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Abstract−An empirical model has been developed for the successful prediction of the melt index (MI) during grade
change operations in a high density polyethylene plant. To efficiently capture the nonlinearity and grade-changing char-
acteristics of the polymerization process, the plant operation data is treated with the recursive partial least square (RPLS)
scheme combined with model output bias updating. In this work two different schemes have been proposed. The first
scheme makes use of an arbitrary threshold value which selects one of the two updating methods according to the pro-
cess requirement so as to minimize the root mean square error (RMSE). In the second scheme, the number of RPLS
updating runs is minimized to make the soft sensor time efficient, while reducing, maintaining or normally increasing
the RMSE obtained from first scheme up to some extent. These schemes are compared with other techniques to exhibit
their superiority.
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INTRODUCTION

In this era of emerging technologies, model-based monitoring
and control methods have greatly facilitated the online prediction
of quality variables of complex chemical processes. In the chemi-
cal industry, efficient monitoring and control of process variables
are essential industrial practices for reduction of the amount of off-
specification product and the production cost. Off-line analytical
measurement of the product quality variables often takes a long time
to efficiently control the process, and this delay forces the operator
to make quick decisions in nonlinear and dynamic processes. Hence,
a number of first principle models, black box models using neural
networks, statistical data modeling (SDM) techniques and hybrid
models have been developed for monitoring, control and optimiza-
tion of complex processes. However, practical infeasibility of the
development of a first principle model for some highly complex
nonlinear processes and increasing demand of low cost products
are the issues that have motivated many researchers towards the
SDM of complex nonlinear processes. SDM is based on the histori-
cal relations among the process and quality variables, and prevents
one from the laborious study of complicated chemical and physi-
cal phenomena involved. Sensors developed by SDM are called
“Soft” or “Virtual” sensors and find their places quite frequently in
the industry for quality control purposes.

Under the category of SDM techniques, PLS has been shown to
be a proficient and powerful multivariate regression technique for
addressing highly correlated process variables [1,2] using lesser num-
ber of latent variables than principle component analysis (PCA).

Most chemical processes, and in particular polymerization processes,
involve high dimensionality, collinearity and nonlinearity. Except
for nonlinearity, the other two problems can be overcome by the
linear PLS framework, which can only capture the linear relation-
ship between the process and quality variable latent vectors. To cap-
ture the nonlinearity, many nonlinear techniques have been pro-
posed both within the PLS framework (Quadratic PLS, Spline-PLS,
Fuzzy-PLS and Neural network PLS) and without the PLS frame-
work (Black box model that includes Neural network model). In
addition to capturing nonlinearity, the time-varying nature of a pro-
cess has been addressed by Helland et al. [3], Dayal and MacGre-
gor [4] and Qin [5].

In industrial practices, different grades of HDPE are usually pro-
duced in the same reactor with irregular intervals. Use of soft sen-
sors without update causes a major difficulty in predicting MI when
the polymerization process changes its grades. To properly cope
with this grade-changing characteristic of HDPE process, recursive
adaptive data models can be employed. In this work, inspired by
recursive update of PLS by new process data points [5] with mean
and variance update [6] as well as model bias update [7], two dif-
ferent modeling schemes are developed for MI prediction of HDPE
by a combination of these updating methods. These updating schemes
with inherent selection criteria keep track of grade changing char-
acteristic by adding new process data point(s) and removing the
oldest one(s) to update the model recursively with the update of mean
and variance each time the PLS model is selected. These schemes
take benefits of model bias update simultaneously with RPLS update.

PLS UPDATE

1. Partial Least Square (PLS)
The PLS method overcomes the ill-conditioning problem of ordi-

nary PLS by projecting the process variables matrix X and response
variable(s) matrix Y onto the orthogonal latent variable subspace.
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In this way PLS decomposes the input and output matrices X and
Y, respectively, into a number of uncorrelated univariate regression
problems. Many PLS algorithms have been proposed [1,4] to pro-
ject the input matrices to the latent variable space through different
iterative manners of calculating eigenvectors. In this work the non-
linear iterative partial least squares (NIPALS) algorithm [1] is used
for the projection:

X=t1p1
T+E1 (1)

Y=u1q1
T+F1 (2)

where t1 and u1 are the score vectors of the first factor, p1 and q1

are the loading vectors, and E1 and F1 are the residuals. Inner rela-
tion between u1 and t1 is obtained through the univariate regression
of u1 on t1 as:

u1=b1t1+r1 (3)

where b1 is the regression coefficient determined by the minimiza-
tion of the residual r1. If t1 and u1 do not extract sufficient informa-
tion, further score and loading vectors are calculated iteratively by
extracting the information from deflated matrices for a specifically
determined number of factors. The original input and output matri-
ces are deflated as follows:

E1=X−t1p1
T (4)

F1=Y−b1t1q1
T (5)

Once the specified number of factors is extracted Cpls is calculated
as:

Cpls=W*BQT (6)

with

B=diag(b1, b2, …, ba), Q=[q1, q2, …, qa],

W*=[w1
*, w2

*, …, wa
*], (w1

*=w1),

where wi (i=1, …, a) are weighting factors and IK is the identity
matrix of dimension K. The number of factors for information ex-
traction is usually determined by the cross validation [1]. The pre-
diction error of sum of squares (PRESS) is calculated for different
numbers of factors, and the number of factors giving the least PRESS
is chosen for information extraction from process variables data set.
The NIPALS algorithm is given in Table 1.
2. Mean and Variance Update

Since the PLS method depends upon how the process data is scaled,
process and response variables are often symmetrically transformed
to give equal weight to each process variable. Experience-based
scaling is also possible which can give biased weight to relatively
more correlated process variables. However, if this relative correla-
tion is unknown, a common approach is the mean centering and
scaling to unit variance. Mean centering is carried out by subtract-
ing the mean of the variable from each data point of that variable.
Compared to the mean centering scheme, the scaling to unit vari-
ance is obtained by dividing each data point of the variable by its
standard deviation.

(7)

where xi, ms is the transformed value of xi, i=1, 2, …, N, andrepre-
sents the mean and standard deviation of the corresponding vari-
able, respectively. Since the recursive PLS (see next section) updates
the model by renewing the process data set to follow the process
trend, mean and variance are also updated to keep providing the
current scaling factors. This updating method is given as [6]:

(8)

(9)

where mh and sh are the mean and variance of training data at the
hth addition of the new measurements, and mh+1 and sh+1 represent
the corresponding values at (h+1)th addition.
3. Recursive PLS Update

Many industrial processes are vulnerable to the process environ-
ment drift that occurs due to aging and efficiency degradation of
plant as well as grade changing events especially in polymerization
processes. An adaptive model is vital to address these time-varying
effects of processes. Helland et al. [3] developed a recursive PLS
model by updating the training data set recursively and simultaneously

wa
*

 = IK − wkpk
T( )wa

a−1

k=1∏

xi ms,  = 
xi − m

s
-------------

mh+1= 
N −1

N
-----------mh + 

1
N
----xh+1

sh+1
2 = 

N − 2
N −1
------------sh

2
 + 1

N −1
----------- xh+1− mh+1( )2Table 1. PLS algorithm

1. Take the mean-centered and variance-scaled training matri-
ces X and Y; let E=X; F=Y.

2. Start the iteration with u=any column of Y.
3. Calculate input weight and score vectors:

w=Eu/u'u
w=w/||w||
t=Ew

4. Calculate output loading and score vectors:
q=F't/t't
q=q/||q||
u=Fq/q'q

5. Check for convergence:
6. Calculate input loading vector:

p=E't/t't
p=p/||p||

7. Find coefficients of regression:
b=u't/t't

8. Deflate X and Y:
E=E− tp'
F=F−btq'

9. Go to step 2 if next factor is to be extracted.

Table 2. Recursive PLS algorithm

Transform the training data using Eq. (7).
1. Calculate the coefficient of regression Cpls by Eq. (6)
2. Use the model to predict the response variable: Ypred=XCpls .
3. On the arrival of each new measurement, add it to the training

data and remove the oldest sample, update the mean and vari-
ance of data set using Eqs. (8) and (9).

4. Repeat the algorithm from 1.
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removing the oldest data samples. In this way, the size of the matri-
ces can be kept constant, the model can be adapted with new events,
and process history can be partially retained. Qin [5] extended Hel-
land’s algorithm to give similar results to the PLS. A summary of
the recursive PLS is given in Table 2.
4. Model Output Bias Update

Doubt about the reliability of process data and/or grade-chang-
ing events may result in RPLS giving deviated and unacceptable
predictions. A soft sensor needs to be reliable and robustly adaptive,
and for this reason, along with RPLS, model bias updating method
is incorporated in the updating schemes. This method uses the dif-
ference of model prediction and the corresponding measurements
to correct the model’s upcoming predictions [7].

At t=0 (where t is the index of model update run: t=0 represents
before the update),

Ypred=X(t)×Cpls (10)

And at t=tth run,

bias(t)=Ylab(t−1)−Ypred(t−1) (11)

where Ylab and Ypred are the offline measurements and model pre-
dictions, respectively. Since the offline measurement of MI often
takes several hours to complete, time lagging must be considered
before calculating bias. Finally, the weighted bias is added to the
predicted value to give the modified final prediction calculated by
Eq. (12):

Ymod(t)=Ypred(t)+bias(t) (12)

where Ymod is the modified value of Ypred by the (weighted) bias term.
Mu et al. [6] used an arbitrary weight ω to the bias of previous

runs in calculation of the bias of the current run. It takes a value
from 0 to 1 and is optimized according to the process behavior.

bias0(t)=Ylab(t−1)−Ypred(t−1) (13)

bias(t)=ω×bias0(t)+(1−ω)×bias(t−1) (14)

where bias0(t) is the current bias, bias(t) is the final bias to be used
for the model output modification by Eq. (12). We have bias(0)=0.

ONLINE MODEL PREDICTION
AND UPDATING SCHEMES

In this work two schemes are proposed to identify the slow and
rapid changes of the process and to deal with them separately by
the combination of the recursive PLS and model bias updating meth-
ods. Proposed online updating schemes take advantage of the two
different updating methods in a fashion so as to minimize the pre-
diction error. These two online updating methods are activated one
at a time on the arrival of a new offline measurement. The activa-
tion sequence depends on significant changes within the same grade
as well as grade-changing event detection. The measurements are
used for calibration of the PLS model to adapt it with grade-chang-
ing characteristics of the process. Although both schemes are based
on the same basic idea, they slightly differ from each other with
respect to the parameters. In proposed schemes, the model bias up-
date not only detects the grade-changing events but is used within
the same grade as well, which helps the minimization of the num-

ber of RPLS update runs and making the soft sensor time efficient.
1. Proposed Scheme 1

The first scheme (scheme 1) takes the process variable data set
as the input and builds a model through PLS. In several industrial
processes, offline measurements of responses or quality variables
are available after a certain interval. Therefore, the initial PLS model
is used for the predictions during the interval until a new measure-
ment is available. As soon as a new measurement arrives and is add-
ed to the process data, the model updates its parameters and gener-
ates predictions for the next interval. For the selection of update
method for a certain instance, a threshold constant d is used, which
decides the suitable and efficient updating method for the future
predictions. The selection of the updating methods for this scheme
relies on the threshold constant below which there is no effect on
the RMSE of prediction. This constant acts as a switch between
PLS update and model bias update; it chooses the PLS update when
the absolute difference of current and previous measurements is
less than d; otherwise the model bias update is selected for update
of the model. The value of d is arbitrary and is dependent upon the
quality variable responses and changing behavior. It affects the model
predictions by selecting the update method not only at the occur-
rence of grade change but also during the same grade as well.

The PLS update is carried out for the prediction until the differ-

Fig. 1. Flowchart of update scheme 1.
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ence of two consecutive measurements within the same grade reaches
the threshold value of d or the process shifts to another grade. When-
ever the difference reaches or exceeds the threshold d, the model
bias update is activated and updates the bias term. Eventually, pre-
dictions from both update methods are modified by the bias term
by using Eq. (12). The procedure is illustrated in Fig. 1.

When the process shifts from one grade to another, the difference
between the first value of the shifted grade and the old value belong-
ing to the previous grade is termed as grade-change-defining-value
(GCDV). When the process consists of several grades, GCDV may
have different values for various grades; in this case the minimum
GCDV, which is 1.94 for this application, is selected for the optimi-
zation. The threshold constant is obtained from the optimization;
one can start with the GCDV proceeding towards lower values. The
threshold value giving the lowest RMSE is used as the updating
method selector d (see section 4.5). 

The determination of threshold constant for scheme 1 can be con-
sidered as an unconstrained optimization problem with the RMSE
as objective function to be minimized subject to d having values
from zero to GCDV. The optimization problem takes the following
form:

Minimize: RMSE(d)=Scheme 1 (15.1)
Subject to: 0≤d≤GCDV (15.2)

where the threshold constant d becomes an unknown variable in the
optimization and is related to the RMSE through the update scheme1.
2. Proposed Scheme 2

Scheme 2 differs from scheme 1 in that it prevents the unneces-
sary update and hence reduces the time taken by the soft sensor dur-
ing online predictions. Our main goal is to develop a model with
maximum prediction power and minimum time taken by the soft
sensor. To follow the latter criterion, preference is given to no up-
date at all (when there is no need of update) followed by the model
bias update and lastly PLS update. To make the soft sensor time
efficient, a lower bound value d1 is identified. Below d1 a system
without update does not exhibit any remarkable change and has no
or negligible effect on the RMSE. The model does not require any
update in such cases. An upper bound d2 is selected. Above d2 the
model bias update updates the bias and captures the sharp and rapid
changes. The value of d2 is optimized so as to make use of the mod-
el bias update during the significant changes within the same grade
and drastic changes of grade shifting as well. The range between d1

and d2 represents the activation of PLS update.
For the soft sensor to be accurate and efficient, the prediction pow-

er of the model needs to be emphasized along with time efficiency.
The trade-off between the former and latter criteria gives the range
that provides the optimized number of runs for both the model bias
update and the PLS update, leaving the remaining number of runs
without update. For the optimization of the placement and the range
between threshold values, one can start with zero and the GCDV
as the lower and upper bounds, respectively, proceeding towards
each other.

The lower and upper bounds placement along with the range are
obtained by the optimization using Eq. (16). For scheme 2, the opti-
mization problem is constrained with RMSE with the number of
PLS updating run (NPR) as the objective function to be minimized
and bounds placement and range as the unknown variables. The

optimization problem takes the following form:

Minimize: NPR=Scheme 2 (16.1)
Subject to: RMSE 2≤RMSE 1+compensation factor (16.2)

0≤d1≤GCDV; d<d2≤GCDV (16.3)

where the compensation factor is 0.0001 for this application, and
RMSE 1 and RMSE 2 represent the RMSE obtained by scheme 1
and scheme 2, respectively.

The bound placement and range giving the least RMSE are used
as the update method selection criteria (see section 4.5). Eventu-
ally, as in scheme 1, predictions from both update methods are modi-
fied by the bias terms. The procedure is illustrated in Fig. 2.

PREDICTION OF MI IN HDPE PROCESS

1. Process Description
In the present work, the High Density Polyethylene (HDPE) plant

located in LG Petrochemicals, Korea, is studied. The plant is involved
in the edge-cutting low-pressure polymerization manufacturing pro-
cess. In the HDPE plant there are two polymerization processes,
named K1 and K2. Two parallel reactors are operated in K1, where-
as a cascade arrangement is used for K2. These reactions are highly
exothermic that evolve 1,000 kcal/1 kg ethylene. Therefore, an effi-
cient cooling system is required to remove polymerization heat
from the reactor. The reactant feed of the reactor includes ethylene

Fig. 2. Flowchart of update scheme 2.
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co-monomer, hydrogen, activator, catalyst, co-catalyst, hexane and
mother liquor which is recycled continuously. The reactor volume
is filled up to 90-95% with reaction slurry, which is transferred to
the subsequent equipment with the rise in pressure to maintain the
slurry level in the reactor. The K1 process operates under 8-10 kg/
cm2 and the K2 process operates under 2-4 kg/cm2 with a tempera-
ture of range of 74-85 oC.
2. Numerical Simulation

For the input variable selection among 43 input variables, we
first removed a variable denoting the activator feed rate which was
constant throughout the process. Using interval PLS for input vari-
able selection, 14 input variables were then selected from the remain-
ing 42 process input variables. These variables include feed rates of
co-monomer, hydrogen, catalyst and recycled hexane, partial pres-
sure of C2H3 and H2 and reactor pressure, etc. For the simulation
purpose, 505 offline measurements were collected with an interval
of 2 hours in 42 days. Two update methods (recursive PLS update
and model bias update) as well as dual update method with a selec-
tion parameter “period” [6] were used for the comparison with the
proposed schemes. Primarily, the PLS model was set up (see Table
1) with 300 data points for all the update strategies using one latent
factor except for solo RPLS update for which four latent factors
were used. The remaining samples were used to test the model up-
dating prediction accuracy. It takes about two hours to get the offline
measurement of MI in LG petrochemicals. Thus initially built model
was used for the predictions with an interval of five minutes for two
hours. As soon as a new measurement arrived and was added to
the process data, a certain updating method was activated to update
the model parameters, and predictions were taken for the next two
hours. In this way, model updating and predictions were performed
sequentially with the interval of two hours. As a performance crite-
rion, the RMSE is used for comparison purpose and is given by

(17)

where Nt is the number of observations in test data set, whereas Yi, actual

and Yi, mod are the actual and modified (after prediction) values of
MI, respectively. The distinct features of the methods are described
below:

(1) For the recursive PLS updating method, the PLS model is
set up with five latent factors. The model is updated recursively with
mean and variance updated by Eqs. (8) and (9) whenever a new
measurement is added to the training data set.

(2) The model bias update is developed with one latent factor
and the bias term is updated by Eq. (11) with each arrival of a new
measurement.

(3) To develop the “period” strategy, parameters giving the least
RMSE are selected, i.e., period P=13, 1 latent factor for PLS model,
and ω=1 where ω is the weighted bias giving respective weights to
the model bias at previous and current run. The bias term using ω
can be calculated by Eq. (14). To follow the trend of rapidly chang-
ing effects closely, no weight is given to the bias at previous run
for the predictions at current run.

(4) The proposed scheme 1 makes use of the threshold value d,
which is 0.01 in this application, along with latent factor equal to 1.

(5) For the scheme 2 parameters, latent factors d1 and d2 with
the values 1, 0.02 and 0.14 are selected as the optimized values,

respectively. As mentioned earlier, the polymerization process oper-
ation consists of rapid grade change sequences which require the
model bias update only with the current bias at that moment. There-
fore, schemes 1 and 2 do not use weighted bias ω; it can be inter-
preted as if ω=1 was used in this application. However, depending
on the process application response, it can be used to enhance the
prediction accuracy.

RESULTS AND DISCUSSIONS

Fig. 3 shows the results for melt index predictions as a compari-
son among the five aforementioned update strategies. RPLS up-
date method (Fig. 3A) updates the model and predicts the MI rea-
sonably at the early stage, but starts to get deviated from actual MI
values and tends to over-fit the model. Like Recursive PLS update,
the predictions from model bias update (Fig. 3B) were found closer

RMSE = 
1
Nt
----- Yi actual,  − Yi mod,

Yi actual,
--------------------------------⎝ ⎠
⎛ ⎞

2

i=1

Nt

∑

Fig. 3. Comparison of actual and predicted MI from five strate-
gies. A. RPLS method; B. Model bias update method; C.
Dual updating strategy by Mu; D. Proposed scheme 1; E.
Proposed scheme 2.
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to the actual MI at the early stage. But this method also starts over-
fitting the model much earlier than the grade is changed rapidly in the
process. The reason for these large overshoots is the sudden change
in certain process variables by the operator to change the grade, which
unnecessarily enhances the effect of update. However, in compari-
son to the single model bias update, we can see that the RPLS up-
date provides better predictions. Fig. 3C represents Mu’s strategy
[6], which follows the actual MI measurements closely and over-
comes the deviation and large overshoots by activating the PLS at
a period of 7. The proposed scheme 1 (Fig. 3D) gives better results
with the reliability of selecting the suitable update method at a certain
instance. And finally, the proposed scheme 2 (Fig. 3E) minimizes
the number of PLS updating runs as compared to the scheme 1
and compensates it with a negligible increase in RMSE, as shown
in Table 3.

In the polymerization process, an abrupt change occurs in pro-
cess data when the process is near to shift to other grade. The single
RPLS updates the PLS parameters recursively and tries to over-
come the deviation caused by abrupt changes in process data. It also
gives some small overshoots during and after grade change opera-
tions. As far as the model bias update is concerned, it is also vul-
nerable to these abrupt changes, and at the instances of these abrupt
changes the model updates the bias term accordingly, which in turn
over-modifies the predictions. However, it is observed that when-
ever the large bias is obtained due to the grade changing event, it
tends to follow the predictions of MI. Mu’s strategy [6] circumvents
this problem of over-modification robustly by using the RPLS and
model bias update with a period of 7. On the other hand, since the
natural choice of update at certain instances makes it possible to
keep track of minimization of the RMSE, the proposed schemes
are observed to be robust against the abrupt changes in process data.

The instances of changing the grades as well as the duration for
which the grade holds on to its position may differ from month to
month. Since Mu’s updating strategy [6] utilizes an arbitrarily fixed
parameter “period” which is optimized on the basis of lowest RMSE
for the specific grade changing instances of the test data of specific
month, the method can fit the model with acceptable accuracy but
may not keep track of the requirement of appropriate updating meth-
od at a certain instance. For this reason, the period P may need to
be updated with the passage of time. Whereas the criterion of utiliz-
ing the threshold constant is quite inherent and depends upon the
process response behavior, no changes or slow and rapid changes
are identified, categorized and treated separately, by no updating,
RPLS update and model bias update, respectively.

The main feature in the proposed scheme 2 is to shrink and place
the threshold range (the distance between lower and upper thresh-
old bounds) aptly to minimize the number of PLS updating runs so

as to decrease the algorithm running time, and to maintain the RMSE
with some compensation factor, or sometimes even to decrease the
RMSE as well. By converting some updating instances to no up-
dating, a small increase in RMSE may be observed. The value up
to which the increase in RMSE is acceptable is termed as the com-
pensation factor. The decrease in RMSE by scheme 2 is a rare case,
which may be caused by inappropriate input variable selection and/
or relative over-fitting (by the unnecessary update where no update
is required) due to the presence of noise in input data since noise
enhances the effect of over-fitting.

The value of the threshold constant d, which is equal to zero or
close to zero, shrinks the number of runs of recursive PLS update.
Therefore, the model bias update will be activated too frequently,

Table 3. RMSE comparison of five updating procedures

No. Procedure RMSE
1 Solo RPLS updating 0.3557
2 Solo model Bias updating 0.5197
3 Period strategy 0.0960
4 Scheme 1 0.0941
5 Scheme 2 0.0944

Fig. 4. Threshold constant corresponding to minimized RMSE.

Fig. 5. Bounds placement and range corresponding to optimized
RMSE and NRP.
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resulting in the possibility of over-modification. On the other hand,
a value closer to GCDV will result in frequently activated recur-
sive PLS runs and finally exhibiting over-fitting. Optimization was
carried out for both the schemes and the results were truncated from
both left and right sides to focus on the minimum RMSE value as
shown in Figs. 4 and 5. Minimum RMSE=0.094 was observed at
d=0.01 with the NPR=84 by conducting the optimization for the
scheme 1 as shown at the 40th iteration in Fig. 4. Utilizing an analo-
gous approach, the bounds placement and range corresponding to
the minimum NRP were investigated, where the optimization con-
verges at the NRP=9 with RMSE=0.0941, d1=0.02, d2=0.014 and
range=0.12 at the 13th iteration (Fig. 5). Table 3 summarizes the
parameter comparison among various updating schemes and period
strategies, and Table 4 summarizes the optimization results from
both proposed schemes as well as the results of comparison between
the NPR of the period-strategy with proposed schemes.

CONCLUSION

In this work, we developed a soft sensor for predicting the pro-
duct quality variable MI with grade changing characteristics by com-
bining the recursive PLS updating and model bias updating. We
formulated two model updating schemes: Scheme 1 and scheme 2.
Scheme 1 intelligently decides the appropriate updating method from
recursive PLS updating and model bias updating to minimize the
RMSE; whereas scheme 2 focuses on minimizing the number of
recursive PLS updating runs as well as maintaining the RMSE with
a little compensation or sometimes even reducing it a little, in com-
parison with that obtained by scheme 1. The proposed schemes guar-
antee reliability and provide robust updating selection criteria with
the passage of time along with satisfactory prediction of the melt
index of high density polyethylene products. Superiority of the pro-
posed schemes is shown by comparison with other existing update
methods. A detailed study of determining the parameters is also
conducted and presented with optimized results for both schemes.

The proposed schemes not only cope with the known and planned
changes in process output variables (MI) but can also deal with un-
intentional and accidental changes due to unreliability of process
input data, using a suitable updating method for the specific instance.
Dependence of updating method selection criteria on the output vari-

able (product quality variable) behavior renders the updating scheme
able to deal with the irregular grade changing operations along with
the regularly occurring events. We are hopeful about the usefulness
of the proposed schemes in similar industrial operations.

NOMENCLATURE

a : index of factors (a=1, 2, …, A)
A : number of factors in PLS model
X : matrix of process input data, size (N*K)
Y : matrix of response variable, size (N*M)
t : score vector for X
u : score vector for Y
p : loading vector for X
q : loading vector for Y
E : residual matrix for X
F : residual matrix for Y
b : inner model coefficient 
r : residual vector for inner model of PLS
Cpls : PLS regression coefficient matrix
W* : matrix of transformed PLS weights
w* : column vector of W*
B : matrix of regression coefficients, size (K*M)
Q : weight matrix for Y, size (M*A)
W : weight matrix for X, size (K*A)
w : column vector of W
k : index of w (k=1, 2, …, a)
K : no. of variables in X
bias : difference between current and previous lab measurement

of response variable
Ypred : prediction value of response variable
Ymod : modified value of response variable by bias term
d : threshold constant
d1 : lower bound
d2 : upper bound
Range: difference of d2 and d1
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Table 4. Parameter comparison among updating schemes and pe-
riod strategy

Updating scheme RMSE NPR NMBR NNP Parameters
Period strategy 0.096 29 176 - Period=7
Scheme 1 0.0941 84 121 - d=0.01
Scheme 2 0.0944 04 117 84 d1=0.01, d2=0.03
NMBR=Number of model bias updating run
NNP=Number of no updating


