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Abstract. The reduced basis element method is a new approach for approximating the
solution of problems described by partial differential equations within domains belonging to
a certain class. The method takes its roots in domain decomposition methods and reduced
basis discretizations.1–3 The basic idea is to first decompose the computational domain
into smaller blocks that are topologically similar to a few reference shapes (or generic
computational parts). Associated with each reference shape are precomputed solutions
corresponding to the same governing partial differential equation, and similar boundary
conditions, but solved for different choices of some underlying parameter. In this work, the
parameters are representing the geometric shape associated with a computational part.4,5

The approximation corresponding to the computational domain is then taken to be a lin-
ear combination of the precomputed solutions, mapped from the reference shapes for the
different blocks to the actual domain. The variation of the geometry induces non-affine
parameter dependence, and we apply the empirical interpolation technique to achieve an
offline/online decoupling of the reduced basis procedure. Some results for incompressible
flow systems have already been presented,6–8 and the focus here will be to further improve
the offline/online decoupling of problems with non-affine parameter dependence. To this
end we use the empirical interpolation method9,10 to approximate the parameter depen-
dent operators. We also present a generalized transfinite interpolation method11 intended
to produce global C1 mappings from the reference shapes to each corresponding block of
the computational domain.
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Figure 1: The computational domain Ω decomposed into building blocks.

1 INTRODUCTION

The reduced basis method is known to produce good approximations to parameter
dependent problems where the solution u, or some quantity s derived from the solution,
depends continuously on some parameter µ, e.g.

F (u(µ);µ) = 0, s(u(µ)) = f(u(µ)). (1.1)

The idea behind the reduced basis method is to split the computational process in two
stages. In the first stage a lot of work is done to compute the solution of the problem
(1.1) for many different choices of the parameter µ ∈ SN = {µ1, ..., µN}. Each solution
u(µi), i = 1, ..., N , is stored and considered to be a basis function for the reduced basis
approximation. In the second stage the solution of the given problem (1.1) for a new
choice of µ is found as a linear combination of the basis functions computed in the first
stage,

uN(µ) =

N∑
i=1

αi(µ)u(µi), (1.2)

where the αi are parameter dependent coefficients to be determined such that F (uN(µ);µ) =
0. The parameters are found using a Galerkin method. Since the number of basis functions
typically is very small compared to the number of degrees of freedom in the discretization
used to compute the basis functions, the work needed to find the parameters is also very
small.

The method is well suited for situations with many repetitive solves for reasonable
variations in the parameter, like optimization problems, and problems where the tradi-
tional solution approach is too time consuming, like in control problems. Thus the first
stage is called the offline stage, and the second stage is called the online stage. In order to
certify the reduced basis approximation uN(µ), a posteriori error estimation of the output
of interest, sN = s(uN(µ)), is used.
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Figure 2: The reference bifurcation B̂.

In the reduced basis element method, the geometry of the computational domain is
considered to be the parameter on which the solution depends.4,5, 12 The domain is de-
composed into a union of non-overlapping building blocks (see Figure 1),

Ω = Φ(Λ̂) =

K⋃
k=1

Λk, (1.3)

where each building block Λk is defined by a regular enough, one to one, mapping Φk

of one of several reference domains Λ̂, i.e., Λk = Φk(Λ̂). Throughout this text Λ̂ will
represent either a reference square Ω̂ = (0, 1)2, or a reference bifurcation B̂; see Figure 2.

Corresponding to each reference domain is a set of precomputed basis functions found
by solving the underlying problem (1.1) for a given set of preselected deformations Φi :
Λ̂ → Λi, i = 1, ..., N . Each basis function ui = u(Φi) is then mapped to the reference
domain through an appropriate transformation, ûi = Ψ(ui,Φi), and stored.

On the computational domain Ω, the global solution is found as a linear combination
of the precomputed basis functions on each building block, while applying a continuity
constraint on the block interfaces.13 The global reduced basis approximation is then

uN(Φ) =

K⋃
k=1

Nk∑
i=1

αi(Φ
k)Ψ−1(ûi,Φ

k), (1.4)

where the coefficients αi(Φ
k) are determined such that F (uN(Φ); Φ) = 0, and such that

∫
Γkl

(u|Λk
− u|Λl

)ψdS = 0, ∀ ψ ∈Wkl, (1.5)

where Γkl is the interface between two adjacent blocks in the decomposition of Ω, and Wkl

is some low-dimensional functional space defined on this interface. In (1.4) Nk represents
the number of precomputed basis functions associated with each reference domain; this
number may in general be different.
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The regularity requirements of the mappings Φi and Φk and the definition of the trans-
formation Ψ of the basis functions, depends on the particular problem (1.1). If the basis
functions are scalar fields, the transformation of the basis functions to the reference do-
main is defined by ûi = Ψ(ui,Φi) = ui ◦ Φi.

If the basis functions are vector fields associated with incompressible fluid flow, the
mapping of the basis functions to the reference domain is defined by the Piola transfor-
mation,14

ûi = Ψ(ui,Φi) = J −1
i (ui ◦ Φi)|Ji|, (1.6)

where Ji is the Jacobian of Φi, and Ji its determinant. In order for the mapped basis
functions to be continuous, the mappings Φi and Φk must be C1 from Λ̂ to Λi and Λk,
since the Jacobian contains the derivatives of the mappings with respect to the reference
coordinates.

One common way to achieve C1 mappings is to solve a Laplace problem on the reference
domain, with the coordinates of the boundary of each deformed domain as Dirichlet
boundary conditions to the Laplace problem.15 One Laplace problem has to be solved for
each spatial direction, and on the computational domain Ω, the mapping for each building
block has to be computed in the online stage of the reduced basis element method.

As an alternative to solving several Laplace problems in the online stage, we propose
in Section 2 a generalization of the traditional transfinite interpolation method16 in order
to construct C1 mappings for more general reference domains.11 In this case most of the
work will be done in the offline stage.

In addition we will see in Section 3 that when the geometry is considered to be the
parameter in the reduced basis method, the problem will depend on the parameter in a
non-affine sense. Again with the goal to do most of the computations in the offline stage,
we present the empirical interpolation method9 applied to the reduced basis element
method.

In Section 4 we present some of the basics of the a posteriori error estimation used to
certify the reduced basis element approximation. The focus will be on compliant output,
but error estimation for non-compliant output is also possible.3

In the final section we present numerical examples of the reduced basis element method
used to find the solution of the steady Stokes problem on different domains Ω, where

Ω = Φ(Λ̂) =
⋃K

k=1 Φk(Λ̂). The domains have an inlet boundary Γin, an outlet boundary
Γout, and walled boundaries Γw. The steady Stokes problem is defined as: Find the
velocity u ∈ X(Ω) and the pressure p ∈M(Ω), such that

a(u,v; Φ) + b(v, p; Φ) = l(v; Φ) ∀ v ∈ X(Ω)
b(u, q; Φ) = 0 ∀ q ∈M(Ω),

(1.7)

where X(Ω) = {v ∈ (H1(Ω))2,vΓw
= 0, vt|Γin

= vt|Γout
= 0}, and M(Ω) = L2(Ω).

In addition, we have the Neumann type boundary conditions given by specifying σn =
ν ∂un

∂n
−p to be σin

n = −1 along Γin and σout
n = 0 along Γout; here, un is the normal velocity

component and ∂/∂n denotes the derivative in the outward normal direction.
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On the same spaces X(Ω) and M(Ω), and with the same boundary conditions as for the
steady Stokes problem, we also present an example of the reduced basis element method
used to find the approximation of the steady Navier-Stokes problem when Ω consists of
only one building block. The steady Navier-Stokes problem is given as: Find u ∈ X(Ω)
and p ∈M(Ω) such that

a(u,v; Φ) + c(u,u,v; Φ) + b(v, p; Φ) = l(v; Φ) ∀ v ∈ X(Ω)
b(u, q; Φ) = 0 ∀ q ∈M(Ω).

(1.8)

All velocity basis functions found as the solutions of (1.7) and (1.8) are divergence free,
and reduced basis velocity solution may be found independently of the pressure.6 To solve
the coupled reduced basis element problems corresponding to (1.7) and (1.8) for both the
velocity and the pressure, we have to make sure that the reduced basis solution spaces
fulfill the inf-sup condition. One way of doing this is for each pressure basis function pi

to find ve
i ∈ X(Λ̂), such that

ve
i = arg max

u∈X(Λ̂)

∫
Λ̂
p̂i∇ · udΛ̂

|u|H1(Λ̂)

. (1.9)

When these velocity fields are included in the reduced basis approximation, the inf-sup
condition is fulfilled.

2 A GENERALIZED TRANSFINITE INTERPOLATION METHOD

When the reference domain is a square, we use the traditional transfinite interpolation
method16 to define a C1 mapping from the reference domain to any deformed rectangle
with corners smaller than 180o. The idea is to construct the interior points of the physical
domain as linear combinations of points on the boundaries.

On the reference square, Ω̂ = (0, 1)2, we construct one-dimensional weight functions
φi(r), such that for r0 = 0 and r1 = 1 we get

φi(rj) = δij , 0 ≤ i, j ≤ 1. (2.1)

The one dimensional weight functions may be linear, but this is not a necessity. We may
also use different weight functions in different spatial directions.

We assume that a representation of the boundaries of the physical domain is given
with respect to the reference variables (ξ, η) by a bijective map. Each boundary will be
the function of one variable, and we define the horizontal boundaries x(ξ, 0) and x(ξ, 1),
and the vertical boundaries x(0, η) and x(1, η), where x = (x, y).

The one-dimensional transfinite interpolations (or projections), are then defined as

Ωξ = Φξ(Ω̂) = φ0(ξ)x(0, η) + φ1(ξ)x(1, η) (2.2)

Ωη = Φη(Ω̂) = φ0(η)x(ξ, 0) + φ1(η)x(ξ, 1) (2.3)
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(a) The harmonic weight function as-
sociated with the left vertical side of
the reference bifurcation.
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Figure 3: Non-linear harmonic functions used in the transfinite interpolation method for general reference
domains.

Ωξη = Φξη(Ω̂) =
1∑

i=0

1∑
j=0

φi(ξ)φj(η)x(ri, rj), (2.4)

and the resulting two-dimensional projection is

Ω = Φ(Ω̂) = Φξ(Ω̂) + Φη(Ω̂) − Φξη(Ω̂). (2.5)

The mapping (2.5) will preserve the boundaries of the physical domain, and the interior
points are determined via a linear transformation of the grid points defined on the reference
domain.

If the reference domain Λ̂ is a deformed rectangle, or a more general geometry with
more than four sides, for example a bifurcation, we can no longer use one-dimensional
weight functions like the ones presented in (2.1). We now associate one weight function
φi to each side Γ̂i, i = 1, ...n of an n-sided reference domain Λ̂. We let φi = 1 on Γi, and
solve the Laplace problem

∆φi = 0 in Λ̂, (2.6)

with homogeneous Neumann boundary conditions on the two sides of Λ̂ adjacent to Γ̂i,
and homogeneous Dirichlet boundary conditions on the remaining sides. On the reference
square Ω̂, these harmonic weight functions will coincide with the one-dimensional weight
functions defined in (2.1), but on a general reference domain, the weight functions will be
non-linear C1 functions; see Figure 3(a).

To define the transfinite interpolation on a general reference domain, we also need the
projection of the interior onto each side Γ̂i. On the reference square these projections are
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given by the reference coordinates as (ξ, 0), (ξ, 1), (0, η), and (1, η). On a general domain
we compute the projection πi onto the side Γ̂i by solving the Laplace problem

∆πi = 0 in Λ̂, (2.7)

with the Dirichlet boundary condition along Γ̂i distributed linearly from 0 to 1 with re-
spect to arc-length. On the sides adjacent to Γ̂i we set πi equal to either 0 or 1, and on the
remaining sides we use homogeneous Neumann boundary conditions. On the reference
square this procedure would reproduce the reference coordinates, while on general refer-
ence domains we get nonlinear C1 functions; see Figure 3(b). On the corresponding side
Γi on a physical domain, the value of an internal point (x̂, ŷ) on the reference domain is
determined by the function ψi(t) : [0, 1] → Γi, where t is found from t = πi(x̂, ŷ). Again,
on the reference square the boundary functions are given by x(ξ, 0),x(ξ, 1),x(0, η), and
x(1, η).

We now number the sides of an n-sided reference domain Λ̂, with corresponding physical
domain Λ, in a clockwise manner, and let xi denote the corner between sides Γ̂i and Γ̂i+1.
Furthermore we let Γ̂n+1 = Γ̂1, and define the transfinite interpolation

Λ = Φ(Λ̂) =
n∑

i=1

[φi(Λ̂)ψi(πi(Λ̂)) − φi(Λ̂)φi+1(Λ̂)xi]. (2.8)

The big benefit in using the extended transfinite interpolation in the context of the
reduced basis element method, is that all the harmonic functions may be computed in
the offline stage. In the online stage we only need to find the boundary functions ψi, and
perform the linear combination of the harmonic functions in (2.8).

3 EMPIRICAL INTERPOLATION APPLIED TO THE REDUCED BASIS

ELEMENT METHOD

One of the goals of the reduced basis method is to do all computations involving high
resolution in the offline stage. When a Galerkin method is used to find the coefficients
of the reduced basis approximation, the operators in the given problem operate on basis
functions stored in some high resolution space. The elemental contribution to the stiffness
matrix of the reduced basis problem on Ω = Φ(Λ̂) from, say, the diffusion operator is
expressed as

a(ũi, ũj ; Φ) = ν

∫
Λ̂

J −T ∇̂(
1

|J |
J ûi) · J

−T ∇̂(
1

|J |
J ûj)|J |dΛ̂, for i, j = 1, ..., N, (3.1)

where ũi = Ψ−1(ûi; Φ) is a precomputed basis function mapped to the physical domain;
see (1.6). Since the Jacobian of the mapping from the reference domain to the physical
domain is involved in the operator, we can not precompute the elemental contribution of
the operator directly. Instead we separate the parameter dependent contributions from
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the precomputed basis functions by first decomposing each operator, such that for any
v,w ∈ X(Ω)

a(v,w; Φ) = ν

Q∑
q=1

∫
Λ̂

gq(Φ)aq(v̂, ŵ)dΛ̂, (3.2)

where Q = 17 and all aq(·, ·) are independent of Φ.8 Similar decompositions are also
possible for other operators with non-affine parameter dependence.

The idea is then to use empirical interpolation9 to approximate each of the parameter
dependent functions gq(Φ) as a linear combination of only a few functions, g̃q

m = g̃q(Φq
m),

where Φq
m are found within a predefined set of mappings. We get

gq(Φ) ≈

Mq∑
m=1

βq
m(Φ)g̃q

m, (3.3)

where only the Mq parameter dependent coefficients βq
m(Φ) have to be computed in the

online stage. Furthermore, the construction of the empirical interpolation is such that
these coefficients can be found by sampling the function gq(Φ) at Mq isolated points, and
then invert a lower triangular matrix.

On the geometry given by the mapping Φ, the elemental contribution of the diffusion
operator is then approximated by

a(ũi, ũj ; Φ) ≈ ν

Q∑
q=1

Mq∑
m=1

βq
m(Φ)

∫
Λ̂

g̃q(Φm)aq(ûi, v̂j)dΛ̂. (3.4)

Since both N,Q and Mq are small integers, it is reasonable to precompute the value of
(3.4) for all combinations of i, j, q, and m. For the diffusion operator we then need to store
QMq matrices of size N2. This is also done for the other operators in the given problem. In
the online stage we find all the coefficients for the empirical interpolation approximations,
and then assemble the total stiffness matrix for the reduced basis problem by adding the
stored matrices together with the given coefficients as weights. The resulting N2 stiffness
matrix is then solved by a direct method to find the reduced basis coefficients.

We will in the next section see how the reduced basis coefficients may be used to
compute the output of interest, and also to find error estimators of this output of interest,
without assembling the reduced basis approximation itself. In this way, we never have
to do any computations involving the high resolution basis used to compute the basis
functions for the reduced basis element method. In shape optimization, say, we may
compute the output of interest for several choices of the geometry, and choose the geometry
best suited without ever explicitly constructing the underlying solution uN .

4 A POSTERIORI ERROR ESTIMATION

We assume that we are not interested in the reduced basis solution itself, but rather
some quantity derived from it. When the coefficients of the reduced basis solution is
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found, the output of interest s(uN ) = f(uN ; Φ) can be found as

s(uN) =

N∑
i=1

αi(Φ)f(ui; Φ), (4.1)

where the evaluation of the parameter dependent functional is done using the empirical
interpolation method described in Section 3. Thus the computational effort needed to
compute the output of interest is independent of the resolution of the underlying basis
functions.

In order to assess the quality of this output, we also compute a posteriori error bounds
s+(uN) and s−(uN),3,17 such that for all Φ within the span of the parameters used to
precompute the basis functions, we get

s−(uN ) ≤ s(u) ≤ s+(uN). (4.2)

We present here the bounds in the compliant case s(u) = l(u), on domains with one
building block.8 For computational domains consisting of several building blocks, the
work is ongoing.

We introduce an alternative diffusion operator on the reference domain Λ̂,

â(v,w; Φ) =

∫
Λ̂

g(Φ)∇̂(v ◦ Φ) · ∇̂(w ◦ Φ)dΛ̂, (4.3)

where v and w are functions on Ω, and g(Φ) is a positive function depending on the
mapping Φ : Λ̂ → Ω, g(Φ) is chosen such that

α0||v||
2
X ≤ â(v,v) ≤ a(v,v) ∀ v ∈ X(Ω), (4.4)

for some positive real constant α0.
Since the Stokes operator is symmetric, the output bounds defined by

s−(uN ) = l(uN )
s+(uN ) = l(uN ) + â(e, e),

(4.5)

satisfy (4.2). Here the velocity field e is defined as the field that satisfies the residual
equation

â(e,v; Φ) = l(v; Φ) − a(uN ,v; Φ) − b(v, pN ; Φ) ∀ v ∈ X̃(Ω), (4.6)

where X̃(Ω) = {v ◦ Φ ∈ (H1(Λ̂))2, v|Γw
= 0}.

For the Navier-Stokes operator we no longer have symmetry, and we need the reduced
basis approximation (ψN , λN) of the linearized dual problem:18 Find ψ ∈ X(Ω) and
λ ∈M(Ω) such that

a(v,ψ; Φ) + c1(u,v,ψ; Φ) + b(v, λ; Φ) = −l(v; Φ) ∀ v ∈ X(Ω)
b(ψ, q; Φ) = 0 ∀ q ∈M(Ω),

(4.7)
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where
c1(u,v,ψ; Φ) = c(u,v,ψ; Φ) + c(v,u,ψ; Φ), (4.8)

and u is the velocity solution of (1.8). To this end we need to compute basis functions for
the problem (4.7), in addition to the basis functions found for the primal problem (1.8).

We define the primal and dual residuals

Rpr((uN , pN);v; Φ) = l(v; Φ)−a(uN ,v; Φ)−c(uN ,uN ,v; Φ)−b(v, pN ; Φ),
Rdu(uN ; (ψN , λN);v; Φ) = −l(v; Φ)−a(v,ψN ; Φ)−c1(uN ,v,ψN ; Φ)−b(v, λN ; Φ),

(4.9)

and solve the two residual equations similar to (4.6),

2â(epr,v; Φ) = Rpr((uN , pN);v; Φ) ∀v ∈ X̃(Ω)

2â(edu,v; Φ) = Rdu(uN ; (ψN , λN);v; Φ) ∀v ∈ X̃(Ω).
(4.10)

Then the output bounds for the steady Navier-Stokes problem defined as

s±N = l(uN ; Φ) −Rpr((uN , pN);ψN ; Φ) ± κâ(e±, e±; Φ), (4.11)

where κ is a strictly positive number, and

e± = epr ∓
1

κ
edu, (4.12)

satisfies (4.2).
The a posteriori output bounds can be used in order to select the basis functions which

in an optimal way represent the set of all parameters in the parameter space.19 Based on a
greedy algorithm, the first parameter is selected at random. If we assume that m param-
eters with corresponding basis functions are already selected, the next parameter is found
among the remaining parameters as the one whose corresponding solution maximizes the
output bound

s+(uNm
) − s−(uNm

). (4.13)

By repeating this process until (4.13) is below a certain limit, we reduce the total number
of basis functions in the reduced basis approximation.

By applying the empirical interpolation method described in the previous section, we
may compute the solutions of (4.6), or (4.10), for each basis function in the offline stage,
and in the online stage we find the output error bounds by assembling all contributions
to (4.5), or (4.11), together with the reduced basis coefficients.

5 NUMERICAL EXAMPLES

We now present some examples of the reduced basis element method applied to different
geometric structures. The first is a bifurcation, where the solution of the steady Stokes
problem is found as a linear combination of global basis functions. The second structure

10
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is a hierarchical system consisting of one pipe and three bifurcations. The solution of
the steady Stokes problem is now found as a linear combination on each block structure,
i.e. pipe or bifurcation, and glued together with Lagrange multipliers across the block
interfaces. The third structure is a “bypass” system with three pipe blocks and two
bifurcation blocks. Again we present the solution of the steady Stokes problem, with the
linear combinations on each block glued together with Lagrange multipliers across block
interfaces. The final structure is a deformed quarter annulus, and we now solve the steady
Navier-Stokes problem using global basis functions.

The offline/online decoupling is illustrated below in all its detail, but for the examples,
not all steps are included. In all the examples we have used spectral elements and the
PN × PN−2 method20 with N = 20 to compute the basis functions and the reference
solution on the physical domains.
Offline:

1 Solve ∆φj = 0 and ∆πj = 0 on Λ̂, for j = 1, ..., n.

2 Compute the basis geometries Λi = Φi(Λ̂), for i = 1, ...N using the generalized
transfinite interpolation (2.8).

3 Compute the basis functions (ui, pi) by solving (1.7) or (1.8) on Λi, for i = 1, ...N .

4 Enrich the velocity basis by solving (1.9), for i = 1, ..., N .

5 Use the selection algorithm to choose the optimal basis functions.

6 Compute and store the interpolation points needed in the empirical interpolation,
and store the corresponding lower triangular matrices.

Online:

7 Compute the different blocks Λk of the generic domain Ω using the generalized
transfinite interpolation (2.8).

8 Compute the coefficients needed in the empirical interpolation by sampling the
different parameter dependent functions in (3.2) in the stored interpolation points
and solving the corresponding lower triangular matrices.

9 Assemble all contributions to the reduced basis stiffness matrix and the right hand
side.

10 Solve for the reduced basis coefficients.

11 Assemble all contributions to the output of interest and the a posteriori error esti-
mators.

11
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N |uN − u|H1 ||pN − p||L2 s+
N − s s− s−N

1 1.4 · 10−2 8.8 · 10−2 1.9 · 10−3 2.1 · 10−4

5 5.0 · 10−4 4.8 · 10−3 1.1 · 10−5 2.5 · 10−7

10 9.9 · 10−6 7.2 · 10−5 7.3 · 10−9 9.8 · 10−11

15 4.0 · 10−6 7.3 · 10−6 1.5 · 10−10 1.6 · 10−11

Table 1: The reduced basis error on a single bifurcation. N is the number of basis functions after the
selection algorithm is applied.

N N1 N2 |uN − u|H1 ||pN − p||L2

36 9 9 2.6 · 10−3 4.0 · 10−1

44 11 11 1.7 · 10−3 6.6 · 10−2

52 13 13 1.2 · 10−3 4.9 · 10−2

65 15 15 1.1 · 10−3 3.7 · 10−2

105 15 30 4.2 · 10−4 6.3 · 10−3

Table 2: The error in the reduced basis steady Stokes solution on a multi-block system corresponding to
Figure 1. N = N1 +3N2 is the total number of basis functions used. N1 is the number of basis geometries
used to generate the basis functions on the pipe block, N2 is the number of basis functions used on the
bifurcation blocks.

5.1 Steady Stokes: Bifurcation

We consider bifurcations characterized by the length and angle of the upper leg rel-
ative to the length and angle of the lower leg. In the tensor product parameter space
generated by eight relative lengths and eight relative angles, we generate 64 bifurcations.
We precompute the steady Stokes solutions on these bifurcations, and store them on Ω̂.
Again we compute the associated enriched velocity solutions, but before we find the re-
duced basis solution we apply the selection algorithm described earlier. For all the steady
Stokes problem presented, we have omitted step 6 in the offline stage and step 8 in the
online stage. The assembling in steps 9 and 11 is done by computing all products online.
The time spent in the online stage is still negligible compared to the computation of the
reference solution.

The resulting errors in velocity and pressure are presented in Table 1, and we see that
the convergence is very good. In this single-block case we may apply the a posteriori error
analysis described in Section 4, and we compute both the upper and the lower bound gaps.

5.2 Steady Stokes: Hierarchical flow system

An example of a multi-block domain comprising both pipe blocks and bifurcation
blocks, is the complex flow system shown in Figure 1. For the pipes we compute basis
functions on deformed squares comprising two pipe blocks, but we only use the restrictions
to the inflow domain, while we for the bifurcations precompute the solutions on the

12
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N N1 N2 |uN − u|H1 ||pN − p||L2

45 9 9 9.3 · 10−3 3.3 · 10
55 11 11 3.1 · 10−3 5.3 · 10−1

65 13 13 2.3 · 10−3 9.0 · 10−2

75 15 15 1.4 · 10−3 5.3 · 10−2

105 15 30 5.4 · 10−4 3.0 · 10−2

Table 3: The error in the reduced basis steady Stokes solution on a multi-block bypass with three pipe
blocks and two bifurcation blocks. N = 3N1 +2N2 is the total number of basis functions used. N1 is the
number of basis geometries used to generate the basis functions on the pipe block, N2 is the number of
basis functions used on the bifurcation blocks.

−2 −1 0 1 2 3 4 5 6 7 8 9
−2

−1

0

1

2

Figure 4: The bypass with three pipe blocks and two bifurcation blocks.

bifurcations described above by adding pipe blocks to the inflow and outflow boundaries
in order to get the right boundary conditions. Only the restrictions of the solutions to
the bifurcation block are stored and used as basis solutions. For the pipe block on the
physical domain we use all 15 precomputed solutions, while we for the bifurcation blocks
again use the selection process to limit the number of precomputed solutions to 30. To
glue the blocks together across block interfaces, we use Lagrange multipliers. In Table 2
we see how the errors in velocity and pressure behave as the number of basis functions
increases.

5.3 Steady Stokes: A “bypass”

As the final example we combine both block structures in the bypass system shown
in Figure 4. Here the upper branch illustrates the effect of a clogged vein, while the
lower branch is the bypass-vein. To model this domain with the reduced basis element
method, we use snapshot solutions computed on three-domain pipes to generate the basis
functions for the pipe blocks. The restriction of the snapshot solutions to each of the three
sub-domains are now used as basis functions on their respective pipe block in the bypass
system. As basis functions for the bifurcation blocks we use the same basis functions that
were used on the hierarchical flow system in the previous example.

In this case we have two more block-interfaces compared to the hierarchical flow system,

13



A. Emil Løvgren, Yvon Maday and Einar M. Rønquist

−2 −1 0 1 2 3 4 5 6 7 8

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: The contour of the error in the reduced basis pressure solution pN when N1 = 15 and N2 = 30.

N/2 |uN − u|H1 ||pN − p||L2 s+
N − s s− s−N

1 1.5 · 10−1 1.2 · 10−1 1.1 3.9 · 10−3

2 1.7 · 10−2 1.1 · 10−2 1.4 · 10−2 1.0 · 10−3

3 2.1 · 10−3 8.7 · 10−4 3.7 · 10−4 2.7 · 10−4

4 6.7 · 10−5 2.4 · 10−5 1.0 · 10−5 5.4 · 10−6

5 2.2 · 10−5 1.3 · 10−6 8.6 · 10−7 5.9 · 10−7

6 2.1 · 10−5 1.3 · 10−6 6.4 · 10−7 4.7 · 10−7

7 2.1 · 10−5 1.2 · 10−6 2.4 · 10−7 1.3 · 10−7

Table 4: The error in the reduced basis solution of the Navier-Stokes problem on a single-block domain.
Here we have used the polynomial degree N = 20, but we have not used the empirical interpolation
method.

each contributing eight constraints on the reduced basis velocity solution uN (2 constraints
in each spatial direction for each half of one interface). We see in Table 3 that the error
convergence is good, but if too few basis functions are used we get spurious pressure
modes due to the severe constraints on the reduced basis velocity space XN(Ω).

In Figure 4 we present a contour plot of the error in the reduced basis pressure solution
pN when N1 = 15 and N2 = 30. Most of the error is located around the pipe block
modeling the clogged vein.

5.4 Steady Navier-Stokes: Pipe

The experiment on the steady Navier-Stokes problem is done on a monodomain pipe.
The basis functions are found on a deformed quarter annulus by varying the deformation
of the inner curved boundary. To solve the steady Navier-Stokes problem, we consider
the corresponding time-dependent problem, and iterate in time until we reach a steady
state solution. In this way we find seven basis function, and a reference solution. The
convergence of the reduced basis method is presented in Table 4.

In the last computations we have included the empirical interpolation, and we see from
Table 5 that the convergence is still very good.
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N/2 |uN − uN |H1 ||pN − pN ||L2 s+
N − s s− s−N

1 1.5 · 10−1 1.2 · 10−1 1.1 3.9 · 10−3

2 1.7 · 10−2 1.1 · 10−2 1.5 · 10−2 1.0 · 10−3

3 2.0 · 10−3 8.8 · 10−4 3.8 · 10−4 2.6 · 10−4

4 1.1 · 10−4 2.5 · 10−5 1.0 · 10−5 5.8 · 10−6

5 5.3 · 10−5 3.6 · 10−6 2.5 · 10−6 1.5 · 10−6

6 5.1 · 10−5 3.4 · 10−6 1.3 · 10−6 1.4 · 10−6

7 3.9 · 10−5 2.1 · 10−6 2.2 · 10−7 4.2 · 10−7

Table 5: The error in the reduced basis solution of the Navier-Stokes problem on a single-block domain.
Results when we use empirical interpolation, and the polynomial degree N = 34.

6 CONCLUSIONS

We have seen how the reduced basis element method works on fluid flow problems
when the geometry is considered to be a parameter. An extension of the traditional
transfinite interpolation method has been presented in order to improve the offline/online
decoupling of the reduced basis problem. In addition we have used empirical interpolation
for problems with non-affine parameter dependence, and we have shown that this method
allows for offline/online decoupling of both the reduced basis solution, and the a posteriori
error bounds. The a posteriori error bounds have been presented for domains comprising
one building block. The multi-block case will be treated in a forthcoming paper. Other
remaining issues include the extension to time-dependent problems, possibly with moving
boundaries, and extension to three dimensional domains.
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