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Abstract: Solid-state lighting technology, where light-emitting diodes (LEDs) are used for energy
conversion from electricity to light, is considered a next-generation lighting technology. One of
the significant challenges in the field is the synthesis of high-efficiency phosphors for designing
phosphor-converted white LEDs under high flux operating currents. Here, we reported the syn-
thesis, structure, and photophysical properties of a tetranuclear Cu(I)–halide cluster phosphor,
[bppmCu2I2]2 (bppm = bisdiphenylphosphinemethane), for the fabrication of high-performance
white LEDs. The PL investigations demonstrated that the red emission exhibits a near-unity photolu-
minescence quantum yield at room temperature and unusual spectral broadening with increasing
temperature in the crystalline state. Considering the excellent photophysical properties, the crys-
talline sample of [bppmCu2I2]2 was successfully applied for the fabrication of phosphor-converted
white LEDs. The prototype white LED device exhibited a continuous rise in brightness in the range of
a high bias current (100–1000 mA) with CRI as high as 84 and CCT of 5828 K, implying great potential
for high-quality white LEDs.

Keywords: Cu(I)–halide cluster; photoluminescence; light-emitting diodes; phosphor-converted
white LEDs

1. Introduction

Highly luminescent molecules or clusters have attracted much attention in the past
two decades because of their wide applications in fields of display, sensing, light-emitting
devices, etc. [1–6]. The photophysical properties of metal complexes can be modified
not only by the property of central metals but also by organic ligands and metal–ligand
interactions [7–17]. Of particular interest is the potential use of Cu(I) complexes for light
generation via electroluminescence [18–25], such as organic light-emitting diodes (oLEDs),
because of their low cost, low toxicity, and earth-abundance of the copper element. Over the
past two decades, luminescent Cu(I) complexes have been widely investigated as emitters
in lighting devices [26–30]. However, the Cu(I) complexes, especially with multicenter
cluster structure, usually exhibit weak room-temperature phosphorescence from either
metal–ligand charge transfer (3MLCT) and/or cluster-centered (3CC) triplet excited states
induced by moderate spin-orbit coupling (SOC) [31–45]. The structural distortions in
the excited state enhance the probability of non-radiative processes, giving rise to poor
photoluminescence quantum yield (PLQY). Hence, it is crucial to minimize structural
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distortion of local coordination spheres of metal centers for achieving highly emissive
excited states [46–49]. We have previously demonstrated the synthesis and photophysical
properties of cluster-based extended Cu(I) frameworks through monochelating imidazole
derivatives, which showed negative/zero thermal quenching via electronic structural
transition [15,16]. However, the monochelating metal complexes readily suffer from the
heavy distortion of their excited states, which results in rather low PL efficiency, and the
complexes are not attractive for LED phosphors. Therefore, we decided to synthesize
related metal complexes that exhibit high PL quantum yields for potential applications.

In this work, we report the synthesis, structure and application of a red-emitting
tetranuclear Cu(I)–halide cluster phosphor with the formula of [bppmCu2I2]2 from a
bidentate organophosphate ligand, bisdiphenylphosphinemethane (bppm). The chemical
structure of the bppm ligand and the formation of its complex studied here are shown in
Scheme 1. The bischelating nature of ligand leads us to propose the cluster structure rather
than an extended framework, in which the structural distortions are strongly reduced by
introducing multichelating donors and sterical hindrances, such as the phenyl groups to
the phosphine ligand (Scheme 1). This synthetic strategy is highly successful related to
its PLQY at room temperature. We found that the tetranuclear copper cluster exhibited a
broadband red emission with impressively high PL quantum yield (PLQY) exceeding 98%
at room temperature in the crystalline state. The photophysical properties of the complex,
[bppmCu2I2]2, are discussed with reference to the crystal structure, femtosecond transient
absorption (fs-TA), and temperature-dependent PL emission. Furthermore, when the title
Cu(I)–halide cluster was applied as phosphor for fabricating phosphor-converted white
LEDs (pc-wLEDs), the pc-wLED devices showed a continuous brightness increase even
under high flux working current owing to its high PL efficiency and photostability.
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2. Results and Discussion
2.1. Structural Analysis

The reaction between the bidentate organophosphate ligand (bppm) and CuI at
room temperature gave rise to the self-assembly tetranuclear cluster with formula of
[bppmCu2I2]2. The colorless bulk crystals of [bppmCu2I2]2 were obtained through evap-
orating the resulting solution in the dark. The phase purity of the single-crystal sample
is verified through powder XRD pattern (SI, Figure S1) and elemental microanalysis. The
analysis of single-crystal X-ray diffraction data at 100 K indicated that the [bppmCu2I2]2
cluster crystallized in the orthorhombic Pbca space group and the asymmetric unit contained
crystallographically distinct Cu2I2 rhomboid and a bppm ligand (Figure 1a and Table S1).
It can be seen from Figure 1a that the centrosymmetric Cu4I4 unit forms an open chair
structure. It is noticed that the Cu1–Cu2 distance (2.7309 Å) is short compared to the sum of
the van der Waals radii of copper atoms (2.8 Å), which is indicative of a significant Cu–Cu
interaction in the complex [50]. Given the bischelating character of bisphosphine ligand
and cuprophilic interactions, the crystalline sample shows high thermal stability and begins
to collapse above 400 ◦C (SI, Figure S2).
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Figure 1. (a) Crystal structure of [bppmCu2I2]2 at 100 K. Cu: red, C: gray, P: yellow, I: purple,
H: white. (b) The normalized emission (λex = 360 nm) and excitation (λem = 638 nm) spectra of
[bppmCu2I2]2 at room temperature. (c) Photographs of a 0.45 × 0.40 × 0.22 mm single crystal of
[bppmCu2I2]2, under natural light and 365 nm UV irradiation, respectively.

2.2. Photoluminescence Properties

The fluorescence spectrum of complex [bppmCu2I2]2 at 298 K shows a wide red
emission with a center peak at 638 nm and a half-peak width (FWHM) of 140 nm under
the excitation wavelength at 360 nm (Figure 1b,c). The complex exhibits a large Stokes
shift of 278 nm, indicating a significant energy level difference between the absorption
excitation state and PL emission state. Notably, the high photoluminescence quantum yield
is recorded to be 98.2% (SI, Figure S3). As is known, the photoluminescence properties
of Cu(I)–halide complexes typically arise from two separate emissive states, as shown in
Scheme 2. A low-energy emission, i.e., λem > 550 nm, which is assigned to the cluster-
centered (3CC) excited state can be observed for systems with intermetallic interactions
and is independent of the nature of the ligands. In addition, a high-energy emission,
i.e., λem < 450 nm, is typically observed at low temperature, which is attributed to a
3(M+X)LCT excited state [2,4,5,15,18]. However, the high-energy emission is not observed
even at the lowest temperature (79 K) in this case. Hence, we propose a qualitative model
for the luminescence origin of [bppmCu2I2]2 based on the above experimental data and
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the existing model [24,25,31–35]. The luminescence of [bppmCu2I2]2 can be tentatively
attributed to the 3CC excited state with a low-energy emission at 638 nm.
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Scheme 2. (a) Schematic structure and excited-state transitions of metal–halide clusters. M is metal; L
is ligand; X is halide. (b) Excited-state decay pathways of Cu–halide clusters. 3(M+X)LCT, mixed
metal– and halide–ligand charger transfer transition; 3CC, cluster-centered; ISC, intersystem crossing;
Superscript‘3‘refers to triplet excited state.

Upon heating the sample at low temperature, the cluster of [bppmCu2I2]2 exhibits
a thermally stable emission, with slight emission variation up to a temperature of 239 K,
and the PL decreases upon further warming (Figure 2a). It can be seen from Figure 2b
that the FWHM of the complex evidenced significant broadening as the temperature rise.
Temperature dependence of FWHM of the emission peak is shown in Figure 2c (top),
which indicates that the broadband red emission from [bppmCu2I2]2 likely originates from
distorted excited states (ES) due to the weakening Cu–Cu interactions at high temperature.
The temperature dependence of the FWHM is well approximately fitted with a linear
equation, and the PL emission increases with decreasing temperature and reaches its
plateau at 239 K [51,52] (Figure 2c (below)).

2.3. Excited State Analysis

To deeply investigate the properties of excited states, we performed the femtosecond
time-resolved transient absorption (fs-TA) spectroscopy from low to high temperature.
Based on the PL emission procedure, the excitation light induces S1 excitation, and the
essentially same spectral profiles for samples at different temperatures were obtained
through the white-light continuum probe (400–800 nm) (SI, Figure S4). The temperature
dependence of fs-TA echoes with those of fluorescence spectra. As shown in Figure 3a,
the analysis of the fs-TA kinetics demonstrates the excited-state electronic transitions at
different temperatures [53]. The exponential decay lifetime (i.e., 8.6 µs at 290 K) after
equilibrium is consistent with the data through PL decay analysis (SI, Figure S5). Given
the emission arises from thermally induced distorted ES, the PL decay times would be
expected to increase as the distortion of these ES would be reduced at low temperatures.
To further investigate the nature of excited states, temperature dependence of decay times
were examined in the temperature range of 77–350 K as shown in Figure 3a. The PL
decay times increase linearly upon decreasing temperature from 350 to 78 K (Figure 3b).
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Strong coupling of excited electrons with local structural distortion can result in a wide PL
spectrum with a large Stokes shift due to distorted ES with respect to the ground state (GS).
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2.4. LED Performance

Initially, we investigated the high-power electroluminescence (EL) performance of
[bppmCu2I2]2 phosphor with UV-LED chips (λmax = 365 nm). The results for the single-
component red emission are shown in Figure 4a. The EL intensities of the red-emitting
[bppmCu2I2]2 phosphor increase as the current increases from 100 to 1000 mA
(Figure 4a) [54,55]. According to the Commission Internationale d’Eclairage (CIE) chro-
maticity diagram, the corresponding CIE coordinates slightly change from (0.59, 0.31) at
100 mA to (0.55, 0.34) at 1000 mA, which is close to a standard red emitter with the CIE
coordinates of (0.66, 0.33) (SI, Table S3).

In order to investigate the utility of [bppmCu2I2]2 as a wideband red emitter for
white LEDs, we further prepared phosphor-converted white LEDs with various correlated
colour temperatures (CCTs). Exemplarily, the phosphor-converted white LED comprises
a commercially available blue-emitting BAM:Eu2+ (465 nm, 58%), green emitting phos-
phor (Ba,Sr)2SiO4:Eu2+ (515 nm, 19%), and [bppmCu2I2]2 crystalline sample (23%). For
[bppmCu2I2]2-based pc-wLED, the whole visible region from 400 to 750 nm was obtained
in the EL spectra (i.e., a white-light emission), which increased under the high flux oper-
ating currents (Figure 4b). Interestingly, the [bppmCu2I2]2-based single-component and
pc-wLED exhibited a similar linear increase in intensity with increasing operating current,
demonstrating excellent photostability (Figure 4c). To further explore the potential of
practical applications as pc-wLED devices, the color stability for high-power LED operation
was studied. The CIE x (ca. 0.32) of [bppmCu2I2]2-based wLED is nearly constant, and
CIE y exhibited a small change (from 0.32 to 0.35) upon lifting the flux current from 100 to
1000 mA (SI, Table S4). The CRI value of [bppmCu2I2]2-based wLED was 84 and a CCT was
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5828 K at a flux current of 1000 mA at 3.8 V (Figure 4d). Hence, the complex [bppmCu2I2]2
shows excellent performance among the high efficient phosphors for designing high-power
white LED devices (Table 1) [56].
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Figure 4. (a) Electroluminescence spectra of [bppmCu2I2]2-based single-component LED at high
flux operating currents of 100–1000 mA. (b) Electroluminescence spectra of [bppmCu2I2]2-based
pc-wLEDs at flux operating currents of 100–1000 mA. (c) Current-dependent EL intensities of single-
component and its two-component wLEDs. (d) Image of [bppmCu2I2]2-based LED and pc-wLED
prototype at a flux current of 1000 mA.

Table 1. The performance of related Cu(I) complexes for LED applications.

Compound λex (nm) λem (nm) I (mA) CRI CCT (K) CIE (x,y) PLQY (%) Reference

(18-crown-6)2Na2(H2O)3Cu4I6 450 536 20 89.6 5859 0.32, 0.34 91.8 [57]

(C12H24O6)CsCu2Br3 365 535 20–300 73.7 4962 0.34, 0.43 78.3 [58]

[Cu(PPh3)2(PmH)]BF4 395 537 20–120 50.8 4881 0.37, 0.52 26.0

[59]

[Cu(DPEphos) (PmH)]BF4 395 560 20–120 50.5 3737 0.44, 0.52 42.0

[Cu(Xantphos) (PmH)]BF4 395 570 20–120 65.8 3561 0.44, 0.49 1.0

Cu(PPh3)2(Pm) 395 550 20–120 62.1 4176 0.40, 0.50 27.0

Cu(DPEphos)(Pm) 395 555 20–120 56.6 3875 0.43, 0.52 25.0

Cu(Xantphos)(Pm) 395 565 20–120 59.1 3603 0.44, 0.51 17.0

Cu(dppb)(2,2′-biquinoline)]BF4 365 735 60–100 69.2 1053 0.59, 0.29 – [60]

[Cu(dppb)(bbim)]BF4 365 538 20–120 38.2 4496 0.39, 0.55 23.0
[61]

[Cu(DPEphos)(bbim)]BF4 365 533 20–120 54.4 5381 0.34, 0.50 12.0

[Cu3(µ3-H)(µ2-dppy)4](ClO4)2 450 580–680 – 83.7 5281 0.33, 0.31 71.8 [62]

[bppmCu2I2]2 360 638 100–1000 84 5828 0.32, 0.34 98.2 This work

Note: PmH = 2-(pyridin-2-yl)benzimidazole. PPh3 = triphenylphosphine. DPEphos = bis(2-diphenylphosphino-
phenyl)ethe. Xantphos = 9, 9-dimethyl-bis(diphenylphosphino)xanthenes. dppb = 1, 2-bis(diphenyl phos-
phino)benzene, bbim = bisbenzimidazole. dppy = diphenyl-2-pyridylphosphine. bppm = bisdiphenylphos-
phinemethane. – not reported. The PLQY data are reported at room temperature.

3. Materials and Method
3.1. Materials

The chemicals and reagents, including bis(diphenylphosphino)methane (bppm) and
copper(I) iodide, were commercially obtained and used as received without further pu-
rification. LED chips for designing the red and white electroluminescence devices were
purchased from San‘an Optoelectronics Co., Ltd (Xiamen, China).



Molecules 2022, 27, 4441 8 of 12

3.2. Synthesis of [bppmCu2I2]2 Cluster

To a 10 mL stirred methanol solution containing bis(diphenylphosphino)methane
(19.22 mg, 0.05 mmol) was added CuI (19.04 mg, 0.1 mmol) dissolved in 10 mL of acetonitrile
solution, which was magnetically stirred for another 10 min. The block colorless crystals
suitable for X-ray diffraction analysis were obtained by evaporating the solution at room
temperature for a week. Yield: 65%. Infrared (IR) analysis (KBr, cm−1): 1950(w), 1895(w),
1817(w), 1774(w), 1648(m), 1585(m), 1572(s), 1432(s), 1343(s), 1369(m), 1309(m), 1276(w),
1185(s), 1157(m), 1137(m), 1098(s), 1070(w), 1026(s), 1000(s), 909(w), 838(w), 774(m), 737(m),
719(w), 689(m), 617(w), 519(s), 469(m), 445(w), 419(w). Anal. Calcd. for C25H22Cu2I2P2: C,
38.56; H, 2.90. Found: C, 39.20; H, 2.87.

3.3. Spectroscopic Measurements

An Edinburgh FS5 model instrument was used to record fluorescence spectra of
[bppmCu2I2]2 with the slit width at 0.5 nm for both excitation and emission in all the
experiments. An Edinburgh QY system, equipped with an integrating sphere was available
to record the absolute PL quantum yield (PLQY) at room temperature. An Edinburgh
FLS980 steady-state fluorimeter was used to analyze PL decays through a time-correlated
single-photon counting spectrometer. A Nicolet Magna-IR750 spectrophotometer with the
spectral range of 4000−400 cm−1 was available to record the FT-IR spectra of [bppmCu2I2]2
in KBr pallet (w, weak; b, broad; m, medium; s, strong). A RINT2000 vertical goniometer
equipped with CuKα X-ray source (operated at 40 kV and 100 mA) was used to record
powder X-ray diffraction (PXRD). Elemental analyses (C, H) were conducted with a Perkin
Elmer 2400 analyzer.

3.4. Temperature-Dependent Ultrafast Transient Absorption Measurements

An EOS pump–probe system (Ultrafast Systems LLC., Sarasota, FL, USA) equipped
with an amplified femtosecond laser system (Coherent) was available to perform the
femtosecond time-resolved transient absorption (fs-TA) spectra. An optical parametric
amplifier (TOPAS-800-fs) delivered the pump pulses (~56 µW), with a Ti:sapphire regen-
erative amplifier and a mode-locked Ti:sapphire laser system (Micra 5). A picosecond
Nd:YAG laser beam generates the WLC probe pulses (400–800 nm) into a photonic crystal
fiber. Between the pump and probe pulses, the time delays in the range of 8 ns–100 µs are
recorded through a digital delay generator. The IRF is determined to be ~100 ps. An optical
fiber-coupled multichannel spectrometer with a CMOS sensor was used for analyzing the
temporal and chirp-corrected spectral profiles of the pump-induced differential transmis-
sion of the WLC probe light. The temperature in the range of 77–350 K was controlled
through an Oxford cryogenic system.

3.5. Crystal Structure Determination

A Bruker APEX-2 CCD with graphite-monochromated MoKα radiation (λ = 0.71073 Å)
was used for collecting the diffraction intensity data of [bppmCu2I2]2 at 100 K. The Bruker
Instrument Service v4.2.2 and SAINTV 8.34A software were used to perform data collection,
data reduction, and cell refinement [63,64]. The structural analyses were performed with
direct methods through the SHELXS program, and the full-matrix least-squares routine
was used for refinement with SHELXL based on F2 [65]. Multiscan program SADABS
software was available to perform absorption corrections [66]. The C, P, Cu, and I atoms
were anisotropically refined with the SHELXTL program package, and hydrogen atoms on
organic ligands were geometrically generated by the riding mode [67,68].

CCDC no. 2179774. The crystallographic data can be obtained free of charge via www.
ccdc.cam.ac.uk/conts/retrieving.html (accessed on 28 June 2022) (or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK).

www.ccdc.cam.ac.uk/conts/retrieving.html
www.ccdc.cam.ac.uk/conts/retrieving.html
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3.6. TGA Analysis

The Labsys Evo thermal gravimetric analyzer was used for thermogravimetric (TGA)
analyses of [bppmCu2I2]2 under the atmosphere of N2. The crystalline sample (ca. 5 mg)
was placed on a platinum pan and the data was performed in the range from room
temperature to 900 ◦C at a rate of 10 ◦C/min.

3.7. LED Devices Fabrication

The stoichiometric [bppmCu2I2]2 and pouring sealant (ZWL8820) were mixed and
stirred for 10 min, the mixture was then deaerated in vacuum oven at room temperature. A
fully packaged Epileds InGaN LED chip (an emission wavelength of ca. 360 nm) was cov-
ered by the mixture with the forward bias current of the LEDs in the range of 100–1000 mA.
An Everfine HAAS-2000 equipment was available to record electroluminescence (EL) spec-
tra of the LEDs at room temperature [69,70]. In all the measurements, an integrating sphere
with a diameter of 30 cm was coupled to a high-accuracy array spectroradiometer (wave-
length accuracy < 0.3 nm) and a programmable test power LED 300E [71]. For fabrication of
white pc-LED, a UV LED chip was integrated with commercial blue phosphor (BAM:Eu2+),
green phosphor (Ba,Sr)2SiO4:Eu2+ and [bppmCu2I2]2 phosphor with the weight ratio of
ca. 3:1:1.2.

4. Conclusions

In summary, a tetranuclear copper(I)-iodide cluster phosphor with a defined crystal
structure exhibiting intense red photoluminescence has been prepared by using a bulky
bidentate organophosphate ligand. The photophysical investigations indicate that the clus-
ter phosphor exhibited an efficient room-temperature phosphorescence with a near-unity
PL quantum yield reaching 98%. The complex shows a thermally induced broadening
of PL spectra with short emission decay times (3.5–26 µs). Owing to the enhanced effi-
ciency and stability, the title cluster can be considered a promising phosphor material.
These results demonstrate an idea example for preparing highly efficient and photostable
metal–halide phosphor with short decay times which are necessary for high-performance
electroluminescence devices.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27144441/s1. Figure S1: The powder XRD patterns; Figure S2:
TGA diagram; Figure S3: The measurements of PLQY; Figure S4: Temperature-dependent fs-TA
spectra at the 1 µs probe delay. The fs-TA signal (that is, the absorbance changes) is given in OD which
stands for optical density; Figure S5: PL decay curve at 298 K. Table S1: The crystallographic data and
refinement parameters at 100K; Table S2: The selected bond distances (Å); Table S3: The EL parameters
of [bppmCu2I2]2-based LED; Table S4: The EL parameters of [bppmCu2I2]2-based pc-wLED.
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