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ABSTRACT

Collaborative filtering (CF) is a successful approach for build-
ing online recommender systems. The fundamental process
of the CF approach is to predict how a user would like to
rate a given item based on the ratings of some nearest-
neighbor users (user-based CF) or nearest-neighbor items
(item-based CF). In the user-based CF approach, for exam-
ple, the conventional prediction procedure is to find some
nearest-neighbor users of the active user who have rated the
given item, and then aggregate their rating information to
predict the rating for the given item. In reality, due to the
data sparseness, we have observed that a large proportion of
users are filtered out because they don’t rate the given item,
even though they are very close to the active user. In this
paper we present a recursive prediction algorithm, which
allows those nearest-neighbor users to join the prediction
process even if they have not rated the given item. In our
approach, if a required rating value is not provided explicitly
by the user, we predict it recursively and then integrate it
into the prediction process. We study various strategies of
selecting nearest-neighbor users for this recursive process.
Our experiments show that the recursive prediction algo-
rithm is a promising technique for improving the prediction
accuracy for collaborative filtering recommender systems.

Categories and Subject Descriptors
H.1.2 [Models and Principals]: User/Machine Systems—

human factors; H.3.3 [Information Search and Retrieval]:

Information filtering—Selection process.

General Terms

Algorithms, Performance.
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Recommender systems, collaborative filtering, prediction al-
gorithm, recommendation accuracy.
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1. INTRODUCTION

We are now in an era with an overwhelming amount of
information available but individuals are finding it increas-
ingly difficult to discover useful information. Recommenda-
tion systems have been regarded as a remedy to overcome
the information overload problem and a lot of research effort
has been focused on developing highly reliable recommen-
dation techniques. One of the most popular and successful
techniques that has been used in recommender systems is
known as collaborative filtering [4, 10]. The key idea of this
approach is to infer the preference of an active user towards
a given item based on the opinions of some similar-minded
users in the system [1, 3]. Many popular e-commerce web
sites — Amazon.com for example — have adopted this tech-
nique in making their online shopping system more efficient.

One of the most prevalent algorithms in collaborative fil-
tering approach is based on the nearest-neighbor users (called
user-based CF approach in this paper). To predict the rating
value of a given item for an active user, a subset of neighbor
users are chosen based on their similarity to the active user
— called nearest-neighbor users — and their ratings of the
given item are aggregated to generate the prediction value
for it.

The conventional prediction process of the user-based CF
approach selects neighbor users using two criteria: 1)they
must have rated the given item; 2)they must be quite close
to the active user (for instance, only the top K nearest-
neighbor users are selected). However, in reality most users
in recommender systems are unlikely to have rated many
items before starting the recommendation process, making
the training data very sparse. As a result, the first criterion
may cause a large proportion of users being filtered out from
the prediction process even if they are very close to the ac-
tive user. This in turn may aggravate the data sparseness
problem.

To overcome the data sparseness problem and enable more
users to contribute in the prediction process, here we pro-
pose a recursive prediction algorithm which relaxes the first
criterion mentioned above. The key idea is the following:
if a nearest-neighbor user hasn’t rated the given item yet,
we will first estimate the rating value for him/her recursively
based on his/her own nearest-neighbors, and then we use the
estimated rating value to join the prediction process for the
final active user. In this way we have more information to
contribute to the prediction process and it should be able to
improve the prediction accuracy for collaborative filtering
recommender systems. The main contribution of this pa-
per is that we relax the constraint that neighbor users must



also have rated the given item. The proposed recursive pre-
diction algorithm enables more flexibility in the prediction
process of finding the useful neighbor users. One impor-
tant issue is exactly how to select those effective nearest-
neighbor users for the prediction process. In this paper we
will present the recursive prediction algorithm with various
ways of determining the nearest-neighbor users and report
their performances.

The rest of the paper is organized as follows. The next
section provides a brief review of the related work about col-
laborative filtering recommender systems. Section 3 recalls
the general prediction process of the nearest-neighbor based
collaborative filtering approach. In Section 4 we describe
the recursive prediction algorithm in detail. Section 5 pro-
vides experimental results of evaluating the performance of
the proposed approach. Finally discussions and conclusions
are provided in Section 6 and Section 7 respectively.

2. RELATED WORK

One of the earliest collaborative filtering recommender
systems was implemented as an email filtering system called
Tapestry [2]. Later on this technique was extended in several
directions and was applied in various domains such as music
recommendation [12] and video recommendation [5]. In this
section we briefly review the research literature related to
collaborative filtering recommender systems.

Generally speaking, collaborative filtering algorithms can
be classified into 2 categories: One is memory-based, which
predicts the vote of a given item for the active user based on
the votes from some other neighbor users. Memory based
algorithms operate over the entire user voting database to
make predictions on the fly. The most frequently used ap-
proach in this category is nearest-neighbor CF: the predic-
tion is calculated based on the set of nearest-neighbor users
for the active user (user-based CF approach) or, nearest-
neighbor items of the given item (item-based CF approach).
The second category of CF algorithms is model-based. It uses
the user voting database to estimate or learn a probabilistic
model (such as cluster models, or Bayesian network models,
etc), and then uses the model for prediction. The detail of
these methods and their respective performance have been
reported in [1].

In this paper we focus on the user-based CF approach [10].
The general prediction process is to select a set of nearest-
neighbor users for the active user based on a certain crite-
rion, and then aggregate their rating information to generate
the prediction for the given item. More recently, an item-
based CF approach has been proposed to improve the system
scalability [7, 11]. The item-based CF approach explores the
correlations or similarities between items. Since the rela-
tionships between items are relatively static, the item-based
CF approach may be able to decreases the online compu-
tational cost without reducing the recommendation qual-
ity. The user-based and the item-base CF approaches are
broadly similar, and it is not difficult to convert an imple-
mentation of the user-based CF approach into the item-base
CF approach and vice versa.

The method of selecting nearest-neighbors is an important
issue for the nearest-neighbor CF approach. In [1] it is found
that highly correlated neighbors can be exceptionally more
valuable to each other in the prediction process than low cor-
related neighbors. Herlocker et al. [3] have systematically
studied various design issues for the nearest-neighbor CF
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approach. They have studied the correlation-thresholding
technique in the neighbor selection process and found it
does not give more accurate predictions than the plain non-
thresholding method. Also, they have found that selecting a
reasonable size of nearest-neighbors (usually range from 20
to 50) produced the lowest prediction error.

The above studies focused on selecting nearest-neighbor
users from those who had also rated the given item. The
prediction algorithm used in their work is direct and intu-
itive. However, this algorithm ignores the possibility that
some users may be able to make a valuable contribution to
the prediction process, despite not having explicitly rated
the given item. By comparison, the recursive prediction al-
gorithm proposed in this paper relaxes such condition and
could allow the nearest-neighbor users to be selected from a
larger range of candidate users. Based on the recursive pre-
diction algorithm, we propose new techniques for selecting
nearest-neighbors to improve the prediction accuracy.

3. NEAREST-NEIGHBOR BASED
COLLABORATIVE FILTERING

Herlocker et al. [3] have summarized the procedure of ap-
plying the nearest-neighbor based CF approach as the fol-
lowing three steps: 1) Measure all users with respect to the
similarity with the active user; 2) Select a subset of users
to use as a set of predictors for the given item; 3) Compute
a prediction value for the given user based on the ratings
from the selected neighbors. In this section we recall some
of the most relevant prior work on each step and gives formal
definition of the key techniques.

3.1 User Similarity

GroupLens [10] introduced the Pearson correlations to
measure similarity between users. Let I denotes the set
of items which had been rated by both user x and y, the
Pearson correlation similarity between user x and y is given
by

Zie[ (Rx,i - Rm)(Ry,i - Ry)
\/Zie[ (Rx,i - Rx)Q\/Ziel (Ry,i - Ry)Q

sim(z,y) =

(1)

Where R, ; represents user z’s rating of item i, and R, is
the average rating value of user x.

In this paper we choose the Pearson correlation as the
metric for user similarity. There are several other ways of
calculating the similarity among users such as the cosine
based similarity. The comparison of the similarity metrics is
out of the scope of this paper. For more detailed information
about this part of research please refer to [1].

3.2 Selecting Neighbors

Often CF recommenders can have a large number of users
and it is infeasible to maintain real-time performance if the
system adopts rating information from all users in the pre-
diction process. One popular strategy is to choose the K
nearest-neighbors of the active user as the subset predic-
tors [10]. Another strategy is to set an absolute similarity
threshold, where all neighbor users with absolute similar-
ities greater than a given threshold are selected [12]. In
this paper we choose the K nearest-neighbor strategy as the
baseline strategy of selecting neighbors.



Neighbor User | Similarity | Rating
Hank W) (sim(z, 1)) | (Ry.)
1 39 1.000 n.a.
2 571 1.000 n.a.
3 166 1.000 n.a.
4 384 1.000 n.a.
5 511 1.000 n.a.
6 531 1.000 n.a.
7 810 1.000 n.a.
8 812 1.000 n.a.
9 816 1.000 n.a.
10 861 0.968 n.a.
11 572 0.963 n.a.
12 520 0.919 n.a.
13 107 0.917 n.a.
14 599 0.905 n.a.
15 34 0.891 n.a.
16 691 0.890 n.a.
17 800 0.887 n.a.
18 803 0.883 n.a.
19 105 0.882 n.a.
20 923 0.872 4
21 900 0.868 n.a.
22 414 0.868 n.a.
23 702 0.866 n.a.
24 808 0.866 n.a.
25 485 0.866 n.a.
26 400 0.866 n.a.
27 510 0.863 n.a.
28 364 0.853 n.a.
29 791 0.845 n.a.
30 304 0.845 n.a.
Table 1: The nearest-neighbor users for the active

user x = 1 to predict the rating value of the item
1=3.

3.3 Prediction Computation

Once the user similarity and the subset of neighbor users
are determined, we need to aggregate their rating informa-
tion to generate the prediction value. Resnick et al. [10] have
proposed a widely-used method for computing predicted rat-
ings. Formally, for the active user x to the given item 4, the
predicted rating R, can be calculated as following:

ZyEUx (Ry,i — Ry)sim(x7y)
> yeu, lsim(z,y)]

where U, represents the subset of neighbor users selected
in step 2 for the active user z. The similarity value sim(z,y)
can be calculated according to Equation 1 and it acts as a
weight value on the normalized rating value Ry,; — R,. In
the conventional CF approach, only those neighbor users
who have rated the given item explicitly are selected, so the
value Ry ; can be fetched directly from the training dataset.

Rz,i =R, + (2)

4. THE RECURSIVE PREDICTION
ALGORITHM

In this section we illustrate the prediction problem fur-
ther, using the popular MovieLens dataset. After that, we
introduce the new neighbor selecting strategies and the re-
cursive prediction algorithm.

4.1 An Illustrative Example

The MovieLens dataset was collected by the GroupLens
research project at the University of Minnesota (project
website: http://movielens.umn.edu). It consists of 100, 000
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Neighbor User Similarity Rating
Rank ) (sim(z,y) | (Ry.)

20 923 0.872 4

98 104 0.593 3
120 157 0.569 3
125 714 0.559 5
142 453 0.522 4
146 569 0.510 1
149 276 0.505 3
150 582 0.504 3
190 463 0.457 2
201 246 0.438 2
202 303 0.437 3
208 429 0.431 2
218 267 0.425 4
231 487 0.415 5
237 472 0.412 5
241 268 0.409 1
244 756 0.407 1
249 660 0.403 1
266 500 0.384 4
271 244 0.380 5

Table 2: The top 20 nearest-neighbors that will be
selected in the conventional user-based CF approach
for the active user x = 1 to predict the rating value
of the item ¢ = 3.

ratings from 943 users on 1682 movies. This dataset has
been cleaned up so that users who had less than 20 ratings
or did not have complete demographic information were re-
moved from this dataset. The sparsity level of the dataset
is 0.9369 [11], which is quite high.

We partitioned the dataset into 2 parts: 80% of the ratings
were used in the training set, and the remaining 20% was
used as the testing set. Here we investigate one prediction
task in the conventional CF approach: predicting the rating
value of a given movie ¢ = 3 for an active user x = 1. Table
1 lists the top 30 nearest-neighbors for the active user x = 1.
It shows that most of those nearest-neighbors do not provide
rating values for the given item ¢ = 3. The only neighbor
user who provides rating value for the item ¢ = 3 in the list is
the user with id = 923, which has a similarity value of 0.872
with the active user. Table 2 shows those nearest-neighbors
that might be selected in the conventional CF approach.
We can see that although the active user (z = 1) has many
close neighbor users, most of them are filtered out from the
prediction process because they haven’t rated the given item
(i = 3) yet. Among all the nearest-neighbor users listed in
Table 1, only the user with id=923 can be selected to join
the conventional prediction process and others are filtered
out.

We believe that the MovieLens dataset is quite represen-
tative to most datasets used in collaborative filtering rec-
ommender systems. In another words, we believe sparsity
is a common issue for collaborative filtering recommenders
and the above illustrated problem exists commonly in the
conventional prediction process.

4.2 The Strategies for Selecting Neighbors

The above example shows that the conventional CF ap-
proach excludes a large proportion of similar users from the
set of nearest-neighbors just because they have not rated the
given item. In this paper we propose a recursive prediction
algorithm to relax this constraint. In addition, we also have
observed that some neighbors might have only a few com-



mon ratings with the active user, but they could get very
high similarity value with the active user by chance. This is
because the calculation of the correlation value among users
does not take into account the degree of overlaps between
users. If two users have only few overlaps, it is unlikely that
they are indeed close-mined neighbors.

In summary, we propose the following five strategies for
selecting the active user’s nearest-neighbors:

1. Baseline strategy(BS): selects the top K nearest-neighbors

who have rated the given item. This is the conven-
tional strategy for selecting neighbors as illustrated
in [10];

2. Baseline strategy with overlap threshold(BS+): se-
lects the top K nearest-neighbors who have rated the
given item and have rated at least ¢ items that have
also been rated by the active user(overlapped with the
active user);

3. Similarity strategy(SS): selects the top K’ nearest-
neighbors purely according to their similarity with the
active user;

4. Combination strategy(C'S): combines top K nearest-
neighbors selected by the baseline strategy(BS) and
top K’ nearest-neighbors selected by the similarity strat-
egy (SS);

5. Combination strategy with overlap threshold (C'S+):
combines the top K nearest-neighbors selected by base-
line Strategy(BS) and top K’ nearest-neighbors se-
lected by the similarity strategy (SS). Also, each user
must have rated at least ¢ items overlapped with the
active user.

Please keep in mind that for the BS and BS+ strategy,
since all those selected neighbors have provided rating val-
ues explicitly to the given item, the prediction value can
be calculated straightforward without iteration. However,
for the other three strategies(SS, CS and CS+), the recur-
sive prediction algorithm must be applied to estimate the
intermediate prediction values.

The BS strategy is an extreme case of selecting nearest-
neighbor users. It only chooses users among those who
have already explicitly rated the given item. The SS strat-
egy is another extreme case, where only those top nearest-
neighbors are considered to be useful for the prediction, no
matter if they had rated the given item or not. The CS
strategy is a compromise of the above two cases. BS+ and
CS+ are the improved version of BS and C'S respectively.

4.3 The Recursive Prediction Algorithm

The goal of the recursive prediction algorithm is to in-
clude nearest-neighbors who haven’t rated the given item in
the prediction process. When the process requires a rating
value that doesn’t exists in the dataset, we can estimate it
recursively on the fly, and then use it in the prediction pro-
cess. The estimated rating values may not be as accurate
as those ratings explicitly given by the users. In our algo-
rithm we specify a weight value to distinguish the different
contribution of these two types of ratings.

Formally, our recursive prediction algorithm can be rep-
resented as the following:

Zyer wy,i(Ry,i —

Zyer Wy i |sim(z, y)]

Ry)sim(z,y)
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Configuration Values:
¢ — the threshold of recursive level;
A — the combination weight threshold;
Function Parameters:
r — the active user;
i — the given item to be predicted;
level — the current recursive level;
return: the predicted rating value;
1. function RecursivePrediction (z, 4, level)
2 if level > ( then
3 return BaselinePrediction(z, 7);
5. endif
6
7
8

U «—— SelectNeighbors(z, i);
a = 0.0;
. £ = 0.0;
9. for each y in U do

10. if Ry ; is given then

11. a += (Ry,; — Ry)sim(z,y);

12. B 4= |sim(z,y)l;

13. else

14. Ry,i:RecursivePrediction(y, i,level + 1);
15. o += ARy, — Ry)sim(z,y);

16. B 4= Alsim(z,y)l;

17. endif

18. endfor

19. return R, + o/,

Figure 1: The recursive prediction algorithm.

where U, is the set of neighbor users for the active user x
determined by the respective strategy we have mentioned
earlier. If R, ; is not given explicitly from the training
dataset, we will apply the recursively predicted value Ryl
instead. Also, we apply a weight value wy,; to the recursively
predicted value. The wy,; is determined as the following:

R, is given
R, is not given

wyi={ (4)

Here the weight threshold X is a value between [0, 1].

A detailed implementation of the recursive prediction al-
gorithm is shown in Figure 1. The function “SelectNeigh-
bors (z, 7)” is the implementation of one of the 5 different
selection strategies. Note that if the recursive algorithm has
reached the pre-defined maximal recursive level, it will stop
the recursive procedure and call the “BaselinePrediction”
function instead. The BaselinePrediction function can be
implemented by various strategies — we use the conventional
baseline strategy(BS). Each of the five neighbor selection
strategies can be applied with the recursive prediction algo-
rithm to form a CF approach. In the rest of the paper, we
also use the neighbor selection strategy to represent the cor-
responding CF approach. For instance, the token C'S will
also represent the CF approach implemented with the re-
cursive prediction algorithm together with the combination
strategy for selecting neighbors.

The recursive prediction algorithm is an extension of the
conventional nearest-neighbor based prediction algorithm in
the CF approach. It is worth pointing out that the recursive
prediction algorithm is equivalent to the conventional pre-
diction algorithm if it is applied with the BS strategy. There-
fore BS represents the conventional CF approach, which is
the baseline CF approach in this paper.



There are a number of important parameters to be de-
cided before a real feasible CF system can be implemented
based on the proposed recursive algorithm. One important
parameter of the recursive algorithm is the recursive level.
As the recursive level increases, so too does the computa-
tional cost. For the final level of the algorithm, we use the
BS strategy to select nearest-neighbors so that the recursive
algorithm could be terminated within a limited computation
time. In addition, the neighbor size is an important factor
for these strategies and can have a large impact on over-
all system performance. Furthermore, we must also set the
combination weight threshold for the CS and CS+ strate-
gies. Finally, we need to determine the overlap size for the
nearest-neighbor users for both the BS+ and CS+ strategy.

5. EVALUATION
5.1 Setup

Our experiments adopt the MoiveLens dataset that we
have mentioned in Section 4.1. The full dataset of users and
their rating values is divided into a training set and a test
set. In our experiments 80% of the data was used as training
data and the other 20% for testing data.

Our experiments are executed on a ThinkPad Notebook
(model T41P), which has 1GB memory and one CPU of
1.7GHZ under the Linux operating system. We implement
both the baseline algorithm and our recursive prediction al-
gorithm in Java based on the Taste collaborative filtering
open source project [9].

5.2 Evaluation Metrics

Mean Absolute Error (MAE) is a widely used metric for
measuring the prediction accuracy between ratings and pre-
dictions for collaborative filtering systems. For each rating—
prediction pair < R, R; >, the absolute error between them
can be calculated as |R: — Rt| The MAE is the average
value of these absolute errors |R; — R;| for all items in the
test dataset. Formally it is calculated as the following:

Zi\lzl |Ri — Rt|
MAE = ~ (5)
Where N is the size of the test dataset. The lower the
MAE, the more accurate the recommendation system pre-
dicts the ratings. Compared to other metrics, MAE is eas-
ier to measure, and empirical experiments have shown that
mean absolute error has high correlations with many other
proposed metrics for collaborative filtering. Mean absolute
error is the most frequently used metric among collaborative
filtering researchers.
In this paper we adopt MAE as the metric to measure the
prediction accuracy. Also, we use the task time to measure
the computation cost of the each algorithm.

5.3 Experimental Results

There are a number of parameters which can affect the
performance of the recursive prediction algorithm. Here we
outline these parameters:

1. the neighbor size (the values of K and K’)

2. the recursive level (the value of ()

3. the combination weight threshold (the value of \)

4. the overlap size threshold (the value of ¢)

In this paper, we first carry out experiments to deter-
mine the value of each parameter, and then we compare the
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Figure 2: Performance results with various neighbor
sizes.

overall performance of the CF approach that adopts the re-
cursive prediction algorithm with the baseline CF approach.

5.3.1 Neighbor Size for the Similarity Strategy(SS)

Compared to the baseline strategy(BS) for selecting neigh-
bors, the similarity strategy(SS) is able to adopt those highly
correlated neighbor users who haven’t rated the given item.
Here we compare the prediction accuracy and the task time
of completing all predictions in the testing dataset between
the two strategies(BS vs SS). The results are shown in Fig-
ure 2. For this experiment the recursive level is set to 2.

From the results we can see that the accuracy for both
strategies improves as the neighborhood size increases, from
3 to 20. One interesting result is that although the SS strat-
egy includes users who may only have estimated rating val-
ues, it can obtain higher prediction accuracy than the BS
strategy when the neighbor size is relatively small. For ex-
ample, if both strategies take only 5 neighbors, the SS strat-
egy reduces the MAE value by 5.2%.

We can also see that the SS strategy requires more compu-
tation resources, especially when the neighbor size is large.
This is because the SS method needs to estimate the in-
termediate value recursively. This is a drawback of the SS
strategy and it tell us that if we want to improve the predic-
tion accuracy, it is infeasible to use the SS strategy alone. A
better approach would be to combine the SS strategy with
other neighbor selection techniques.

We noticed that when the neighbor size is 10, the SS strat-
egy can produce low-error predictions, while not being very
computationally expensive. In the following experiments we
set the neighbor size for the SS strategy as 10.

5.3.2 Recursive Level

Recursive level is an important parameter for the recur-
sive prediction algorithm. In this experiment we choose the
SS strategy with a neighborhood size of 10. We explore the
prediction performance and the algorithm complexity with
various recursive levels. Please keep in mind that when the
recursive level is zero, the Similarity strategy (SS) is equiv-
alent to the baseline strategy (BS).
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Figure 3: Performance results with various recursive
levels.

From the results shown in Figure 3 we can see that the
prediction performance has an improvement of 1.4% from
the non-recursive prediction process to the one with 1 level
of recursion. We can also see that when the recursive level
is larger than 2, the prediction accuracy doesn’t improve
significantly, but the task time increases does. To balance
the prediction accuracy and the computational cost, we set
the recursive level as 2 in our later experiments .

5.3.3 Combination Weight Threshold

As mentioned earlier, the combination strategy (CS) is
supposed to benefit from both the conventional baseline
strategy (BS) and the similarity strategy (SS). One param-
eter that we need to determine is the combination weight
threshold A. In this experiment, we set the neighbor size for
both the BS strategy and the SS strategy as 10(i.e., K = 10
and K’ = 10), the recursive level is set as 2(i.e. ¢ = 2).
Please also note that when A = 0, The CS strategy is equiv-
alent to the baseline BS strategy.

From Figure 4 we can see that the SS strategy can per-
form better than the BS strategy. Also, we can get even
better performance if we combine them together. For in-
stance, in the experiment when A = 0.5, MAE can be re-
duced by around 1% (compared with the SS strategy) and
3% (compared with the BS strategy) respectively.

5.3.4  Overlap Size Threshold

In this experiment we investigate the relationship between
prediction performance and the overlap size threshold for the
two strategies: BS+ and CS+. As we can see in Figure 5,
increasing the overlap size threshold from 2 to 10 produces
better prediction performance for both strategies. However,
the prediction performance decreases gradually when the
overlap size threshold increases from 10. From this result
we can see that a good choice of the overlap size threshold
would be around 10. We can also see that in all cases, the
CS+ strategy is more accurate than the BS+ strategy given
the same overlap size threshold. On average, the CS+ strat-
egy can reduce the MAE by around 2.1% compared to the
BS+ strategy when the overlap threshold is set as 10. In
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Figure 4: Performance results of the combina-

tion strategy(CS) with various combination weight
thresholds.

the following experiments, we set the overlap size threshold
as 10.

5.3.5 Performance Comparison

It is important to know if the recursive prediction algo-
rithm (adopting the SS, CS or CS+ strategy) can lead to
substantial performance improvement compared with the
traditional direct prediction algorithm (adopting the BS or
BS+ strategy) for CF recommender systems. Here we carry
out a set of experiments to compare the performance of these
strategies for various neighborhood size K. In this experi-
ment, we choose the following parameters for the recursive
prediction algorithm: the recursive level ( is set as 2, and
the combination weight threshold A is set as 0.5. Addition-
ally, the neighborhood size K’ is set as 10. The overlap
threshold ¢ for both the BS+ and CS+ strategy is set as
10. The experimental result is shown in Figure 6.

From Figure 6 we can learn several interesting results.
Firstly, prediction accuracy increases for all strategies, when
the neighborhood size increases from 3 to 50. After that, it
levels off. The performance of the baseline strategy (BS) is
in line with the results in the earlier literature [3].

Additionally, the BS+ strategy performs better than the
BS strategy, especially when the neighborhood size is rela-
tively small. For example, when the neighbor size K is 10,
BS+ strategy can reduce the MAE from 0.774 to 0.762 (by
1.4%). Since the only difference between the BS and the
BS+ strategy is that BS+ only selects those users with at
least 10 overlap items to the active user, we can see that
only keeping neighbor users with a high overlap size has a
positive influence on the prediction power. However, such
improvement is limited with the neighbor size: when the
neighbor size is bigger than 50, the BS+ strategy doesn’t
make any substantial improvement compared with the BS
strategy.

Moreover, the CS strategy performs better than the BS
strategy, especially when the neighbor size is relatively small.
For example, when K=10, the CS strategy can reduce the
MAE by 1.9% compared with the BS strategy. This shows
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Figure 5: Performance results of the CS+ strategy
with various overlap thresholds.

that the proposed recursive prediction algorithm can im-
prove the prediction accuracy. Again, this improvement is
not significant when the neighbor size is bigger than 50.

Finally, the results show that the CS+ strategy has the
best performance among all strategies in all cases. For ex-
ample, when the neighbor size is K=10, the CS strategy can
reduce the MAE by 3.4% compared with the BS strategy.
It is also important to notice that when the neighbor size is
large, the CS+ strategy still improves on the BS strategy.
For example, when the neighbor size is K=60, the BS strat-
egy reaches its best performance(MAE=0.748). By compar-
ison, the CS+ strategy can further reduce the MAE to 0.742
(0.8% lower than BS strategy).

6. DISCUSSION

To predict the rating value of a given item for an active
user, the conventional prediction algorithm in collaborative
filtering recommender systems selects neighbor users only
from those who have already rated the given item. Because
of the dataset sparseness, a large proportion of nearest-
netghbor users are filtered out without contributing to the
prediction process. By comparison, our recursive prediction
algorithm is able to keep those nearest-neighbor users in the
prediction process even though they haven’t given ratings
to the given item. To the best of our knowledge, this is
the first work of improving the prediction accuracy towards
the direction of selecting more promising nearest-neighbor
users.

The key contribution of this work is that the recursive
prediction algorithm enables a larger range of neighbor users
to be included in the prediction process of CF recommender
systems. Our experimental results show that the proposed
prediction algorithm can produce higher prediction accuracy
than the conventional direct nearest-neighbor prediction al-
gorithm. When selecting nearest-neighbors with at least a
certain number of overlapped rating items with the active
user(the CS+ strategy), the recursive prediction algorithm
can reduce the prediction error (measured by MAE) by 0.8%
compared to the best performance that can be achievable by
the conventional user-based prediction algorithm for collab-
orative filtering recommender systems.
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It is worthy to point out that the parameters for the re-
cursive prediction algorithm in our experiments were de-
termined empirically according to the feedback from per-
formance test, and so values are dependent to the current
underlying dataset. If the dataset changes, we may need to
tune these parameters again to make the algorithm reach its
best overall performance on the new dataset.

The work in this paper can be extended in several direc-
tions. In this paper we only described our algorithm for the
user-based CF recommender systems. This algorithm can
be easily applied to the item-based CF recommender sys-
tems [7, 11]. This change is intuitive: what we need to do is
to change the nearest-neighbor users into nearest-neighbor
items. The item-based version of the recursive prediction
algorithm is left for future work. Furthermore, trust has
been identified as a very useful information in recommender
systems [8]. We could also extract trust information from
the training dataset and integrate it into our recursive al-
gorithm to improve the prediction accuracy and robustness.
For instance, we can apply the trust information as one of
the criteria in selecting the nearest-neighbor users in our re-
cursive prediction algorithm to further improve the overall
prediction performance. Moreover, recently O’Sullivan et
al. [13] has proposed a different approach to ameliorate the
data spareness problem. They use data mining technique to
increase the similarity coverage among users and could make
recommender systems perform better. This technique can
also be integrated into the recursive prediction algorithm so
to further improve the overall recommendation performance.

One drawback of the current proposed recursive predic-
tion algorithm is that the computational cost is relatively
high compared with the conventional prediction algorithm.
We noticed that in the recursive prediction process there
are a lot of computation redundancies. For example, those
intermediate prediction results can be calculated offline, or
can be calculated only once and be saved for later use. Thus
the online computation complexity could be heavily reduced.
Additionally, we could adopt some light computational com-
plexity and low memory consumption algorithm, such as the
slope one prediction approach [6], to calculate those inter-
mediate prediction values.

7. CONCLUSIONS

In this paper we proposed a recursive prediction algorithm
for CF recommender systems which can predict the missing
rating values of the neighbor users, and then apply these
missing values to the prediction process for the active user.
Our studies show that the recursive prediction algorithm is
a promising approach for achieving higher prediction accu-
racy than the conventional direct prediction algorithm in the
nearest-neighbor based CF approach. Specifically, the recur-
sive prediction algorithm together with the CS+ strategy
achieved the best prediction performance. When the neigh-
bor size is relatively small (K=10), it can reduce prediction
error by 3.4%. When the neighbor size is large (K=60), it
can further reduce the prediction error by 0.8% than the best
performance that the conventional nearest-neighbor based
CF approach could achieve. In future work, we will inves-
tigate the soundness of the proposed algorithm on a larger
dataset and make it more efficient. We also plan to apply
the recursive prediction algorithm on the item-based CF ap-
proach to testify its performance.
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