0. 
N+CD N-+CC 

The rule for fixed k has been investigated by Cover and Hart [3]. 

They show that for the extreme case of k=l (nearest neighbor decision 

rule), the asymptotic probability of misclassification is bounded from 

above by P[2 - W/(M-l)] where R* is the Bayes probability of misclassi- 

fication. 
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Despite their desirable statistical properties and intuitive appeal, 

the k-nearest neighbor decision rules have not found widespread appli- 

cation to classification problems. This is due, mainly, to their compu- 

tational complexity. Although considerable progress has been made re- 

cently in this regard [4], finding the nearest neighbors to a point in 

p-dimensional space is relatively expensive computationally. Techniques 

for using the full training sample to extract a subset of points with 

relatively high discrimination information have been proposed [5,6]. The 

k nearest neighbor rule is then applied to this reduced subset. 

Another problem with the decision rules discussed above (as well 

as almost all others) is that they lack an invariance that is intrinsic 

to the classification problem, namely invariance under all strictly mono- 

tone transformations of the feature axes. The maximal invariants are the 

coordinate-wise ordered population levels of the training sets. Unfor- 

tunately, the performance of these decision rules can depend greatly on 

the choice of a particular transformation. Feature subset selection and 

choice of metric are examples of trying to find good linear transforma- 

tions. The optimum transformation, however, may not be linear. For ex- 

ample, a metric that is good in one region of the feature space may not 

be good in another. A feature subset that contains a great deal of dis- 

criminating information in some regions of the space may contain little 

or none in other regions. Discovering the best nonlinear transformation 

of the feature axes for a particular decision rule and training data sam- 

ple is a difficult problem and no general solut6ons have yet been proposed. 

An alternate approach is to design the decision rule so that it con- 

tains the desired invariance properties. Anderson [7] presents decision 

rules based on statistically equivalent blocks or distribution free 
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tolerance regions. These rules partition the multivariate feature space 

on the basis of a set of prespecified functions. Although these rules 

possess the desired invariance and can be shown to be asymptotically 

Bayes risk efficient, they may be no more useful than random assignment 

for moderate sample sizes. 

Henrichon and Fu [83 and Meisel and Michalopoulos [9] present heur- 

istic strategies for feature space partitioning based directly on the 

class identities of the training samples. These strategies recursively 

partition the marginal distributions of training sample subsets. These 

subsets are obtained from previous such partitionings. At each stage, 

the number of partitions, their location, and the particular feature used 

for the partitioning is decided, using a heuristic measure of the mis- 

classification rate based on the training sample identities. These de- 

cision rules maintain the desired invariance to all monotone transfor- 

mations of the features. Although asymptotic results are not available 

concerning their Bayes risk efficiency, empirical evidence and common 

sense indicate that they can perform well with moderate training sample 

sizes. In addition, Meisel and Michalopoulos observe that these parti- 

tionings can be represented by binary decision trees. They apply a dy- 

namic programming technique for finding the decision tree that tends to 

minimize the average number of comparisons required to arrive at a de- 

. . cision, given a particular partitioning of the feature space. 

This note proposes a different criterion for driving the recursive 

feature space partitioning algorithms of Henrichon and Fu, and Meisel and 

Michalopoulos. This criterion is especially simple and is motivated di- 

rectly from considerations of Bayes risk efficiency. In fact, the de- 

cision rule that results can be shown to be asymptotically Bayes risk 
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efficient with no assumptions concerning the underlying class probability 

densities [lo]. Computationally, the procedure is quite fast both in 

the training and classification stages. Methods for using vectors with 

missing coordinates in both training and classification are presented. 

Recursive Partitioning 

Consider first the simplest case of only two classes (M=2). The 

decision rule for the multiclass problem will be seen below to be a 

natural extension of the two-class rule. Let f,(?) and f,(?) represent. 

the (unknown) probability density functions of the two classes and Fl(a 

and F2(?) their corresponding cumulative distributions. Assume that the 

losses for misclassification are &, and t2, respectively, and fll and fl2 

are the corresponding prior probabilities. We make the restriction 

Ll 11 
= t21Tc2. Extensions to the general case are straightforward [lo]. 

Suppose for the moment FL(x) and F2(x) are known univariate distri- 

butions. Staller [ll] shows that if one were to cut the real line at a 

point, assigning the left region to one class and the right to the other, 

the point x* that minimizes the Bayes risk of misclassification is the 

point that maximizes the quantity 

D(x) = IFl(x) - F2(x)i - (1) 
that is 

D(x*) = max D(x) . (2) 

The quantity D(x*) is the well-known Kolmogorov-Smirnov distance between 

the two distributions. In many situations, a single cut would not pro- 

vide adequate discrimination; for example, if fl(x) and/or f2(x) were 

multimodel. In this case, the Stoller procedure could be extended by 

reapplying it to each of the two subintervals defined by the first par- 
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titioning, resulting in four cuts. This Stoller partitioning can be 

recursively applied to each interval defined by the previous partitioning, 

unless the interval meets a terminal criterion (depending on FL(x) and 

F2(x) in the interval) at which point the interval is not divided fur- 

ther. A terminal interval is called a class one cell if Fl(x) > F2(x); 

otherwise, it is called a class two cell. --- 

The Kolmogorov-Smirnoff distance is a well-known measure of the separ- 

ability of two distribution functions. A natural extension of Staller 

partitioning to the multivariate case would be to cut on that feature for 

which the Kolmogorov-Smirnov distance between the two marginal class dis- 

tributions is greatest. As with the univariate case, one could apply 

the partitioning recursively to each subpopulation until it meets a 

terminal criterion, at which time it is assigned to one of the two classes. 

In nonparametric applications, the marginal cumulative distributions 

FL(x) and F2(x) are not known. However, they are easily estimated from 

the empirical cumulative distributions 8',(x) and p,(x) by 

0 x < x;i’ 

pi(x) = k/n xki) 5 x < x1':; 
; (3) 

1 ,(i) (x 
n 

where xp) is the kth point of the ith class with the points ordered in 

ascending values of x. Here n is the cardinality of the subsample under 

consideration. 

A nonparametric recursive partitioning algorithm for two-class dis- 

crimination can proceed as follows. If the subsample meets the terminal 

criterion, it is assigned to one of the two classes. Otherwise, the 

Kolmogorov-Smirnov distance between the empirical marginal distributions 
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of the two classes, 

D(xJ) = max IP,(xj) - F2(xj)l J 
xj 

(4) 

is evaluated for each f.eature, j, in turn and the one for which D(x:) is 

largest is chosen as the one to be cut. That is, 

D(xJ,) = max D(xS) . (5) 
J 

The location of the cut is taken to be xJ*. 

Since the partitioning procedure deals only with marginal distri- 

butions, there is nothing that restricts it to the p-original features. 

Based on his knowledge of the problem, the researcher can manufacture new 

or transgenerated [8] features that are general functions of the original 

features. At each stage in the partitioning, the feature for which D(xS) 

is largest will be chosen. This maximization can be performed over all 

features, original and manufactured. The algorithm chooses the one that 

yields the best marginal discrimination at each stage of the partitioning. 

Features containing little or no discriminating information are simply 

ignored so that there is no loss in adding any number of extra trans- 

generated features. However, there is a great deal to be gained if one 

or several of these transgenerated features yield good discrimination 

for some of the partitioned subsamples. 

It is not necessary that these additional features be manufactured 

in advance of the partitioning. They can be constructed as the parti- 

tioning progresses, and made dependent upon the particular subsample to 

which they are applied. For example, one might add the feature set 

'i 
= 2.2 

i (6) 

where the w" i are the eigenvectors associated with the largest several 

eigenvalues of the matrix BC -1 
. Here B is the between class scatter 

matrix and C is the within class scatter matrix for the particular sub- 
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sample under consideration. Thus, the manufactured feature set can it- 

self adapt to different subsamples and different regions of the feature 

space. In several applications, we have found it useful to add the 

single adaptive feature 

y = xv? (7a) 

where 

9 = [v, + v2] -1 * ( 2.1-22) (m) 

is the direction associated with the Fisher linear discriminant. Here 

zi and Vi (i=l,2) are the subsample mean and covariance matrices of the 

two classes. Although these generated features may be motivated by para- 

metric considerations, they will be incorporated into the decision rule 

only if they are found to be useful on the basis of the nonparametric 

Kolmogorov-Smirnov criterion. 

It should be noted that the addition of adaptively generated fea- 

tures can cause the resulting decision rule to no longer be invariant 

under all strictly monotone transformations of the original features. 

For those suggested above, however, the rule is invariant to linear trans- 

formations. 

Terminal Criteria 

It remains to specify the criterion that stops the partitioning of 

a subsample establishing a terminal cell. The partitioning should clearly 

terminate if the subsample contains training vectors only from a single 

class, since further partitioning cannot change any class assignments. 

One possibility is to make this the sole criterion for termination. This 

results in all of the training vectors themselves being correctly classi- 

fied by the decision rule. However, this criterion is best only if it 

is known in advance that there is no overlap in the feature space between 
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the underlying class probability densities. That is, 

q3 d;;' = 0 . 

When the probability densities do overlap,the optimal Bayes decision rule 

does not correctly classify all of the training vectors. Since the pur- 

pose of the nonparametric procedure is to use the training sample to 

estimate as closely as possible the Bayes decision boundary, requiring 

it to correctly classify all of the training vectors would degrade its 

performance in overlap situations. 

The class assignment of terminal cells is made on the basis of the 

estimated density ratio fl/f2 within the cell. The cardinality of the 

subsample within each cell should be large enough to provide a reasonable 

estimate of this density ratio. Thus, the partitioning of a cell should 

terminate whenever it cannot be further partitioned in a way that insures 

at least k subsamples remaining in each of the two daughter cells. Here 

k is a preset absolute minimum subsample size for all terminal cells. 

Also, the maximum for the Kolmogorov-Smirnov distance (eqn 1) should be 

sought in the restricted range x k+l 
<xix 

n-k 
so that no cell can be 

created with less than k subsamples. 

The minimum cell sample size, k, is a parameter of the algorithm. 

The best choice for its value is problem dependent. It should increase 

with increasing total sample size N, more slowly than N. Gordon and 

Olshen [lo] prove that the recursive partitioning procedure described in 

this paper is asymptotically Bayes risk efficient provided 

lim k(N) = o lim k(N) 
N-co N 

and 
N+cow =co ' 

A method is described below for estimating the best value of k for a par- 

ticular problem from the training sample itself. 
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Implementation 

Meisel and Michalopoulous [g] note that any partitioning of a co- 

ordinate space can be represented by a binary tree. They develop dy- 

namic programming techniques for constructing the particular tree that 

tends to minimize the average number of comparisons required to arrive 

at a terminal cell. Their techniques can be applied to the partitioning 

that results from the algorithm described here. 

Because the partitioning in this algorithm is binary at each stage, 

it is possible to directly build a representative binary tree as the pa'r- 

titioning progresses. A subsample at any stage in the partitioning is 

represented by a node of the tree. The root of the tree represents the 

entire training sample. The two sons of each nonterminal node represent 

the two subsamples defined by its partitioning. The terminal nodes of the 

tree represent the terminal cells. Each nonterminal node must store the 

feature number and split point used in its partitioning, as well as pointers 

to its two sons. If the feature used for splitting was adaptively gen- 

erated from the subsample itself, then the parameters for generating the 

feature must be stored. Each terminal node stores the number of training 

vectors from each class contained in its corresponding terminal cell. 

Classification Rule 

The rule for classifying a test vector is simply to assign it to the 

class that the partitioning algorithm has assigned to the cell in which 

it lies. With the binary tree representation of the partitioning, this 

can be accomplished easily and quickly. Starting at the root, the test 

vector is directed down the tree until it arrives at a terminal node. If 

the terminal node represents a unique class, the test vector is assigned 

to that class. If the node represents mixed classes, then the test vector 
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I 

is assigned to the class with majority representation. While descending 

the tree, the decision to go left or right at each nonterminal node is 

made as follows: 

* 
if x.* 5 x.* 

J J 
go to left son 

else go to right son. 

Here j* is the partitioned feature (original, transgenerated, or adaptive) 

* 
and x.* 

J 
the corresponding split point stored at the node. 

Multiclass Discrimination 

A straightforward extension of this technique to multiclass problems 

is to treat an M-class problem as a series of two-class problems. For 

each two-class problem, a recursive partitioning is -performed to separate 

one of the class populations, i, from all of the others. In each terminal 

cell of each tree, the number of training vectors, Ci, of the particular 

class to be separated, and the number, Oi, corresponding to the other classes 

are stored. A test vector to be classified is directed down 

trees to M corresponding terminal cells. The test vector is 

the class j for which C 
2 

- Oj is maximum over these M cells. 

all M decision 

assigned to 

Although it might appear that this procedure increases the ccmplexity 

of the decision rule by a factor of M, this is not the case. For each of 

the M decision trees, the object is to separate a single class, i, from 

all of the others. Partitioning will occur only near the decision 

boundaries of class i. Training vectors from other classes not near the 

boundary will quickly be assigned to large cells containing no class i 

vectors during the very early stages of partitioning, and thus are re- 

moved from consideration in the later stages. Only those non-class i 

vectors near the class i boundary participate significantly in the par- 

titioning of the feature space for each class i decision tree. 
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Missing Features 

This decision rule can easily accommodate missing features in the 

test vectors as well as the training vectors. Missing features in a 

vector to be classified cause problems only if a feature that 

is not present is used for partitioning at a node 

onthe path from the root to its terminal node. If this does not happen, 

then the vector will arrive at a unique cell in each decision tree and 

be classified in the usual way. If a node is encountered in which the :I 

discriminating coordinate is missing, then a decision as to which branch 

to take cannot be made, and the point is directed down both branches. 

This causes the test vector to ultimately appear in several terminal 

cells in e7ach tree. The number of cells in which it will appear in each 

tree is one more than the number of ambiguous nodes it encounters. The 

vector is assigned to the class with the largest representation in the 

union of these cells. 

Training vectors with missing features are handled similarly. Those 

vectors with their jth coordinate missing, simply do not participate in 

evaluation of the Kolmogorov-Smirnov distance for that coordinate. If 

the jth coordinate turns out to be the one chosen for partitioning, then 

those vectors missing that coordinate are included in both descendent 

subsamples. 

Transgenerated or adaptive features are functions of the original 

measured features. One or several missing original features can cause 

many transgenerated or adaptive features to be uncalculable. If a great 

many partitioned features turn out to be of this manufactured type, simply 

taking both branches at each one encountered may discard too much dis- 

criminating information. An alternative at each such node would be to 
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substitute for the missing original feature, a nominal value (for ex- 

ample, the mean) taken from the training sample represented by that node. -_I- 

Restricting the subsample to only that represented by the particular 

node in question, allows any dependencies that may exist in the training 

data between the measured features, to be used to advantage in estim- 

ating a nominal value for the missing feature. 

Limitations and Extensions 

There is an intrinsic limitation to the recursive partitioning des- 

cribed above (as well as those of References 8 and 9). This limitation' 

is a direct consequence of the fact that information from marginal dis- 

tributions only is used to drive the partitioning. Although they are 

unlikely to be encountered in practice, there are special situations in 

which this limitation can adversely affect the performance of the de- 

cision rule. 

The general partitioning problem at a particular node in the de- 

cision tree can be described as follows: Given (A) the particular set 

of partitions that lead to the node (i.e., those defined on the path 

to it from the root) and (B) all possible subsequent partitionings in 

the subtree below it, choose the best feature and location for the cut 

at that particular node. The recursive partitioning algorithm described 

above uses the information only from part A. That is, it makes the best 

possible cut at each node (given the cuts leading to the subsample repre- 

sented by the node) assuming that its two sons will be terminal. The 

procedure does not "look ahead" to all possible sequences of cuts choosing 

the first of the best sequence [12]. Thus, the resulting feature space 

Partitioning is clearly suboptimal in a statistical sense. 

A complete look ahead is not computationally feasible, even for very 

small sample sizes. However, a restricted L-level look ahead might be 
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feasible for small to moderate training sample sizes. In this mode, each 

feature is provisionally cut as if it were the one with the maximum 

Kolmogorov-Smirnov distance. Each set of daughter subsamples are also 

each provisionally cut along all of the features in the same manner, and 

so on. The provisional partitioning is continued for L-levels or until 

nodes become terminal. All of the resulting partitioning sequences are 

evaluated and the best one is identified. (For p features, pLt' is an 

upper limit on the number of such sequences). The original cut that leads 

to the best sequence is the one chosen. This L-level look ahead is re-' 

stricted in that it looks for the best sequence of cutting features, but 

does not optimize with respect to cut locations. Each provisional cut is 

made at that point which maximizes the Kolmogorov-Smirnov distance. Com- 

putational considerations usually restrict L to be a very small number. 

Also, except in unusual situations, very little decrease in expected error 

rate is obtained by increasing L.. 

Computational Considerations 

Computationally, the partitioning procedure described in the previous 

sections is quite fast, both in the training and classification stages. 

The computational requirements depend upon the minimum cell subsample size 

k and look ahead level L employed, as well as the separability of the 

class populations. When the underlying class probabilities overlap very 

little and the decision boundary between them is relatively simple, the 

algorithm can quickly construct large cells containing training vectors 

from a single class. This considerably reduces the number of nodes in 

the decision tree. 

A worst case occurs when there is no difference between the class 

probability densities. In this case, the partitioning algorithm con- 
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structs a random binary tree. Although no discrimination is possible in 

this situation, we can use it to estimate an upper bound on the average 

computation. It is well known that the average computation required to 

build a random binary tree is proportioned to W(N)log n, while the aver- 

age search requires computation proportional to log n. Here n is the 

number of nodes in the tree and W(N) is the computation associated with 

each level in the tree. The number of nodes in the tree is N/k. Because 

sorting is required for each marginal distribution, the computation re- 

quired at each level to select the partitions is approximately 

W(N)I-pL%logN, 

so that the total average computation to build the tree is 

(10) 

The average computation to descend the tree for classification of a test 

vector is simply proportional to log(N/k).(l) These calculations are 

quite crude and represent the average computation only for a worst case, 

namely, maximal overlap of the underlying probability densities. They 

do, however, give an indication of how the computational requirements 

depend upon the various parameters of the problem. (2) 

Discussion 

The principal difference between the recursive partitioning algo- 

rithm described here and earlier ones t-83 [g] is the use of the 

Kolmogorov-Smirnov criterion for selecting both the feature and location 

for the cut at each stage in the partitioning. This criterion is both 

conceptually and computationally simple, and can be shown to have strong 

statistical merit [ll]. The resulting decision rule can be shown to be 

asymptotically Bayes risk efficient [lo]. The notion of adaptively gen- 

erated features is introduced and methods are described for dealing with 

missing features in both training and test vectors. 
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In an operational sense, this method differs in that at each stage 

of the partitioning only a single cut is performed. At first thought, 

one might be motivated to make several cuts on a single marginal distri- 

bution, especially if there were several sequences of runs of a single 

class. The strategy of the recursive partitioning presented here is to 

make the single cut that yields the best marginal class separation. (Note 

that from its definition (eqns l-3), the Kolmogorov-Smirnov criterion can 

cause a split only at boundaries between two runs and never within a run.) 

After the split, all of the marginal distributions of the two daughter 

subsamples are examined and each subsample is cut on its respective best 

feature. It may be that the same feature that was used to cut the parent 

subsample is also the best for cutting both daughters. If so, the Kol- 

mogorov-Smirnov criterion will select it. However, making several cuts 

on a single marginal distribution presupposes that this is the case with- 

out examination of the other marginals after each cut. 

An important by-product of purely binary partitioning is that a 

binary decision tree representing the partitioning can be easily con- 

structed as the partitioning progresses. 

There are two parameters associated with this algorithm, the mini- 

mum terminal cell sample size, k, and the look ahead level L. Compu- 

tational considerations usually restrict L to a very small value (for 

example zero). As discussed above, very little is gained by increasing 

the level of look ahead, except in special situations. One strategy 

would be to invoke a look ahead only at those nodes in the decision tree 

where none of the single marginal distributions provide adequate in- 

crease in discrimination. For these cases, it could be that the best 

pair (or perhaps triple) might provide a substantial increase over that 

of the best single feature. 
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The optimum value for k is problem dependent. Experience has in- 

dicated that the performance of the decision rule is not particularly 

sensitive to its value over reasonable ranges. Because of the small 

computational requirements of this procedure in both training and classi- 

fication, it is feasible to use the "leave-m-out" technique to estimate 

the best value of k directly from the training sample. A small number 

m < N of vectors are deleted from the training set and the remainder are 

used to design the decision tree. The left out vectors are then classi- 

fied'by the resulting decision rule and the number of errors are recorded. 

This procedure is repeated [N/m? times, each with a different set of de- 

leted vectors. The error rate averaged over all of these trials is an 

estimate of the error rate for the decision rule. The value of k can be 

adjusted to minimize this estimated error rate. 

Simulation Experiments 

Applications of this decision rule are illustrated on two simulated 

problems. Simulated data are used so that the performance can be judged 

in light of the known separability of the underlying class probability 

densities and the complexity of the decision boundaries. The first 

example is a two-class problem that is constructed so that all linear 

classifiers have no discriminating ability. The second example 

is a seven-class problem. In both experiments, the decision rule was 

implemented with no transgenerated features and only one adaptive fea- 

ture, namely, the Fisher linear discriminant direction (Eqn 7). No 

look ahead was employed (L=O) and the minimum cell sample size was ar- 

bitrarily chosen to be ten (k=lO) on the basis of no optimization. The 

results reported for each simulated experiment were obtained by gener- 
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ating twenty independent sets of training samples and a corresponding 

twenty sets of 1000 test vectors. For each of these twenty trials, the 

training sample was used to classify the 1000 test vectors. The stat- 

istics listed in Tables 1 - 2 were obtained by averaging the results 

over these twenty trials. The statistical uncertainties were obtained 

by dividing the standard deviation about the mean by the square root of 

twenty. 

A. Two-Class Spherical Discrimination 

In this problem, the probability density function of one class 

population completely surrounds that of the other. The first four fea- 

tures of the first population are distributed uniformly within a four- 

dimensional spherical slab centered at the origin with inner radius 3.3 

and outer radius 4.0. The last six features are distributed as a spheri- 

cal normal distribution located at the origin with unit covariance matrix. 

All ten features of the second population are normally distributed with 

unit covariance matrix and zero location. Thus, the two distributions 

differ only in the first four features and the last six contain no dis- 

criminating information. In order to make the problem more 

realistic, the spherical symmetry was removed by scaling each feature 

by its feature number. That is, the first coordinate is scaled by 

unity, the second by two, and so on, the last being scaled by ten. The 

asymptotic Bayes error rate for this experiment is 0.64s. A training 

sample size of 500 was used for each class. 

Table 1 shows the results of applying the recursive partitioning 

decision rule to this problem and compares it to nearest neighbor dis- 

crimination in terms of average error rate, decision time and memory 

requirement. (3) 
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B. Multiclass Simplex Problem 

This example consists of seven populations, each normally distri- 

buted in six dimensions with unit covariance matrix. Each distribution 

is located at a different vertex of a six-dimensional regular simplex 

and separated by a distance oftiur. A training sample size of 500 was 

used for each class. The asymptotic Bayes error rate for this example 

is 9.6$. The results are shown in Table 2. 

Although these examples were constructed to be difficult, the re- 

cursive partitioning decision rule is seen to have comparable error rate 

to nearest neighbor discrimination, while requiring substantially less 

computational resources. 
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TABLE 1 

Two-Class Spherical Discrimination Problem 

Asymptotic Bayes Error Rate = 0.64s 

500 Training Vectors/Class 

Recursive Nearest 
Partitioning Neighbor 

Error Rate ($) 

Average Decision Time (ms) 

Memory (bytes) 

16.910.5 35.2-fo.3 .~ 

0.099 12.5 

1061 40000 

TABLE 2 

Seven-Class Simplex Discrimination Problem 

Asymptotic Bayes Error Rate = 9.6s 

500 Training Vectors/Class 

Error Rate ($) 

Average Decision Time (ms) 

Memory (bytes) 

Recursive 
Partitioning 

13.3kO.3 

0 *59 

go16 

Nearest 
Neighbor 

15.920.3 

7.66 

28000 
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FOOTNOTES 

(1) If, during the descent, a substantial number of nodes are encoun- 

tered that cut on adaptive features, the computation is increased 

by the time required to compute the features at each of these nodes. 

(2) As a point of reference, the computation required to perform the 

recursive partitioning for the example in Table 1 (p=lO, N=lOOO, 

k=lO, and L=O) was 3.2 CPU seconds. See Footnote 3 below for com- 

putational details. 

(3) All simulation experiments were performed on an IBM 370/168 com- 

puter with programs coded in FORTRAN IV and compiled with the IBM 

FORTRAN H (extended) compiler at optimization level two. Compu- 

tational performance is stated in terms of average CPU milliseconds 

required to classify unknown test vectors. Memory requirements are 

reported in bytes (8-bits) under the assumption that integer pointers 

can be stored as halfword quantities (2 bytes), while real variables 

are stored in full words (4 bytes). The fast near neighbor algorithm 

of [4] was employed for all nearest neighbor calculations. 

- 20 - 



REFERENCES 

[ l] E. Fix and J.L. Hodges, Jr., "Discriminatory analysis, nonparametric 

classifications," USAF Sch. Aviat. Med., Rep. 4, Feb. 1951. 

c21 ) "Discriminatory analysis, small sample performance," USAF 

Sch. Aviat. Med., Rep. 11, Aug. 1952. 

[ 31 T.M. Cover and P.E. Hart, "Nearest neighbor pattern classification," 

IEEE Trans. Inform. Theory, Vol. IT-13, pp 21-27, Jan. 1967. 

[ 43 J.H. Friedman, J.L. Bentley, and R.A. Finkel, "An algorithm for '\ 

finding best matches in logarithmic time," Stanford Linear 

Accelerator Center Rep. SIX-PUB-1549, Feb. 1975. (To be pub- 

lished in ACM Trans. Math. Software). 

[ 53 P.E. Hart, "The condensed nearest neighbor rule," IEEE Trans. Inform. 

Theory (Corresp.), pp 515-516, May 1968. 

[ 61 C .L. Chang, "Finding Prototypes for Nearest Neighbor Classifiers," 

IEEF, Trans. Comput., Vol. C-23, pp n79-1x84, Nov. 1974. 

[ 71 T.W. Anderson, 'Some nonparametric multivariate procedures based 

on statistically equivalent blocks," in Multivariate Analysis, 

P.R. Krishnaiah, Ed., Academic Press, New York, pp y-27, 1966. 

[ 8) E.G. Henrichon, Jr. and K.S. Fu, "A nonparametric partitioning pro- 

cedure for pattern classification," IEEE Trans. Comput., Vol. 

c-18, pp 614-624, July 1969. 

[ 9] W.S. Meisel and D.A. Michalopoulos, "A partitioning algorithm with 

application in pattern classification and the optimization of 

decision trees," IEEE Trans. Comput., Vol. c-22, pp 93-103, 

Jan. 1973. 

- 21 - 



[lo] L. Gordon and R.A. Olshen, "Asymptotically Efficient, Computation- 

ally Feasible Solutions to the Classification Problem," Uni- 

versity of Calif., San Diego preprint, (Submitted to the Annals 

of Statistics) Nov. 1970. 

[ll] D.C Stoller, "Univariate Two-population Distribution-free Discrim- 

ination," J. Amer. Statist. Assoc. 9, pp 770-775, 1954. 

[12] J.A. Songuist, E.L. Baker, and J.N. Morgan, 'Searching for Structure," 

Survey Research Center, University of Michigan, Ann Arbor, : 

Michigan, 1973. 

- 22 - 


