
N89-22345

A RECURSIVE TECHNIQUE FOR ADAPTIVE VECTOR QUANTIZATION

Robert A. Lindsay
Unisys Corporation

ABSTRACT

Vector Quantization (VQ) is fast becoming an accepted, if not
preferred method for image compression. VQ performs well when
compressing all types of imagery including Video, Electro-Optical
(EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral
(MS) , and digital map data. The only requirement is to change the
codebook to switch the compressor from one image sensor to another.
However, codebooks can be difficult to design because data may not be
available or may not accurately represent the pdf. This stimulates
the need for an algorithm that can simultaneously design a codebook
while vector quantizing the data.

There are several approaches for designing codebooks for a vector
quantizer. The most common algorithm being the LBG or generalized
Lloyd. Entries in the codebook represent the centroid of the data
that is associated with a respective Voroni region. A quantizer is
uniquely defined by the codebook centroids and the distortion metric.
The LBG algorithm is used to minimize the overall distortion of the
quantizer by iteratively moving the centroids and computing the new
distortion until the quantizer converges on a local minimum. Previous
implementations of the LBG algorithm compute the centroid by adding
all the vectors in the Voroni region and then dividing by the number
of vectors. This is done iteratively on a sample of source data
referred to as a training sequence.

Adaptive Vector Quantization is a procedure that simultaneously
designs codebooks as the data is being encoded or quantized. This is
done by computing the centroid as a recursive moving average where the

centroids move after every vector is encoded. When computing the
centroid of a fixed set of vectors the resultant centroid is identical
to the previous centroid calculation. This method of centroid
calculation can be easily combined with VQ encoding techniques. The
defined quantizer changes after every encoded vector by recursively
updating the centroid of minimum distance which is the selected by the
encoder. Since the quantizer is changing definition or states after
every encoded vector, the decoder must now receive updates to the
codebook. This is done as side information by multiplexing bits into
the compressed source data. It is important to note that the
quantizer converges in much the same way as the LBG algorithm
converges. For stationary data sources the centroids will become
fixed and the side information will not be necessary. For non-
stationary sources the side information can be used to allow the
quantizer to adapt to the data, thereby providing an Adaptive Vector
Quantizer. Important issues to consider are the rate of convergence,
start-up distortion or rate overhead, and tracking non-stationary
sources. These issues will be addressed in a forthcoming publication.

ACKNOWLEDGEMENTS

This work was partially supported by Unisys Corporation
through the University of Utah Center for Communications Research.

338

Vector
Codebook

I VectorInput)Findl Index
Closest -

+

Vector Quantization Encoding

339

Vector
Codebook

Vector Quantization Decoding

Present Implementation of VQ

0 Acquire data from sensor

0 Design a codebook

0 Implement a search technique

Acquire Data from the sensor

0 Expensive

0 Classified

0 Not possible

0 Poor representative
(st art over)

3 d 0

Codebook Design

0 Exhaustive Search

0 Generalized Lloyd (LBG)

0 K-means

0 Simulated Annealing

0 Pairwise Nearest Neighbor (PNN)

One Dimensional Lloyd’s Algmjfihm

0 Determine PDF of source

0 Solve Equations

j = 2, ..., N Yj+Yj-1
- = 2

- Szj =j+yx - y j) p (x) d x = 0 j = 1, ..., N

341

Generalized Lloyd using a training sequence,

0 Acquire training sequence

Create vectors by grouping samples

(lots of samples of source data)

(maximize correlation)

Blocked Image

342

Design codebook

1.

2.

3.

4.

0
x x
x x

Initialize codebook
Place a set of quantization points in the vector space

Encode training sequence
Assign each vecior from the training sequence to the closest
quantization point

Reassign codebook
Compute the centroid of each set of training sequence vectors assigned
to a codebook vector and reassign the codebook to be these new
centroids

Iterate 2 and 3
Iterate until no change (or minor change) to the overall distortion

x x 0 O R x 1 1 x-JO t’ x x x x x x

-1, I ,1 -1, I J
I 1

x x x x x x b: q’
0 I-’ 0 0

x x 1’ x x 0
x x 0 x x

xox 1 xox x x x x

t- ’
0 - code vector x - training vector 0 - centroid

343

Encoding the Source Vectors
Using Full Search

0 Compute the quantization error (&tartion)
between the source vector and each vector
in the codebook

0 Replace the source vector with the index
to the vector of minimum distortion

3 4 4

Tree

. .

345

NON-UNIFORM BINARY TREE SEARCH

<
Each level computes s'. G (j) > T (j) where

0 c(j> = 62(j> - C'l(j)

346

Adaptive Vector Quantization

0 Combines principles of codebook design with,
encoding

0 Requires no source samples of data to start

0 Removes logistics problem of changing code-

(training sequence)

books

347

Recursive Codebook Design

0 Initialize codebook vectors

0 Encode a source vector as hdore by Loolung
at each entry in the codebook m d choosing
entry of minimum distortion

0 Update the codebook vector after every en-
coded source vector

i Send Achange as side information

Changing Codebook Values

Codebook entries are the centroids of the
Voroni region

0 Centroids converge in much the same way
as the Generalized Lloyd algorithm

340

Things to Consider

0 Start-up

- Increase rate
- Increase distortion
- Reset

0 Convergence

0 Register overflow

- N counts
- a divides

.I Overhead for side information

0 Performance

0 Stationarity of source

349

