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A REDUCED BASIS FRAMEWORK : APPLICATION TO LARGE SCALE

NON-LINEAR MULTI-PHYSICS PROBLEMS

C. Daversin1, S. Veys2, C. Trophime3 et C. Prud’homme4

Abstract. In this paper we present applications of the reduced basis method (RBM) to large-scale
non-linear multi-physics problems. We first describe the mathematical framework in place and in
particular the Empirical Interpolation Method (EIM) to recover an affine decomposition and then we
propose an implementation using the open-source library Feel++ which provides both the reduced
basis and finite element layers. Large scale numerical examples are shown and are connected to real
industrial applications arising from the High Field Resistive Magnets development at the Laboratoire
National des Champs Magnétiques Intenses.

Introduction

Nowadays, in many application fields, engineering problems require accurate, reliable, and efficient evaluation
of quantities of interest. Often, these quantities of interest depend on the solution of a parametrized partial
differential equation where the — e.g. physical or geometrical — parameters are inputs of the model and
the evaluation of quantities of interest — e.g. average values — are outputs. In a real-time or many-query
context, the reduced basis method (RBM) offers a rapid and reliable evaluation of the input-output relationship
(see [Prud’homme et al., 2002,Veroy et al., 2003a,Veroy et al., 2003b,Prud’homme and Patera, 2004,Quarteroni
et al., 2011,Rozza et al., 2007] for the methodology) for a large class of problems.

In this paper, we are interested in studying the RBM applied to large scale non-linear multi-physics parametrized
partial differential equations requiring not only a robust mathematical framework but also a HPC-enabled com-
putational framework. We propose an implementation of the reduced basis method and the extensions to
non-linear and non-affinely parametrized problems. Other implementations are available, such as [Patera and
Rozza, 2007,Knezevic and Peterson, 2010]. The reduced basis methodology is suited to develop efficient strate-
gies to tackle design and optimization in industrial context however, to our knowledge, it has not (yet) been used
effectively in this context. Typical activities of a design department require the ability to efficiently perform
parametric studies and sensitivity analysis to improve and guide engineers in their daily work. In particular,
safety is an essential ingredient in industrial investigations which involves to take into account all eventual
uncertainties on input parameters. The reduced basis framework provides a valuable tool for design only if it
may be applied seamlessly from small to large scale applications and may take care of non-linear quantities.
We will show how Feel++ framework - which includes these features - may be used to help engineers in their
design process. Numerical examples are given in the context of the High Fields Resistives magnets development
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at the french Laboratoire National des Champs Magnétiques Intenses. To our knowledge these examples are
among the first to show applications of the reduced basis methodology on industrial problems that lead to actual
realizations.

In order to solve Finite Elements (FE) or Reduced Basis (RB) problems, we use an open-source library
called Feel++ for Finite Element Embedded Library and Language in C++ ( [Prud’Homme et al., 2012a,
Prud’homme, 2006] ). Feel++ is a library to solve problems arising from partial differential equations (PDEs)
with Galerkin methods, standard or generalized, continuous or discontinuous, from 1D to 3D, for low to high
order approximations (including geometry). Among the many other Feel++ features, it provides a seamless
programming environment with respect to parallel computing using MPI, see section 2.1. Feel++ enjoys
an implementation of the RBM which can deal with a wide range of problems: elliptic or parabolic models,
coercive or non-coercive models, linear or non-linear models. As mentioned earlier, it is important that such an
environment hides as many implementation details as possible and let the user worry only about his/her model
and the high level aspects of the FEM and RBM.

The organisation of the paper is as follows: in section 1 we describe the ingredients of the RB mathematical
framework on which we build the RB computational framework described in section 2. Especially, we introduce
the Empirical Interpolation Method which is actually an integral part of our RB framework. Its main feature
is that it enables the RB method on model which do not enjoy the so-called affine decomposition, such as
non-linear multi-physics applications of LNCMI described in section 3.

1. Mathematical framework for reduced basis

This section describes the mathematical framework of the reduced basis method (RBM) and ingredients we
need. We first introduce the outline of RBM on elliptic linear problems with affine dependence in parameters.
The non-linearity that comes accross the problems we focus on can lead to a non-affine dependence on input
parameters. The Empirical Interpolation Method (EIM) is a good way to manage this by recovering affine
dependence in parameters. Furthermore the rapid evaluation of the output offered by RBM, the framework
gives a reliability guarantee for the results. This uses Successive Constraints Method (SCM) as an ingredient
to compute efficiently the lower bound of the coercivity constant of a bilinear form, in order to have an a
posteriori error estimation. Finally, the application of RBM on elliptic non-linear problems by means of the
tools previously introduced is more precisely described.

1.1. Elliptic linear problems with affine dependence in parameters

1.1.1. Preliminaries

Let Ω be a suitably regular bounded spatial domain in R
d (for d=1,..,3). Denoting L2(Ω) the space of square

integrable functions over Ω, we have H1(Ω) = {u|u ∈ L2(Ω),∇u ∈ L2(Ω)d} and H1
0 (Ω) = {u ∈ H1(Ω)|u∂Ω = 0}.

From an Hilbert space X ≡ H1
0 (Ω)

ν - or more generally H1
0 (Ω)

ν ⊂ X ⊂ H1(Ω)ν , where ν = 1 (respectively
d) for a scalar (respectively vector) field, we define XN a finite element approximation space of (typically very
large) dimension N .

1.1.2. General problem settings

Let u(µ) be the solution of a parametrized Partial Differential Equation (PDE) with respect to the input
parameter p-vector µ ∈ D, where D ⊂ R

p is the parameter space. We are interested in the evaluation of an
output of interest s(µ) ∈ R which can be expressed as a functional of a field variable u(µ) :

s(µ) = ℓ(u(µ);µ) , (1)

for a suitable linear operator ℓ(.;µ). The variational formulation of the PDE consists in finding u(µ) ∈ X such
that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ X , (2)
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where a(., .;µ) and f(.,µ) are respectively bilinear and linear forms associated with the PDE. An important
ingredient of the RBM is the development of an efficient offline/online strategy. To this end, a and f and ℓ

must depend affinely in µ that is to say that there exists positive integers Qa, Qf and Qℓ such that a(., .;µ),
f(.;µ) and ℓ(.;µ) can be expressed as















































a(u, v;µ) =

Qa
∑

q=1

θqa(µ)a
q(u, v) ∀u, v ∈ X, ∀µ ∈ D ,

f(v;µ) =

Qf
∑

q=1

θ
q
f (µ)f

q(v) ∀v ∈ X, ∀µ ∈ D ,

ℓ(v;µ) =

Qℓ
∑

q=1

θ
q
ℓ (µ)ℓ

q(v) ∀v ∈ X, ∀µ ∈ D ,

(3)

where θqa : D → R , 1 ≤ q ≤ Qa , θqf : D → R , 1 ≤ q ≤ Qf and θ
q
ℓ : D → R , 1 ≤ q ≤ Qℓ are µ-dependent

functions. Sections 1.3 and 1.4 propose solutions when the affine decomposition are not readily available.

1.1.3. Reduced basis method

We now turn to the construction of the reduced basis approximation. For given a µ ∈ D, we start with the
finite element (FE) discretization of problem (1)-(2) which consists in evaluating

sN (uN (µ)) = ℓ (uN (µ);µ) , (4)

where uN (µ) ∈ XN satisfies
a(uN (µ), v;µ) = f(v;µ) ∀v ∈ XN . (5)

For a given positive integer Nmax we introduce a nested sequence of reduced basis approximation spaces
WNpr

, 1 ≤ N ≤ Nmax. Note that WNpr
is a N-dimensional subspace of XN , and that Nmax is very small in

comparison to N .
Let SN = {µ1, ...,µN} be a set of parameters log-randomly picked in D. Usually the Greedy algorithm is

used to perform this parameters selection but error estimation for non-linear problems is an ongoing work in
the Feel++ framework.

We then define the set of solutions Su
N as

Su
N = {uN (µi) , ∀µi ∈ SN} . (6)

The application of the Gram-Schmidt process with respect to the (., .)X inner product to elements of the set
Su
N gives mutually (., .)X -orthonormal basis functions ξprn , 1 ≤ n ≤ N . The reduced basis space WNpr

is then
defined as

WNpr
= span{ξprn , 1 ≤ n ≤ N} . (7)

The reduced basis solution uN (µ) can be expressed as

uN (µ) =

N
∑

j=1

uNj(µ) ξ
pr
j . (8)

Now we use the affine parameter dependence to construct an efficient offline/online strategy. Choosing test
functions as v = ξ

pr
i , i = 1, . . . N , uN (µ) then satisfies

N
∑

j=1

(

Qa
∑

q=1

θqa(µ)a
q
(

ξ
pr
j , ξ

pr
i

)

)

uNj
(µ) =





Qf
∑

q=1

θ
q
f (µ)f

q(ξpri )



 , (9)
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which can also be written in a matrix form as

(

Qa
∑

q=1

θqa(µ)A
q
N

)

uN (µ) =





Qf
∑

q=1

θ
q
f (µ)F

q
N



 , (10)

where (uN (µ))j = uNj
(µ),

(Aq
N )

ij
= aq

(

ξ
pr
j , ξ

pr
i

)

and (F q
N )

i
= fq(ξpri ) . (11)

The output can be expressed as

sN (µ) =

(

Qℓ
∑

q=1

θ
q
ℓ (µ)ℓ

q(uN (µ))

)

, (12)

or in a vector form

sN (µ) =

(

Qℓ
∑

q=1

θ
q
ℓ (µ)L

q T
N

)

uN (µ) , (13)

where (Lq
N )i = ℓq(ξpri ).

The offline/online decomposition is clear. During the offline step we compute basis functions uN (µ), then form
matrices A

q
N , vectors F

q
N and vectors L

q
N . During the online step, for a given parameter µ, we assemble the

matrix AN (µ) =
∑Qa

q=1 θ
q
a(µ)A

q
N , and the vectors FN (µ) =

∑Qf

q=1 θ
q
f (µ)F

q
N and LN (µ) =

∑Qℓ

q=1 θ
q
ℓ (µ)L

q
N . We

solve the system
AN (µ) uN (µ) = FN (µ) , (14)

and finally we can evaluate the output as

sN (µ) = LT
N (µ) uN (µ) . (15)

Up to now, we develop a primal-only approach to evaluate the output of interest, but we have not the
quadratic convergence effect for outputs, except for compliant cases — a is symmetric and ℓ = f . — We
introduce now the primal-dual approach for non-compliant cases. The dual problem associated with the output
of interest consists in finding Ψ(µ) ∈ X such that

a (v,Ψ(µ);µ) = −ℓ(v;µ) ∀v ∈ X . (16)

Ψ is denoted adjoint or dual field — note that in the compliant case Ψ = −u. — As in the primal case, we
introduce the set SΨ

N that contains evaluation of adjoint for each µ in the set SN

SΨ
N = {ΨN (µi) , ∀µi ∈ SN} . (17)

We apply the Gram-Schmidt process with respect to the (., .)X inner product to elements of the set SΨ
N , the

result are mutually (., .)X -orthonormal basis functions ξdun , 1 ≤ n ≤ N . The reduced basis space WNdu
is then

defined as
WNdu

= span{ξdun , 1 ≤ n ≤ N} . (18)

Note that we have chosen the segregated approach — we could have chosen the integrated one where we have
a unique reduced basis space holding both primal and dual basis functions. — In that case, the evaluation of
the output is given by

sN (µ) = ℓ (uN (µ);µ)− rpr(ΨN (µ);µ) . (19)

with
rpr(v;µ) = f(v;µ)− a(uN (µ), v;µ) and rdu(v;µ) = −ℓ(v)− a(v,ΨN (µ);µ) . (20)

So now to have the reduced basis approximation, we need to solve the primal and a dual prolem :

a(uN (µ), v;µ) = f(v;µ) ∀v ∈WNpr
and a(v,ΨN (µ);µ) = −ℓ(v;µ) ∀v ∈WNdu

. (21)
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1.2. A posteriori error estimation for elliptic linear problems with affine dependence in
parameters

Thanks to (19) we can rapidly compute an estimation for the output of interest s(µ). In this section
we introduce an a posteriori error bound that allow us to know if this output estimate is a good enough
approximation of the output of interest (see for example [Prud’homme et al., 2002,Nguyen et al., 2009]).

1.2.1. Ingredients

We first introduce a positive lower bound αN
LB(µ) for α

N (µ) for all µ in D, where αN (µ) is the finite elements
coercivity constant defined as

αN (µ) = inf
w∈XN

a(w,w;µ)

||w||2X
∀µ ∈ D. (22)

So we can write
0 ≤ αN

LB(µ) ≤ αN (µ) ∀µ ∈ D, (23)

where the online computational time to evaluate µ→ αN
LB(µ) has to be independent of N to compute efficiency

the error bound that we introduce here. The successive constraints method (see [Huynh et al., 2007]) determine
efficiency the lower bound αN

LB(µ). Note that in this paper we introduce the SCM because it is implemented
in Feel++. There exists other ways to determine αN

LB(µ), for example by inspection.

1.2.2. Successive Constraints Method

First we recall that from (3) we assume that the parametrized bilinear form a(., .;µ) depend affinely in µ

and can be expressed as

a(u(µ), v;µ) =

Qa
∑

q=1

θqa(µ)a
q(u(µ), v) ∀u(µ), v ∈ X, ∀µ ∈ D . (24)

In order to have an offline/online strategy, we will reformulate the expression of the coercivity constant (22)

by introducing the objective function J obj : D × R
Qa → R given by J obj(µ; y) =

Qa
∑

q=1

θq(µ) yq where y ∈ R
Qa .

Then the FE coercivity constant can be defined by

αN (µ) = inf
y∈Y
J obj(µ; y) , (25)

where the set Y ∈ R
Qa is defined by

Y =

{

y ∈ R
Qa | ∃wy ∈ XN s.t. yq =

aq(wy, wy)

||wy||2X
, 1 ≤ q ≤ Qa

}

. (26)

We also introduce CJ as the ”coercivity constraint” sample

CJ =
{

µ1 ∈ D, ...,µJ ∈ D
}

. (27)

Lower bound. To determine the lower bound αN
LB(µ) we need to define the ”continuity constraint” box

B =

Qa
∏

q=1

[

inf
w∈XN

aq(w,w)

||w||2X
, sup

w∈XN

aq(w,w)

||w||2X

]

. (28)
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Let CM,µ
J the set of M(≥ 1) points in CJ closest in the euclidean norm to a given µ ∈ D. The lower bound of

the coercivity constant αN (µ) is defined as

αN
LB(µ;CJ ,M) = min

y∈YLB(µ,CJ ,M)
J obj(µ; y) , (29)

where the ”lower bound” set YLB(µ;CJ ,M) ∈ R
Qa is defined as

YLB(µ;CJ ,M) ≡

{

y ∈ R
Qa | y ∈ B,

Qa
∑

q=1

θq(µ′)yq ≥ αN (µ′) , ∀µ′ ∈ C
M,µ
J

}

. (30)

The lower bound defined in (29) is a linear optimisation problem, or Linear Program (LP). We observe that
the LP (29) contains Q design variables and 2 Q+M inequality constraints. It is important to note that for a
given B and the set {αN (µ′) | µ′ ∈ CJ}, the operation count to evaluate µ→ αN

LB(µ) is independent of N . In
actual practice, we have developed a more effcient SCM strategy to build our lower bound, see [Vallaghé et al.,
2011].
Upper bound. We have now a lower bound for the coercivity constraint, but to build the sample CJ we also
need an upper bound αN

UB of this constant. The lower bound of the coercivity constant αN (µ) is defined as

αN
UB(µ;CJ ,M) = min

y∈YUB(µ,CJ ,M)
J obj(µ; y) . (31)

where for given CJ , M ∈ N and any µ ∈ D we introduce an ” upper bound ” set YUB(µ;CJ ,M) ∈ R
Qa as

YUB(µ;CJ ,M) ≡

{

arg inf
y∈Y
J obj(µ; y) | µ′ ∈ C

M,µ
J

}

. (32)

We note that to evaluate µ→ αN
UB(µ) is independent of N .

Construction of the set CJ . Thanks to the previous ingredients, we construct now the set CJ using an offline
greedy algorithm. First we require a sample Ξtrain = {µ1, ...,µntrain} ⊂ D of ntrain parameters. A tolerance
ǫ ∈ (0, 1) is also required to control the error in the lower bound prediction. Start by taking J = 1 and choosing
C1 = µ1 arbitrarily. Then from J = 2 , the J th parameter µJ selected maximizes the gap between the lower
bound and the upper bound of the coercivity constant. That is to say that we perform the algorithm 1.

Algorithm 1 Offline greedy algorithm

while max
µ∈Ξtrain

[

αN
UB(µ;CJ ,M)− αN

LB(µ;CJ ,M)

αN
UB(µ;CJ ,M)

]

> ǫ do

µJ+1 = arg max
µ∈Ξtrain

[

αN
UB(µ;CJ ,M)− αN

LB(µ;CJ ,M)

αN
UB(µ;CJ ,M)

]

CJ+1 ← CJ ∪ µJ+1

J ← J + 1
end while

At each iteration we add the parameter µ ∈ D that have the worse lower bound approximation to the
”coercivity constraint” sample. As for each µ ∈ CJ we have αN

UB(µ;CJ ,M) = αN
LB(µ;CJ ,M) it follows from

continuity considerations that, for sufficiently large number of iterations, the error tolerance ǫ is reached.
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Offline/Online strategy of the SCM. This method has obviously an offline/online strategy. During the
offline step are computed eigenvalues which serve as bounds of the ”continuity constraint” box (28). To deter-
mine the upper bound αN

UB(µ), the vector y ∈ R
Qa , element of the set Y (see 26), is built during the offline

step. Then for a given µ ∈ D we determine αN
UB(µ) via (31). To apply constraints needed fo the construction

of the set YLB (see 30) we compute eigenvalues associated to parameters µ′ during the offline step.

1.2.3. A posteriori error estimators

Now that we have a lower bound for the coercivity constant, we introduce the dual norm of the primal (resp.
dual) residual ǫNpr

(µ) ( resp. ǫNdu
(µ) ), defined as

ǫNpr
(µ) ≡ sup

v∈XN

rpr(v;µ)

||v||X
= ||êpr(µ)||X and ǫNdu

(µ) ≡ sup
v∈XN

rdu(v;µ)

||v||X
= ||êdu(µ)||X . (33)

In addition to the dual norm of residuals, equation (33) also introduced the Riesz representation of primal (resp.
dual) residual : êpr(µ) ( resp. êdu(µ)). Now we define the a posteriori error estimation in terms of the dual
norm of residuals and the lower bound for the coercivity constant. In particular for all µ ∈ D and all N we
have

|sN (µ)− sN (µ)| ≤ ∆s
N (µ) , (34)

where the a posteriori error estimator on the output ∆s
N (µ) is given by

∆s
N (µ) =

√

ǫNpr
(µ)2

αN
LB(µ)

√

ǫNdu
(µ)2

αN
LB(µ)

. (35)

Note that (35) can be seen as the product of error estimators on primal and dual solutions.

1.2.4. Offline / online strategy

We now turn to the description of the offline/online strategy for the a posteriori error estimator introduced
by (35). We start with the dual norm of the residuals, starting by recalling the expression of the primal residual

rpr(v;µ) =

Qf
∑

q=1

θ
q
f (µ)f

q(v)−

Qa
∑

q=1

N
∑

j=1

θqa(µ)uNj(µ)a
q(ξprj , v), ∀v ∈ XN . (36)

The Riesz representation êpr(µ) verifies

(êpr(µ), v)X =

Qf
∑

q=1

θ
q
f (µ)f

q(v)−

Qa
∑

q=1

N
∑

j=1

θqa(µ)uNj(µ)a
q(ξprj , v), ∀v ∈ XN (37)

and thus, using linear superposition, it reads

êpr(µ) =

Qf
∑

q=1

θ
q
f (µ)Γ

q
Npr

+

Qa
∑

q=1

N
∑

j=1

θqa(µ)uNj(µ)Υ
qj
Npr

, (38)

where
(Γq

Npr
, v)X = fq(v) ∀v ∈ XN , 1 ≤ q ≤ Qf ,

(Υqj
Npr

, v)X = −aq(ξprj , v) ∀v ∈ XN , 1 ≤ q ≤ Qa , 1 ≤ j ≤ N .
(39)
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Consequently we have

ǫNpr
(µ)2 = C

ff
Npr

(µ) + 2
N
∑

j=1

uNjC
fa
Nprj

(µ) +

N
∑

j=1

N
∑

j′=1

uNjuNj′C
aa
Nprjj′

(µ) , (40)

where for 1 ≤ j, j′ ≤ N :

C
ff
Npr

(µ) =

Qf
∑

q=1

Qf
∑

q′=1

θ
q
f (µ) θ

q′

f (µ) Φqq′

Npr
,

C
fa
Nprj

(µ) =

Qa
∑

q=1

Qf
∑

q′=1

θqa(µ) θ
q′

f (µ) Φqjq′

Npr
,

Caa
Nprjj′

(µ) =

Qa
∑

q=1

Qa
∑

q′=1

θqa(µ) θ
q′

a (µ) Φqjq′j′

Npr
.

(41)

Here Φqq′

Npr
( 1 ≤ q, q′ ≤ Qf ) , Φqjq′

Npr
( 1 ≤ q ≤ Qa ,1 ≤ j ≤ N , 1 ≤ q′ ≤ Qf ) and Φqjq′j′

Npr
( 1 ≤ q, q′ ≤ Qa

,1 ≤ j, j′ ≤ N ) do not depend on parameter µ and are defined as

Φqq′

Npr
= (Γq

Npr
,Γq′

Npr
)X , Φqjq′

Npr
= (Υqj

Npr
,Γq′

Npr
)X and Φqjq′j′

Npr
= (Υqj

Npr
,Υq′j′

Npr
)X . (42)

Now let us consider the expression of the dual residual

rdu(v;µ) = −

Ql
∑

q=1

θ
q
l (µ)l

q(v)−

Qa
∑

q=1

N
∑

j=1

θqa(µ)ΨNj(µ)a
q(v, ξduj ), ∀v ∈ XN . (43)

The Riesz representation êdu(µ) reads

êdu(µ) =

Ql
∑

q=1

θ
q
l (µ)Γ

q
Ndu

+

Qa
∑

q=1

N
∑

j=1

θqa(µ)ΨNj(µ)Υ
qj
Ndu

, (44)

where
(Γq

Ndu
, v)X = −lq(v) ∀v ∈ XN , 1 ≤ q ≤ Ql ,

(Υqj
Ndu

, v)X = −aq(v, ξduj ) ∀v ∈ XN , 1 ≤ q ≤ Qa , 1 ≤ j ≤ N .
(45)

Consequently êdu(µ)
2 can be written as

ǫNdu
(µ)2 = Cll

Ndu
(µ) + 2

N
∑

j=1

ΨNjC
la
Nduj

(µ) +
N
∑

j=1

N
∑

j′=1

ΨNjΨNj′C
aa
Ndujj′

(µ) , (46)

where for 1 ≤ j, j′ ≤ N :

C
ff
Ndu

(µ) =

Qf
∑

q=1

Qf
∑

q′=1

θ
q
f (µ) θ

q′

f (µ) Φqq′

Ndu
,

C
fa
Nduj

(µ) =

Qa
∑

q=1

Qf
∑

q′=1

θqa(µ) θ
q′

f (µ) Φqjq′

Ndu
,

Caa
Ndujj′

(µ) =

Qa
∑

q=1

Qa
∑

q′=1

θqa(µ) θ
q′

a (µ) Φqjq′j′

Ndu
.

(47)
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Here Φqq′

Ndu
( 1 ≤ q, q′ ≤ Qf ) , Φqjq′

Ndu
( 1 ≤ q ≤ Qa ,1 ≤ j ≤ N , 1 ≤ q′ ≤ Qf ) and Φqjq′j′

Ndu
( 1 ≤ q, q′ ≤ Qa

,1 ≤ j, j′ ≤ N ) do not depend on parameter µ and are defined as

Φqq′

Ndu
= (Γq

Ndu
,Γq′

Ndu
)X , Φqjq′

Ndu
= (Υqj

Ndu
,Γq′

Ndu
)X and Φqjq′j′

Ndu
= (Υqj

Ndu
,Υq′j′

Ndu
)X . (48)

During the offline stage, we compute all µ-independent quantities and we store them in a database. During
the online step, for a given µ ∈ D, we evaluate the µ-dependent terms and assemble the residual norm terms
using the online solution.

1.3. Empirical Interpolation Method

We describe here the Empirical Interpolation Method (see [Barrault et al., 2004], [Grepl et al., 2007]). This
method is classically used to build an approximation of the affine decomposition needed by the RB method.
Naturally, EIM is an essential tool to deal with non-linear models, since the associated affine decomposition can
not be written by direct inspection of bilinear and linear forms (see example in section 3). In our computational
framework, EIM is always used in our applications ( with or without affine dependence in parameters ). In the
case of linear problems with affine parameter dependence, this method gives exactly the same affine decompo-
sition as in the case of direct inspection of bilinear or linear forms. This allows to have a unified interface to
access our RB framework from the applications.

We consider the non-linear µ-dependent function of sufficient regularity η (µ;x;u(µ)) which is non-affine
in parameters and depends on the solution of a parametrized PDE u(µ). We are interested in approximating
η (µ;x;u(µ)) by a reduced-basis expansion ηM (µ;x;u(µ)) which is affine in the parameters such that

ηM (µ;x;u(µ)) =

M
∑

m=1

βm(µ;u(µ))qm(x) . (49)

To this end we introduce a nested sample set SM = {µ1, ...,µM} ∈ D
M and associated nested space WM =

span{ξm ≡ η (µm;x;u(µm)) , 1 ≤ m ≤ M} in which the approximation ηM (µ;x;u(µ)) shall reside. We first
introduce Ξ a suitably large but finite-dimensional parameter set in D. The first sample point µ1 is picked into
Ξ and assuming that ξ1 6= 0, we define :

SM = {µ1}, ξ1 ≡ η (µ1;x;u(µ1)) and WM = span{ξ1} .

For M > 2, we determine µM from a Greedy algorithm and deduce the associated ξM :

µM = argmax
µ∈Ξ

inf
z∈WM−1

||η(µ; .; .)− z||L∞(Ω), and ξM = η (µM ;x;u(µM )) (50)

from which we complete SM = SM−1 ∪ {µM} and WM = WM−1 ⊕ span{ξM}.

The coefficients βm of the particular linear combination (49) are determined through interpolation points
t1, . . . , tM ∈ Ω such that

M
∑

m=1

βm(µ;u(µ))qm(ti) = η(µ; ti;u(µ)) ∀ ti (i = 1 . . .M) . (51)

The first interpolation point t1 is chosen such that first basis function ξ1 is maximum, and q1 consists in the
normalization of ξ1 :

t1 = arg sup
x∈Ω
|ξ1(x)|, q1 =

ξ1(x)

ξ1(t1)
and B1

11 = q1(t1) = 1 . (52)
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For M > 2, we look for the vector σM−1 =
(

σM−1
i

)

i=1,...,M−1
obtained through interpolation points

M−1
∑

j=1

σM−1
j qj(ti) = ξM (ti) , 1 ≤ i ≤M − 1 , (53)

and then we compute the residual

rM (x) = ξM (x)−
M−1
∑

j=1

σM−1
j qj(x) . (54)

which allows to compute the next interpolation point tM together with the basis functions qM (x) for M > 2
along with the interpolation matrix BM

tM = arg sup
x∈Ω
|rM (x)|, qM (x) =

rM (x)

rM (tM )
and BM

ij = qj(ti) , 1 ≤ i, j ≤M . (55)

Once all the interpolation points tM and the basis functions qM have been computed (offline part), the
computation of the approximation ηM (µ;x;u(µ)) for a given µ (online part) consists in finding the coefficients
βm(µ,u(µ)) of the linear combination by solving :

M
∑

j=1

BM
ij βj (µ;u(µ)) = η (µ; ti;u(µ)) , 1 ≤ i ≤M . (56)

In other words, coefficients of EIM expansion are solutions of











q1(t1) 0 · · · 0
...

. . .
. . .

...
q1(tM−1) · · · qM−1(tM−1) 0
q1(tM ) · · · · · · qM (tM )





















β1

...
βM−1

βM











=











η (µ; t1;u(µ))
...

η (µ; tM−1;u(µ))
η (µ; tM ;u(µ))











. (57)

Remark 1. In the most general case, the function η depends not only on x but also on the solution u(µ) of
the problem. During the online step, we need to evaluate quickly the function η at interpolation points (see 57).
Consequently, it implies to have a rapid evaluation of u(µ) which is in fact replaced by uN (µ) and we have
precomputed the reduced basis functions associated to uN (µ) at the interpolation points (ti)i=1,...,M .

1.4. Elliptic non-affinely parametrized non-linear equations

1.4.1. General problem settings

We consider the following problem : given µ ∈ D ⊂ R
p, evaluate the output of interest :

s(µ) = ℓ (u(µ);µ) , (58)

where u(µ) ∈ X satisfies
g(u(µ),v;µ) = 0 ∀v ∈ X . (59)

Here we consider that (59) is a non-linear system of Nequs equations. To deal with (59), the Newton al-
gorithm is used to find zero of g(u(µ),v;µ). Let ku(µ) the solution at the kth iteration of Newton algo-
rithm, g

(

ku(µ),v;µ
)

the function g applied to the solution ku(µ) and j
(

u(µ),v;µ; ku(µ)
)

the jacobian of
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g(u(µ),v;µ) applied to the solution ku(µ). It reads

j
(

u(µ),v;µ; ku(µ)
)

=

















∂g1
(

u(µ),v;µ; ku(µ)
)

∂u1
· · ·

∂g1
(

u(µ),v;µ; ku(µ)
)

∂uNequs

. . .

∂gNequs

(

u(µ),v;µ; ku(µ)
)

∂u1
· · ·

∂gNequs

(

u(µ),v;µ; ku(µ)
)

∂uNequs

















. (60)

Now, we make the assumption for the offline/online procedure by assuming that we can approximate g (., .;µ),
j
(

., .;µ; ku(µ)
)

and the linear form ℓ(.;µ) respectively by gAD (., .;µ) , jAD

(

., .;µ; ku(µ)
)

and ℓAD(.;µ) which
are functions that are affine in parameters µ. That is to say that for given Qg , Qj and Qℓ the EIM determines
(Mg

q )q=1,..,Qg
, (M j

q )q=1,..,Qj
and (M ℓ

q )q=1,..,Qℓ
such that we can write :

gAD

(

ku(µ),v;µ
)

=

Qg
∑

q=1

Mg
q

∑

m=1

βqm
g (µ; ku(µ)) gqm(v) , (61)

jAD

(

u(µ),v;µ; ku(µ)
)

=

Qj
∑

q=1

Mj
q

∑

m=1

β
qm
j (µ; ku(µ)) jqm(u(µ),v) , (62)

and

ℓAD(v;µ) =

Qℓ
∑

q=1

Mℓ
q

∑

m=1

β
qm
ℓ (µ) ℓqm(v) . (63)

The Newton method is an iterative method (see algorithm 2). Starting with an initial guess which is reason-
ably close to the true root the method consists, for each step, in solving the system of linear equations

jAD

(

u(µ),v;µ; ku(µ)
)

δku(µ) = −gAD

(

ku(µ),v;µ
)

, (64)

for the increment δku(µ) defined by

δku(µ) =
(

k+1u(µ)− ku(µ)
)

. (65)

Algorithm 2 u(µ) = Newton(g(ku(µ),v;µ), j(u(µ),v;µ; ku(µ)), initial guess, tol)

k ← 1
1u(µ)← initial guess
e ←∞
while e > tol do
solve j

(

u(µ),v;µ; ku(µ)
)

δku(µ) = −g
(

ku(µ),v;µ
)

e←
∣

∣

∣

k+1
u(µ)−k

u(µ)
ku(µ)

∣

∣

∣

k ← k + 1
end while
u(µ)← k+1u(µ)
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1.4.2. Reduced basis method

The finite element discretization of problem (58)-(59) is as follows : given a µ ∈ D, evaluate

sN (uN (µ)) = ℓAD (uN (µ);µ) , (66)

where uN (µ) ∈ XN satisfies
gAD(uN (µ),v;µ) = 0 ∀v ∈ XN . (67)

Here is mentioned gAD(., .;µ) instead of g(., .;µ) to recall that we use approximations described in (61),(62)
and (63). The reduced basis solution uN (µ) can be expressed as

uN (µ) =
N
∑

i=1

uNi(µ) ξi . (68)

Considering the kth iteration of the Newton algorithm, by taking v = ξi for i = 1, ..., N and using (68) we can
write

N
∑

n=1

jAD

(

ξn, ξi;µ;
kuN (µ)

)

δkuNn(µ) = −gAD

(

kuN (µ), ξi;µ
)

, (69)

where δkuNn(µ) is the nth component of the increment, defined as : δkuNn(µ) =
k+1uNn −

kuNn . Now we
use the affine parameter dependence to construct an efficient offline/online strategy. Choosing test functions as
v = ξi, i = 1, . . . N , the equation (69) can be expressed as

N
∑

n=1





Qj
∑

q=1

Mj
q

∑

m=1

β
qm
j (µ; kuN (µ)) jqm(ξn, ξi)



 δkuNn(µ) = −

Qg
∑

q=1

Mg
q

∑

m=1

βqm
g

(

µ; kuN (µ)
)

gqm(ξi) . (70)

The equivalent matrix form is





Qj
∑

q=1

Mj
q

∑

m=1

β
qm
j (µ; kuN (µ)) Jqm

N





(

k+1uN (µ)− kuN (µ)
)

= −

Qg
∑

q=1

Mg
q

∑

m=1

βqm
g

(

µ; kuN (µ)
)

G
qm
N . (71)

The unknown kuN (µ) ∈ R
N is defined as

(

kuN (µ)
)

n
= kuNn(µ). The matrix J

qm
N ∈ R

N×N and the vector

G
qm
N ∈ R

N are defined as

(Jqm
N )

i,n
= jqm(ξn, ξi) and (Gqm

N )
i
= gqm(ξi), 1 6 i, n 6 N. (72)

The output can be expressed as

sN (µ) =





Qℓ
∑

q=1

Mℓ
q

∑

m=1

β
qm
ℓ (µ) ℓqm (uN (µ))



 , (73)

or in a vector form

sN (µ) =





Qℓ
∑

q=1

Mℓ
q

∑

m=1

β
qm
ℓ (µ) Lqm T

N



uN (µ) , (74)

where (Lqm
N )i = ℓqm(ξi). During the offline step we compute basis functions uN (µ), then form matrices

J
qm
N , vectors G

qm
N and vectors L

qm
N . During the online step, for a given parameter µ and a given solution
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kuN (µ) we update the jacobian matrix JN
(

µ; kuN (µ)
)

=
∑Qj

q=1

∑Mj
q

m=1 β
qm
j (µ; kuN (µ))Jqm

N , and the vector

GN (µ) =
∑Qg

q=1

∑Mg
q

m=1 β
qm
g (µ; kuN (µ))Gqm

N , to find k+1uN (µ) such that

JN
(

µ; kuN (µ)
) (

k+1uN (µ)− kuN (µ)
)

= −GN

(

µ; kuN (µ)
)

, (75)

until convergence. Then, when we have the solution uN (µ) we assemble the vector

LN (µ) =

Qℓ
∑

q=1

Mℓ
q

∑

m=1

β
qm
ℓ (µ)Lqm

N , (76)

and finally we can evaluate the output as

sN (µ) = LT
N (µ) uN (µ) . (77)

2. Computational framework for reduced basis

We now describe the RB framework used is the Feel++ RB framework. Its relies on Feel++ which we describe
briefly before turning to the RB layer.

2.1. Feel++ : principles and design

The library Feel++ provides a clear and easy to use interface to solve complex PDE systems. It aims
at bringing the scientific community a tool for the implementation of advanced numerical methods and high
performance computing.

Feel++ relies on a so-called domain specific embedded language (DSEL) designed to closely match the Galerkin
mathematical framework. In computer science, DS(E)Ls are used to partition complexity and in our case the
DSEL splits low level mathematics and computer science on one side leaving the Feel++ developer to enhance
them and high level mathematics as well as physical applications to the other side which are left to the Feel++
user. This enables using Feel++ for teaching purposes, solving complex problems with multiple physics and
scales or rapid prototyping of new methods, schemes or algorithms.

The DSEL on Feel++ provides access to powerful, yet with a simple and seamless interface, tools such as
interpolation or the clear translation of a wide range of variational formulations into the variational embedded
language. Combined with this robust engine, lie also state of the art arbitrary order finite elements — including
handling high order geometrical approximations, — high order quadrature formulas and robust nodal config-
uration sets. The tools at the user’s disposal grant the flexibility to implement numerical methods that cover
a large combination of choices from meshes, function spaces or quadrature points using the same integrated
language and control at each stage of the solution process the numerical approximations.

The code 1 illustrates the clear and easy implementation - building of mesh and function spaces, writing of
variational formulation - of a laplacian problem with homogeneous Dirichlet conditions, provided by the Feel++
library :

Listing 1. Laplacian problem with homogeneous Dirichlet conditions

#include <feel/feel.hpp >

int main(int argc , char**argv )

{

using namespace Feel;

Environment env( _argc=argc , _argv=argv ,

_desc=feel_options (),

_about=about(_name="laplacian",
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_author="Feel++ Consortium",

_email="feelpp -devel@feelpp.org"));

auto mesh = unitSquare ();// define the mesh

auto Vh = Pch <1>( mesh );// function space

auto u = Vh ->element ();// element of function space

auto v = Vh ->element ();// element of function space

auto a = form2( _trial=Vh, _test=Vh );// bilinear form

//a =
∫
Ω
∇u · ∇v

a = integrate(_range=elements(mesh), _expr=gradt(u)* trans(grad(v)) );

auto l = form1( _test=Vh );// linear form

// l =
∫
Ω
v

l = integrate(_range=elements(mesh),_expr=id(v));

// apply u = 0 on ∂Ω
a+=on(_range=boundaryfaces(mesh), _rhs=l, _element=u, _expr=constant (0.) );

//solve the equation

a.solve(_rhs=l,_solution=u);

//post processing

auto e = exporter( _mesh=mesh );

e->add( "u", u );

e->save ();

}

As to build the reduced basis during the offline step of the RBM we need to use the FE discretization,
we used a recent development of Feel++ which allows to operate on parallel computers. In order to create a
parallel computing code, we use some strategies of domain decomposition methods with the MPI technology. A
feature of our library is that all MPI communications are seamless, thanks to DSEL. Thus, the library Feel++

provides a parallel data framework : we start with automatic mesh partitioning using Gmsh [Geuzaine and
Remacle, 2009](Chaco/Metis) — adding information about ghosts cells with communication between neighbor
partitions; — then Feel++ data structures are parallel such as meshes, (elements of) function spaces — parallel
degrees of freedom table with local and global views; — and finally Feel++ uses the library PETSc [Balay et al.,
2012b,Balay et al., 2012a,Balay et al., 1997] which provides access to a Krylov subspace solvers(KSP) coupled
with PETSc preconditioners such as Block-Jacobi, ASM, GASM. The last preconditioner is an additive variant of
the Schwarz alternating method for the case of many subregion, see [Smith et al., 2004]. A complete description
of this HPC part with some blood flow applications is done in the thesis [Chabannes, 2013].

2.2. Feel++ reduced basis framework

The RB framework, depicted in figure 1, provides an interface to the reduced basis methodologies presented
so far and automatically generated for the User different instantiations of the reduced basis applications namely
command line executable as well as Python and Octave interfaces. These interfaces design follow the simple
input-output relationships:

[s1(µ), s2(µ), . . . , sO(µ)] = ℓ(µ) (78)

where ℓ is now the simulation software which takes the input parameter set µ and si are the outputs of
the software which is a set of performance metrics and, if available, the associated error bounds. The User
needs to provide the specifications of the model: parameter space, geometry, variational formation with affine
decomposition (possibly using EIM).

The design of the C++ classes RB framework is illustrated by the figure 2. The class ParameterSpace

generates and stores parameter samplings which are then used by CRBSCM and EIM. Various sampling strategies
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Offline/Online

Database handling

USER INPUTS:
Specifications
Geometry,
PDE,...

µ0, µ1, ..., µP

Affine decom-
position (some
user input)

Code generator

Parametric
FEM

CRB

SCM

EIM

NIRB

Cmd line

Python

...

Octave

Figure 1. RB Framework

are available. CRBModel is the interface that the User model must support to use the RB framework and this is
through this interface that the User provides the model specifications described previously.

The class CRB represents the certified reduced basis implementation for elliptic and parabolic. For elliptic
problems by default the Greedy algorithm is used. For parabolic problems, the POD/Greedy algorithm is used ;
POD in time and Greedy in space. Note that in both cases, the user can specified in a file the sampling SN (used
to build the space WNpr

and WNdu
). SN can also contains log-equidistributed or log-randomized parameters.

The class CRBDB handles the database storage using the Boost.serialization library. Concerning the online
step, dense matrices and vectors are manipulated via the library Eigen [Guennebaud et al., 2010]. For linear
equations linear solvers from Eigen are used. Non-linear solvers from PETSc are used to deal with non-linear
equations. In order to interact with PETSc solvers, Eigen::Map<> is the bridge to communicate the non-linear
data between Eigen and PETSc. The class CRBSCM implements the SCM algorithm thanks to standard and
generalized Eigensolvers from SLEPc [Hernandez et al., 2005]. The class EIM implements the EIM algorithm.
Finally the class CRBApp acts the driver for the RB framework.

To build the reduced basis, the offline step of the method can be very expensive. Once this expensive offline
step is done, we save all scalar product results from the projection of matrices or vectors on the reduced basis
in a database. Hence we can reuse an existing basis to perform online computations. We store the projection of
matrices and vectors on the reduced basis, see 11. To estimate the error, we store scalar products defined in (42)
and (48). For the SCM, all quantities computed during the offline step mentioned in section 1.2.2 are stored,
they refer to equations (28), (26) and (30). Concerning EIM, the interpolation matrix and basis functions
are stored, see (52) and (55). To save objects in a database, we use the serialization process provided by the
Boost.serialization library. The framework is designed so that enriching an existing basis is possible.

A sensitivity analysis can be performed using the scientific library OpenTURNS [Works et al., 2012], specialized
in the treatment of uncertainties. Through python scripts, the User set a range and a distribution for the inputs
from which OpenTURNS build a sampling, given to CRBApp. Running the online step of the RBM, CRBApp
supplies the associated set of outputs to OpenTURNS which can then compute quantities of interest such as
standard deviation, quantiles and Sobol indices.

If the User wants to test the RBM on a model, CRBApp will generates a log-randomized or log-equidistributed
sampling of parameters on which the output will be evaluated. To verify the RB approximation of the output,
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CRBAppModel CRBModel

CRB

CRBSCM

ParameterSpace

EIM

CRBDB

Figure 2. Class diagram for the Feel++ RB framework. Arrows represent instantiations of
template classes

CRBApp provides also the output evaluated by using the finite element discretization. By assuming that, for
a given parameter µ ∈ D, the solution field uN (µ) obtained using the finite element discretization is the
true solution, the error on the solution filed is then computed in L2 and H1 norm. In other words the class

provides eL2 =
||uN (µ)−uN (µ)||L2(Ω)

||uN (µ)||L2(Ω)
and eH1 =

||uN (µ)−uN (µ)||H1(Ω)

||uN (µ)||H1(Ω)
. It also computes the error on the output :

eoutput =
|sN (µ)−sN (µ)|

|sN (µ)| .

2.2.1. Parallel strategy

The RB framework supports parallel architectures by relying on the Feel++ parallel data structures. All
data associated to the reduced basis (scalars, dense vectors and matrices, parameter space samplings) are
actually duplicated on each processor. However note that since the mesh is partitioned according the number
of processors, finite element approximations and thus the reduced basis functions are in fact spread on all
processors. Currently the basis functions are saved in the RB database with their associated partitioning. If
they are required for visualization purposes or reduced basis space enrichment, the same data partition as in
the initial computations must be used. Another particular attention must be paid to parameter space sampling
generation: we must ensure that all processors hold the same samplings. To this end, they are generated in a
sequential way by only one processor and then broadcasted to other processors. Finally, in the implementation
of the EIM algorithm, we need to compute the argmax over a fine sampling of infinity norm of a quantity that
lives on the mesh, see equation (50). Each processor computes its local contribution and the a “max” MPI
reduction is done.

2.2.2. Practical use of EIM

We consider now a practical example of the usage EIM taken from the non-linear electro-thermal problem
described in section 3.1. The associated weak formulation can be expressed as :

find U = (V, T ) ∈Xh = XV
h ×XT

h s.t. ∀V ∈Xh and ∀µ ∈ D : g(U ,V ;µ) = 0 . (79)

where V and T are respectively the electrical potential and the temperature, and Xh is a composite space
(product of the function spaces XV

h and XT
h to which V and T belong respectively). In this model, g depend

on a term σ(T ), which is non-affine in parameter µ :

σ(T ) =
µ0

1 + µ1(T − T0)
, (80)



ESAIM: PROCEEDINGS 241

where T0 is a set constant.
As a consequence, g is non-affine in parameter µ and the associated affine decomposition can not be obtained

without an EIM decomposition of the term σ(T ). To recover an affine decomposition of (80), the User has to
use EIM class by instantiating an EIM object as shown in code 2. This EIM object gives a direct access to the
basis functions qM and the coefficients βM of the EIM expansion (described in 1.3).

Listing 2. EIM approximation of a non-affine parameter and solution dependent term

parameterspace_ptrtype Dmu; //D

auto mu_min = Dmu ->element ();

auto mu_max = Dmu ->element ();

//fill mu_min and mu_max to define "corners" of D

mu_min << ... ; mu_max << ... ;

// associate "corners" to D

Dmu ->setMin( mu_min ); Dmu ->setMax( mu_max );

parameter_type mu; // µ ∈ D

auto Pset = Dmu ->sampling ();

int eim_sampling_size = 1 000;

Pset ->randomize(eim_sampling_size );

// nonlinear expression σ(T )
auto sigma = ref( mu(0) )/( 1+ref( mu(1) )*( idv(T)-T0 ) );

//eim object

auto eim_sigma = eim( _model=solve( g(U ,V ;µ) = 0 ),

_element=T, // unkown needed for the evaluation of σ(T )
_parameter=mu ,// µ

_expr=sigma , // σ(T )

_space=XT

h , // eim basis function space see (79)
_name="eim_sigma",

_sampling=Pset );

//then we can have access to β coefficients

std::vector <double > beta_sigma = eim_sigma ->beta( mu );

Note that in Listing 2, for the construction of the object eim_sigma we use the abuse of notation _model = solve(

g(U ,V ;µ) = 0 ) to indicate that the problem (79) is solved. In practice the user provides as argument a functor
providing an operator() that can be called by the EIM offline algorithm to execute the underlying finite element
problem for a given parameter µ and retrieve the associated finite element solution. As to the function space
to which the EIM basis belong it is given by the _space argument, we chose to use XT

h for the function space
of eim expansions. An example the object type is given in Listing 1.

Now, let us see how to have an expansion of a function which does not depend on the solution of the model.
Say we want the expansion of g(µ;x) = sin (µ0 π x) where µ0 is a parameter of the model. Here there is no need
to compute the solution of the model to have the expansion of g(µ;x). So we use the keyword eim_no_solve,
like illustrated in code 3.

Listing 3. EIM approximation with no dependence on solution

//eim expansion of sin (µ0 π x)
auto eim_sin = eim( _model=eim_no_solve(FemModel) ),

//our model called FemModel is passed as argument of eim_no_solve

_element=T,

_parameter=mu,// µ
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_expr=sin( ref( mu(0) )*pi*Px() ),

_space=XFemModel
h ,// object representing the function space

//used in the model FemModel

_name="eim_sin",

_sampling=Pset );

3. Numerical experiments

The Laboratoire National des Champs Magnétiques Intenses (LNCMI) is a French large scale facility ( [Debray
et al., 2002]) enabling researchers to perform experiments in the highest possible magnetic field (up to 35 T
static field). High magnetic fields are obtained by using water cooled resistive magnets (cf. figure 3 and 4)
connected with a 24 MW power supply (see [F.Debray et al., 2012] and references included for details).

The design and optimization of these magnets require from an engineering point of view the prediction of
“quantities of interest,” or performance metrics, which we shall denote outputs — namely magnetic field in the
center, maximum stresses, maximum and average temperatures. These outputs are expressed as functionals
of field variables associated with a set of coupled parametrized PDEs which describe the physical behavior
of our magnets. The parameters, which we shall denote inputs, represent characterization variables — such
as physical properties, heat transfer coefficients, water temperature and flowrate, and geometric variables in
optimisation studies. To evaluate these implicit input–output relationships, solutions of a multi-physics model
involving electro-thermal, magnetostatics, electro-thermal-mechanical and thermo-hydraulics are requested. It
should be noted that this model is non-linear as the material properties depend on temperature. In practice
these evaluations represent a huge computational time but they are mandatory to improve the magnet design
as we can no longer rely on common physical sense.

To significantly reduce this computational time, we choose to use model order reduction strategies, and
specifically to use the reduced basis method presented in the previous sections which is well adapted to tackle
this question. First, we focused on the electro-thermal behaviour of the resistive magnets. We present now the
non-linear electro-thermal coupled problem developed for this purpose. Design issues and challenges attached
to this application are then explicited. Finally the Feel++ reduced basis framework is applied on two examples
directly connected with actual LNCMI developments.

3.1. A non-linear electro-thermal model for High Fields Magnets

Two main technologies are developed at the LNCMI for the resistive magnets, namely the Bitter and Polyhelix
techniques. A typical 24 MWmagnet will consist in a set of Polyhelices and Bitter magnets (or inserts in LNCMI
standard terminology) powered separatly by a 12 MW power supply. Polyhelices insert are in turns made of
concentric copper alloy tubes, in which a helix have been cut by spark erosion techniques, electricaly connected
in series. The helix cut in each tube may be filled with some glue or let free. In this case some insulator are
introduced periodicaly to prevent electrical contact between turns.
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Figure 3. A Polyhelix insert. The helices are actu-
ally copper alloy tubes cut by a spark erosion tech-
nique. Epoxy glue may be introduced into the slit to
ensure the electrical insulation between turns : this
is the so-called “Longitudinally cooled helices” as the
water flow is “longitudinal”. An another possibility to
ensure electrical insulation is to introduce periodically
some insulators into the slit : this is the so-called “Ra-
dially cooled helices” as the water may flow from the
inner to the outer radius througth the open slit.

Figure 4. A Bitter insert consists in a stack of cop-
per alloy plates. Insulators are introduced in between
plates to create a helicöıdal current path. Small holes
are drilled to enable the water flow throught the mag-
net. Some tie-rods are inserted to ensure a good elec-
trical contact between each plate by applying a pre-
compression.

The applied electrical current is about 30 kA in each insert. This leads to important Joules losses within the
insert. A water flow (about 150 l/s) is then necessary to cool down the insert and to avoid that the temperature
reaches some given threshold.

The temperature T in the magnets is given by the following electro-thermal coupled model, where V stands
for the electrical potential :

{

−∇ · (σ(T )∇V ) = 0,
−∇ · (k(T )∇T ) = σ(T )∇V · ∇V.

(81)

σ(T ) and k(T ) (respectively the electrical and thermal conductivity of the material) depend on T , hence the
non linearity of this model :

σ(T ) =
σ0

1 + α(T − T0)
and k(T ) = σ(T )LT (82)

where σ0 denotes the electrical conductivity at T = T0. α and L are characteristics of material, namely the
ratio resistivity-temperature and the Lorentz number.

In a polyhelix magnet (see figure 3), copper solenoids are electrically connected in series. The circulation
of electrical current in each of them can be modeled as a difference of electrical potential between the current
input and the current output. The value of this difference can be evaluated from the current intensity - known
from experiments -, and is handled in the model using Dirichlet boundary conditions. On all other boundary
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Neumann conditions are applied, as no current flows out the magnets apart from the top and bottom regions :

{

V = 0 on current input (cin) and V = VD on current output (cout)
−σ(T )∇V · n = 0 on other boundaries.

We can assume that there is no thermal exchange on the ”connection” surfaces (current input and output),
nor on the interfaces with insulators. The thermal exchange between copper and cooling water is modeled by
a forced convection conditions (with h the heat transfer coefficient, and Tw the water temperature) :

{

−k(T )∇T · n = h(T − Tw) on cooled regions (cooling)
−k(T )∇T · n = 0 on other boundaries.

h is obtained by mean of classical thermohydraulics correlations given the water flowrate.

3.2. Design issues and Challenges

In the international race for higher magnetic field we need to push our magnet technologies to their limits.
The actual design of our inserts are mainly limited by thermal constraints for the inner parts and by mechanical
constraints for the outer parts. Two routes are actively investigated to go beyond these limits : one consists in
developing the ”Radially cooled helices” (see comment on fig 3) which are less sensitive to thermal limitations
from their design principles; the other consists in looking for materials with improved mechanical properties.
This last aspect is a more long term research.

LNCMI current projects involves the use of those ”Radially cooled helices” to achieve higher magnetic field by
breaking the thermal limits. From a designer point of view it requires to control the temperature, - average and
standard deviation - in the magnets considering several parameters. Those corresponding to operating conditions
(ie. applied potential VD and cooling conditions Tw, h), and those allowing to take into account uncertainties
on materials properties (ie. electrical conductivity σ0, and coefficients α and L). Indeed, materials properties
are not precisely known - the copper producer only gives upper and lower bounds for σ0, and α and L are only
known from litterature to be in a given interval -.

To reach this goal we need fast, accurate and reliable estimates for the temperature field. This need may
be adressed by controlling a posteriori error for T associated with an anisotropic mesh adaptation strategy
( [Prud’Homme et al., 2012b]). This approach is however not sufficient nor efficient in terms of required
computational ressources. An efficent alternative is to use the Reduced basis method (see 1.4.2) to greatly
reduce the computional cost. In our case this method has to be combined with the Empirical Interpolation
Method (see 1.3) to deal with non-affine dependence parameters, arising from the righthand side of (81) and
(82). This new approach implemented using Feel++ reduced basis framework makes it possible to carry out
parametric studies and sensitivity analysis at reasonnable cost which are mandatory to improve the design. In
the sequel we will consider the input parameter µ ∈ R

6 defined by :

µ = (σ0, α, L, VD, h, Tw) (83)

A first example of a parametric study on a small geometry is presented in 3.6. It also serves as a validation
of the framework. A second example is given in 3.7 for a larger problem, illustrating the parallel computing
possibilities of Feel++ RB framework. This second example also shows the computation of quantities of interest
for sensitivity analysis -as a first step toward uncertainties quantification- adressed to applications such that
design under uncertainties.

3.3. Reduced basis approximation of the problem

As the material properties makes our model non-affinely parametrized and non-linear, the use of reduced
basis method in such a context involves to proceed as described in section 1.4. The output (equ. (58)) we focus
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on in the next sections is the mean of temperature T (µ) :

s(T (µ)) =
1

|Ω|

∫

Ω

T (µ)dΩ (84)

To handle seamlessly the Dirichlet conditions in the reduced basis framework, we have chosen to treat them
weakly using the Nitsche formulation.

The solutions V (µ) and T (µ) of our coupled problem (c.f. section 3.1) are respectively zeros of the two
functions gV (V (µ), φV ;µ) and gT (T (µ), φT ;µ) expressed as follows :

gV (V (µ), φV ;µ) =

∫

Ω

σ(T )∇V · ∇φV −

∫

cin∪cout

σ(T )(∇V · n)φV +

∫

cin∪cout

σ(T )γ

hs

V φV (85)

−

∫

cin∪cout

σ(T )(∇φV · n)V −

∫

cout

σ(T )γ

hs

VDφV +

∫

cout

σ(T )(∇φV · n)VD

gT (T (µ), φT ;µ) =

∫

Ω

k(T )∇T · ∇φT +

∫

cooling

hTφT −

∫

Ω

σ(T )φT∇V · ∇V −

∫

cooling

hTwφT (86)

where γ and hs denote respectively the penalization coefficient - set to a constant regarded as independent
of µ - and the characteristic mesh size. Note that we have multiplied by σ(T ), the term γ

hs
to ensure that the

penalty term scales properly with respect to the other terms on the same boundary. Thanks to this, γ must be
sufficiently large (γ ≈ 30 say) to ensure coercivity and it does not depend on the parameters.

We can now use a Newton algorithm to solve g(< V (µ), T (µ) >,< φV , φT >;µ) = gV (V (µ), φV ;µ) +
gT (T (µ), φT ;µ) = 0 (c.f. section 1.4.1, algorithm 2) where the residual and jacobian read:

r(< V (µ), T (µ) >,< φV , φT >;µ) = gV (V (µ), φV ;µ) + gT (T (µ), φT ;µ) (87)

j(< V (µ), T (µ) >,< φV , φT >;µ) =











∂gV (V (µ), φV ;µ)

∂V

∂gV (V (µ), φV ;µ)

∂T

∂gT (T (µ), φT ;µ)

∂V

∂gT (T (µ), φT ;µ)

∂T











(88)

The terms σ and k (defined in (82)) which appears in gV and gT present a non-affine dependence in parame-
ters. Consequently, we need to use of the Empirical Interpolation Method (c.f. section 1.3) to build the affinely
parametrized approximations σMσ

and kMk

σMσ
(T (µ), x;µ) =

Mσ
∑

m=1

βσ
m(T (µ);µ)qσm(x) and kMk

(T (µ), x;µ) =

Mk
∑

m=1

βk
m(T (µ);µ)qkm(x) (89)

3.4. Convergence of the method

The use of the RB approximation for the following test cases requires to ensure the convergence of the
method. The following study has been undertaken on a geometry corresponding to a sector of an helix magnet
(see figure 11). Let eL2

and eH1
be the relative errors between the RB aprroximation (TRB) of temperature

and the PFEM one (TPFEM ) – PFEM is a FE resolution using the affine decomposition – , defined as

eL2
=
‖ TRB − TPFEM ‖L2

‖ TPFEM ‖L2

and eH1
=
‖ TRB − TPFEM ‖H1

‖ TPFEM ‖H1

. (90)
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Let Ξtest a set of Ntest randomly chosen parameters such that Ξtest ∩ SN = ∅. Graphs 5(a) and 5(b) show
the convergence of the RB approximation, by plotting eL2

and eH1
as functions of N , for Ntest = 20. We recall

here that we have SN−1 ⊂ SN .
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Figure 5. Convergence of the RB method.

From these graphs, we assess that the convergence of our reduced basis model is ensured.
However we note that despite the use of nested approximation spaces, the convergence is not monotone.

Remember that here we deal with a multi-physics non-linear problem. Picard algorithm is used to treat the
non-linearity. In order to limit number of iterations, a maximum number of iterations maxit is fixed.

For a given parameter, the Picard algorithm can stops owing to the fact that it reaches maxit iterations.
In this case, the error criterion is not satisfied, and the solution can then be worst in terms of precision.
Furthermore, there is currently no theory – to our knowledge – for the a priori convergence of the RB method
applied on a non-linear model. These results require certainly a closer look, however we note that the RB
approximation is converging very rapidly.

Remark 2. For all non-linear problems exposed in this paper, no a posteriori error estimation is used to select
parameters during the offline step of the algorithm. Parameters are log-randomly selected from the parameter
space. A posteriori error estimation is an ongoing work in the Feel++ RB framework.

3.5. A posteriori error estimation on linear models

The RB framework developed in Feel++ handles a posteriori error estimation, we illustrate here the use of
these estimators on 2D and 3D linear simplified models. Regarding non-linear models, work remains to develop
a posteriori error bounds.

The simplified model uses a 2D geometry representing a quarter of a Bitter plate (see figure 4). For simpli-
fication purpose, the cooling holes are not considered in this case. Inner and outer radius are defined as water
cooled regions. The current circulation in the quarter of plate is modeled by a difference of potential between
the two remaining edges. The figure 6(a) shows the convergence of the SCM algorithm to determine the lower
bound of the coercivity constant αN (µ) of the bilinear form associated to linear version of the heat equation
introduced in (81). The linear version of (81) consists in considering the electrical and thermal conductivity of
the material as independent on temperature and constants within the domain. The electrical conductivity is
equal to the component σ0 of µ and the thermal conductivity is deduced from the inputs σ0 and L such that
k0 = σ0 L T0 (T0 is a reference temperature which is not treated as a parameter). As σ0 and k0 are independent
on T , the temperature coefficient α has no influence in this case (see (82)). Therefore the input parameter µ
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can be simplified and be defined as
µ = (σ0, L, VD, h, Tw) . (91)

The RB and SCM algorithms are both applied to a set of 1000 parameters randomly chosen. In the graph
6(a) we focus on the relative error to approach the coercivity constant depending on the number of constraints.
The graph 6(b) shows the normalized a posteriori error estimation depending on the number of RB elements.
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Figure 6. Convergence of the SCM algorithm and a posteriori error estimation (2D linear model).

These results show that just few reduced basis functions are sufficient to obtain a very good approximation
of the FEM solution.
First, we shall note that the problem we are dealing with is not so rich, since we are in a linear case without
geometrical input parameters. The RB approximation space is then of very low dimension. Furthermore, we
note that the parametric dimension is lower than expected (see (91)). Indeed, after a dimensional analysis, only
three parameters arise : the Biot number, an adimensionalized water temperature and some adimensionalized
Joule effect parameter which involves VD.

The previously introduced linear version of the electro-thermal model is here applied to a Bitter magnet
(see figure 8). The error estimation ∆s

N (µ) is plotted in function of the number of RB elements on the figure
7. For now, we encounter stability problems with the SCM algorithm on this 3D geometry, – no convergence
of generalized eigenvalue solvers – so αN

LB(µ) has been set to 1 in the formula (35). For this study the RB
algorithm was applied to a set of 500 parameters randomly chosen.
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Figure 7. Convergence of a posteriori error estimation (3D linear model).

Again, only few basis functions are needed to obtain a sufficiently accurate approximation, due to the
previously introduced reasons.

3.6. Parametric study - example for a Bitter magnet

The LNCMI is currently involved in the Hybrid Magnet Project, which consists in the assembly of a resis-
tive inner coil with a superconducting outer one. This technology allows to generate the highest continuous
magnetic field for a given electrical power installation (43T for 24MW at LNCMI). The inner coil is a combi-
nation of two magnets technology (Bitter and polyhelix), powered independently (see [F.Debray et al., 2012]
and [A.Bourquard et al., 2010]).

To reach the target magnetic field, the Bitter magnet has to be redesigned to generate more than 9 Tesla which
corresponds to the actual design. This may be achieved by increasing locally the current density j = σ(T )∇V .
In practice it means modifying the stacking of copper plates (see comment on fig 4). This change will also lead
to locally increase the temperature.

To determine how much we can possibly increase j while keeping a reasonable mean temperature not to
damage the materials we have carried out a parametric study. This study consists in setting all input parameters
except VD, since j is proportional to VD.

From an engineering point of view, for this kind of magnets - made of massive ”solenoids” and not with
stranded ones - j can be approximated by :

j(r) = σ0

(

VD

θ r

)

(92)

where r is the radius - cylindrical coordinates - and θ is the angle of the sector.

The input parameter VD can then be chosen such that the current density j(rint) on inner radius rint varies
from 30.106 to 100.106 A.m−2.

The study was performed with classical FE method by running calculations for a given set of parameters and
with RB method in order to validate the framework.
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Figure 8. RB simulation on a sector
of a Bitter magnet
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Figure 9. Parametric study on Bitter:
Mean temperature VS current density

The simulation illustrated above (figure 8) have been performed on 8 processors (domain divided into 8
partitions), using the solver GMRES and the Additive Schwarz Method (GASM) as preconditioner. In a com-
putational time point of view, the use of reduced basis framework for this computation represents a gain of 2
or 3 orders of magnitude in comparison with the classical FE model.

In the current design the mean temperature is about 40◦C. Allowing this value to reach 60◦C, we can
increase the current density by a factor 1.5 as can be seen on fig 9. This allow us to redefine the stacking of the
copper plates to safely reach 10 tesla. The new Bitter magnet design will be based on this result.

3.7. Towards uncertainty quantification - example for a helix magnet

As stated in introduction to this section, using radially cooled helices for the inner most helices of a polyhelix
magnet (see [F.Debray et al., 2012]) allows to reach higher current density and hence to reach higher magnetic
fields. This is possible as the radially cooled helices are by concept less thermally limited than longitudinally
ones (see comments on fig 3). The water flows from the inner radius to the outer radius of the helix is indeed
more efficient to cool it down.

Figure 10. On the left : an example of a polyhelix insert; on the right a detailled view of the
inner radially cooled helix with a zoom on the cooling channels and insulators.
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However since insulators have to be introduced in between each turn (see fig 10) some hotspots are expected
in these regions. Accurate estimates of the temperature are a key element for the design. In particular we
want the mean temperature in the helix to remain below some threshold. This allows to limit the maximum
temperature reached in the insulators and thus to keep them safe. To do so we must take into account the
uncertainties on the copper alloy properties (σ0, α and L), and the uncertainties on the operating parameters
VD and cooling conditions Tw, h. This can be done by performing a sensitivity analysis. The ranges of input
parameters indicated in the table below are chosen from literature and experimental results.

Parameter Range
σ0 [106 Ω−1 m−1] [50; 50, 2]

α [10−3] [3, 3; 3, 5]
L [10−8] [2, 5; 2, 9]
VD [V] [0, 14; 0, 15]

h [W K−1 m−2] [70000; 90000]
Tw [K] [293; 313]

Table 1. Input parameters ranges

Sensitivity analysis is managed by linking the Feel++ reduced basis framework with the library Openturns

(see [Dutfoy et al., 2009] and http://www.openturns.org), dedicated to the treatment of uncertainties. To
perform this study, OpenTurns build a sample of input parameters, determined upon a given probability distri-
bution in the wanted ranges. The RB framework is then used to compute the associated set of outputs, from
which the mean and the standard variation are deduced by OpenTurns.

Parallel computing possibilities available within CRB framework allows to apply model order reduction on
such a complex geometry (see the left part of fig 11) with 1.5 106 dofs.

Figure 11. Temperature field computed with reduced basis method on a radial helix and on
a sector, for inputs [σ0 : 5.01e + 7;α : 3.48e − 3;L : 2.89e − 8;h : 8.15e + 4;Tw : 295.2]. The
value of parameter VD corresponds to a given current of 25 kA.

Regarding computational time, each run of the classical FE model on helix geometry - 20 iterations of Picard
algorithm, run on 15 processors - takes around 45 minutes. The reduced basis model used here consists in 20
basis for EIM approximation, and 10 for the reduced basis one. This gives a mean L2 relative error between FE
and RB model about 10−4 on a set of parameters. The online step of this RB model in the same configuration
as FE one represents a computational time of 18 seconds - average on 20 model evaluations -. The use of

http://www.openturns.org
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Feel++ reduced basis framework leads consequently to an increase by a factor 150. Considering duration of
both offline and online steps, the building of the EIM basis takes around 2 hours and a half, and each RB basis
needs about 10 minutes. We assess that currently the use of reduced basis provides a gain in time compared
with the FE model over 6 evaluations. However, since the RB offline step needs as many FE resolutions as the
number of reduced basis, this gain in time should appear after at least 10 evaluations. This is indeed due to
the time needed by the assembly process - which is not negligible - and we shall note that unlike for the FE
model for which matrices assembly is made for each run - since no precomputations are feasible -, the use of
affine decomposition in the RB model allows to do it at once during the offline step, whatever the number of
reduced basis. Anyway, to ensure that it is indeed the assembly step, we make the same calculation, comparing
the RB model with the parametric FE one - FE with affine decomposition, provided by EIM - for which the
assembly is done once. As expected, this study confirms the hypothesis since the gain provided in this case is
reached only over 13 evaluations.
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Figure 12. Computational time comparison

The graph (12) illustrates the observed times for sev-
eral number of runs n. FEM time simply corresponds
to the time needed by each evaluation (taking into
account assembly step) of FE model multiplied by
the number of runs (45 minutes ×n) . The PFEM
model uses EIM to build an affine decomposition,
which allows to make assembly process step once.
The time required by PFEM is the sum of EIM time,
and the time of the runs (8.5 minutes ×n). Finally,
the time needed by the RB method is the sum of
the offline construction time (EIM time and reduced
basis elements building time) and the time for eval-
uations (0.3 minutes ×n).

Nevertheless, the number of runs required for a sensitivity analysis with OpenTurns is so large that we cannot
perform it with the computionnal ressources available. For this reason we choose to select a ”representative”
helix sector, since the temperature behaviour is regular and exhibits some symmetry (see right part of fig 11).

The following results - on the helix sector - have been obtained from a uniform distribution of the inputs in
the ranges defined in table 1, with a sample size of 300.

This experiment has been undertaken on different samples, of increasingly large size. We noticed that from
a sample size around 300, the difference oberved on the computed quantities induced by the increasing of the
sample size is no more significant. That is the reason why we consider that such a sample is sufficient to obtain
satisfactory results in terms of precision.

The two following quantities are essential since they give a ”reference” value for the mean temperature in
the given ranges, associated to the standard deviation which can be considered as a ”safety interval” around
the previous reference value.

Mean of outputs [K] 368.66
Standard deviation [K] 6.22

Table 2. Mean and standard deviation

The values obtained for mean of outputs and standard deviation ensure that for the given input parameters
ranges (table 1), the mean temperature in the magnet will be included in [362, 44; 374, 88] K. The largest obtained
value -the most critical- can then be ”refined” using the quantiles. Quantiles correspond to the threshold q(γ)
we are sure not to exceed with a given probability γ. Considering Y the set of outputs obtained from the
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sampling, this reads as:
Find q(γ) such that P (Y < q(γ)) > γ (93)

For the same configuration as for the mean and standard deviation (table 2), quantiles with respectively
γ = 80% and γ = 99% have been computed :

Probability (γ) Quantile [K]
80% 371.297
99% 376.014

Table 3. Quantiles

These results (table 3) are also of great interest for our magnet control system in order to early detect unex-
pected thermal behaviours and thus to better predict incidents.

Furthermore, in a goal of model simplification and to guide easily the experimental measures campaign, we
need to identify which parameters are the most influent on the temperature behaviour. This can be managed by
the computation of sensitivity indices. The following Sobol indices of order 1 (see table 4) have been obtained
using a chaos polynomial meta-model on the previous sample of input parameters. The graph below shows the
comparison between outputs obtained with RB model and meta-model to ensure that this last one fits well with
base model.

Parameter (γ) Sobol indice
σ0 6, 85.10−5

α 4, 5.10−4

L 9, 2.10−3

VD 0, 12
h 0, 24
Tw 0, 62

Table 4. Sobol indices
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These results shows that copper alloys properties are greatly less influent than operating parameters, es-
pecially cooling conditions. Consequently, we have to focus on these quantities both in terms of quality of
experimental measures, and cooling water behaviour understanding. Such an investment would represent a real
improvement for the model, bringing even more reliability.

4. Conclusions and perspectives

Feel++ Reduced Basis framework has been successfully applied to industrial class problems as illustrated
in the examples above. It shows its ability to deal with a 3D elliptic non-affinely parametrized and non-
linear problem. From a practical point of view, solving such non-linear coupled problems raise the challenge
of management of large databases. The framework currently provides a posteriori error estimators for elliptic
linar problems (see section 1.2). Their extension for the certification of the RB approximation in the case of
non-affinely parametrized and non-linear problems (see for example [Cuong, 2005]) needs to be implemented.
With adequate a posteriori error estimators, a greedy algorithm can then be applied to construct an optimal
reduced basis for the electro-thermal coupled problem introduced in section 3.1.

More mid-terms developments involves the implementation of automatic differentiation to greatly help to
account for the geometric input parameters. Moreover, the integration of stochastic approach possibilities such
as chaos polynomial would simplify the uncertainty quantification. From applications point of view in the
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context of LNCMI, the electro-thermal model presented here would be enrich with other physics - such as
magnetostatic or elasticity - and evolve to handle transient simulations. Finally the possibilities offered by lego
simulation linked with domain decomposition techniques (see [Vallaghé and Patera, 2012]) are very appealing
for such large applications, involving multi-physics simulations on complex geometries. It would for example
allow to perform numerical experiments on complete set of magnets by assembling magnet components.
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