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Abstract. We consider parameter identification problems in parametrized partial

differential equations (PDE). This leads to nonlinear ill-posed inverse problems.

One way to solve them are iterative regularization methods, which typically require

numerous amounts of forward solutions during the solution process. In this article

we consider the nonlinear Landweber method and want to couple it with the reduced

basis method as a model order reduction technique in order to reduce the overall

computational time. In particular, we consider PDEs with a high-dimensional

parameter space, which are known to pose difficulties in the context of reduced basis

methods. We present a new method that is able to handle such high-dimensional

parameter spaces by combining the nonlinear Landweber method with adaptive online

reduced basis updates. It is then applied to the inverse problem of reconstructing the

conductivity in the stationary heat equation.
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1. Introduction

The numerical solution of nonlinear inverse problems such as the identification of a

parameter in a partial differential equation (PDE) from a noisy solution of the PDE via

iterative regularization methods, e.g. the Landweber method or Newton-type methods,

see, e.g., [17, 8, 24] for a detailed overview, usually requires numerous amounts of forward

solutions of the respective PDE. Since this can be very time-consuming, it is highly

desirable to speed up the solution process.

The reduced basis method, see, e.g., [25, 9] for a general survey, is a model order

reduction technique that can yield a significant decrease in the computational time

of the PDE solution, especially in a many-query context. The classical reduced basis

framework aims at constructing a global reduced basis space that is a low-dimensional

subspace of the solution space of the PDE providing accurate approximations to the

PDE-solution for every parameter in the parameter domain. A possible way to construct
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such a space is to select meaningful parameters and choose the corresponding PDE-

solutions, the so called snapshots, as basis vectors of the reduced basis space. Via

Galerkin projection of the problem onto the reduced basis space, the reduced basis

approximation can be computed. An offline/online decomposition of the procedure

allows for the efficient and rapid computation of the reduced basis approximation

for many different parameters. Using a global reduced basis space, one can replace

the expensive forward solution or a functional evaluation of it with the corresponding

reduced basis quantity in the solution procedure of a given inverse problem. We call

this the direct approach and it has successfully been applied to various problems, see,

e.g., [22, 21, 15], but we want to stress that in those references the parameter space

was bounded and of low dimension, which is required for the construction of a global

reduced basis space.

The contribution of this paper to the field is the application of reduced basis

methods to a parameter identification problem with a very high-dimensional and

unbounded parameter space. To this end we want to study the inverse model problem:

given a solution u(x), x ∈ Ω, of

∇ · (σ(x)∇u(x)) = 1, x ∈ Ω, and u(x) = 0, x ∈ ∂Ω, (1)

identify the parameter σ(x), with Ω ⊂ R
2 a bounded domain. This is an example of

recovering an image of the thermal conductivity in the stationary heat equation with

constant heat source. Typically, instead of u a noisy measurement uδ is known, with

‖u − uδ‖ ≤ δ and noise level δ > 0. Since this problem is ill-posed, regularization

techniques have to be applied. We choose the nonlinear Landweber method in this

article.

The aim of this paper is the development of a new method to solve nonlinear inverse

problems with high-dimensional parameter spaces, where our approach is based on the

ideas developed by Druskin and Zaslavsky [6]. We will combine the nonlinear Landweber

method with the main ideas of the reduced basis method: instead of constructing a

global reduced basis space, providing accurate approximations for every parameter in

the parameter domain, as it is usually the case in reduced basis methods, see, e.g., [5],

we will adaptively construct a small problem-specific reduced basis space that may only

be useful for the reconstruction of a single conductivity. This will break the typical

offline/online framework of reduced basis methods. A critical question then will be the

selection of the snapshots for this problem-oriented space. We will develop termination

criteria that, together with the nonlinear Landweber method projected onto the current

reduced basis space, will not only select meaningful parameters for space enrichment

but also serve the solution of the posed inverse problem. Therefore, we adaptively

enrich our reduced basis space to fit the region of the parameter space that is required

to reconstruct the desired conductivity, while also reconstructing it. This will allow

for the numerical treatment of very high-dimensional parameter spaces. We note that

the nonlinear Landweber method being a regularization method has been extensively

studied and analyzed, see, e.g., [13, 8, 17, 12].
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Ideas similar to our adaptive approach have been applied to a parameter estimation

problem arising from the modeling of lithium ion batteries [20], a subsonic aerodynamic

shape optimization problem [29], both leading to an optimization problem constrained

with a nonlinear PDE, and a Bayesian inversion approach, where the parameter is

modelled as a random variable, using Markov chain Monte Carlo (MCMC) methods [3].

The remainder of this paper is organized as follows. In Section 2 we will present

a mathematical formulation of the model problem, for which the nonlinear Landweber

method is known to converge locally. Section 3 contains a brief discretization as well as

the key ingredients of the classical reduced basis method. In Section 4 we will develop

the new method, comment on its implementation and present numerical results. Final

conclusions are drawn in Section 5.

2. Problem formulation

We present a well-known setting in which the Landweber method applied to (1) does

converge locally. Throughout this section we assume Ω ⊂ R
2 to be a bounded domain

with C2-boundary. Following [16, 11, 18], we choose the parameter space

H2
+(Ω) := {σ(x) ∈ H2(Ω) | ess inf σ(x) > 0},

with H2(Ω) the usual Sobolev space. Since Ω has a C2-boundary, H2(Ω) embeds

continuously into L∞(Ω), cf. [1, Theorem 4.12], such that taking the essential infimum

of a function in H2(Ω) is a continuous mapping and H2
+(Ω) is an open subset of H2(Ω).

We consider the PDE: for given σ(x) ∈ H2
+(Ω) find the (weak) solution u ∈ H1

0 (Ω) of

∇ · (σ(x)∇u(x)) = 1. (2)

The corresponding parameter-to-solution map is defined as

F : D(F) := H2
+(Ω) ⊂ H2(Ω) −→ L2(Ω)

F(σ) = u u ∈ H1
0 (Ω) ⊂ L2(Ω) solving

b(u, w; σ) = f(w) for all w ∈ H1
0 (Ω),

b(u, w; σ) :=

∫

Ω

σ∇u · ∇w dx, f(w) := −
∫

Ω

w dx.

(3)

The associated inverse problem is

for u ∈ L2(Ω) find σ ∈ H2
+(Ω) such that F(σ) = u. (4)

Typically, instead of u a noisy measurement uδ ∈ L2(Ω) is known, with ‖uδ−u‖L2(Ω) ≤ δ

and noise level δ > 0, such that regularization techniques have to be applied since simple

inversion fails due to the ill-posedness of the problem. Throughout this paper we assume

the knowledge of δ.

Remark 2.1.

(i) For σ ∈ H2
+(Ω) we have |b(u, u; σ)| ≥ α(σ)‖u‖2

L2(Ω), with α(σ) :=
ess inf σ(x)

C2
PF

> 0,

where CPF is the Poincaré-Friedrich constant of Ω. Therefore, the bilinear form
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b(·, · ; σ) is coercive for all σ ∈ H2
+(Ω). Since H2(Ω) embeds continuously into

L∞(Ω), b is also continuous for every σ ∈ H2
+(Ω) with continuity constant

γ(σ) := ess sup σ(x) < ∞. The linear form f is continuous as well such that

the Lemma of Lax-Milgram guarantees existence and uniqueness of a solution of

(3) in H1
0 (Ω).

(ii) L2(Ω) is chosen as the image space of F because we consider it to be more realistic

for a measurement uδ ∈ L2(Ω) to be close to the exact data u ∈ H1
0 (Ω) in the

L2-norm rather than in the H1-norm.

(iii) We acknowledge that the inverse problem stated in (4) is actually a linear problem

since the data u ∈ L2(Ω) is known over the whole domain Ω. The problem becomes

truly nonlinear if the data is only known on a proper subdomain Ω̃ ⊂ Ω. We

formulate this partial inverse problem

for u ∈ L2(Ω̃) find σ ∈ H2
+(Ω) such that F̃(σ) = u, (5)

with F̃ := E ◦ F and a restriction operator E : L2(Ω) −→ L2(Ω̃). Since the scope

of this work is the connection of iterative regularization methods and the reduced

basis method, we will continue to consider (4) for reasons of simplicity. Still, the

resulting method derived in Section 4 is applicable to the partial problem (5) and

we will provide corresponding numerical results in Section 4.3.

(iv) We mention that in the chosen setting (but also in general) the inverse problem

(4) (and more so (5)) is not uniquely solvable. In [16] Ito and Kunisch provide

an overview of existing results on this topic and show the injectivity of F with

respect to a reference parameter under certain assumptions. A recent result on the

uniqueness of (4) with C2-parameter is given by Knowles [19], where his techniques

are based on the work of Richter [23].

If we consider D(F) = L∞
+ (Ω) ⊂ L2(Ω) as definition space of F , it is a well-known

result that for each σ ∈ L∞
+ (Ω) and each direction κ ∈ L2(Ω) with σ+κ ∈ L∞

+ (Ω) (note

that L∞
+ (Ω) is not an open subset of L2(Ω))

lim
‖κ‖∞→0

‖F(σ + κ)−F(σ)− F ′(σ)κ‖L2(Ω)

‖κ‖∞
= 0 (6)

holds, with a linear and continuous operator F ′(σ) given by

F ′(σ)(·) : L2(Ω) −→ L2(Ω)

F ′(σ)κ = v v ∈ H1
0 (Ω) ⊂ L2(Ω) solving

b(v, w; σ) = g(w; κ) for all w ∈ H1
0 (Ω),

b(v, w; σ) :=

∫

Ω

σ∇v · ∇w dx, g(w; κ) := −
∫

Ω

κ∇uσ · ∇w dx,

(7)

where uσ abbreviates F(σ). The Appendix of this article contains a proof of the above

statement. Since H2(Ω) embeds continuously into L∞(Ω) and H2
+(Ω) is an open subset

of H2(Ω), (6) holds for every σ ∈ H2
+(Ω) and κ ∈ H2(Ω), where F ′(σ) considered as an

operator from H2(Ω) to L2(Ω) is the Fréchet derivative of F .
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To numerically solve (4), we consider the nonlinear Landweber iteration that is

based on the fix point equation

σ = ξ(σ) := σ + ωF ′(σ)∗(u−F(σ)),

where F ′(σ)∗ denotes the adjoint of F ′(σ) and ω > 0 is a damping parameter. With

given noisy data uδ ∈ L2(Ω) we can only expect to reconstruct an approximative solution

σδ to an exact solution σ+ ∈ H2
+(Ω) of (4). The damped nonlinear Landweber iteration

is defined via

σδ
n+1 = σδ

n + ωF ′(σδ
n)

∗(uδ − F(σδ
n)), n = 0, 1, . . . (8)

with starting value σδ
0 ∈ H2

+(Ω), which may incorporate a-priori knowledge of σ+, and

damping parameter ω chosen as ω ≤ ‖F ′(σ+)‖−2. Since we consider noisy data, the

iteration (8) has to be stopped properly to prevent error amplification. We choose the

well-known discrepancy principle: accept the iterate σδ
n∗(δ,uδ)

as a solution to (4), if it

fulfills

‖F(σδ
n∗(δ,uδ))− uδ‖L2(Ω) ≤ τδ ≤ ‖F(σδ

n)− uδ‖L2(Ω), n = 0, 1, . . . , n∗(δ, uδ)− 1, (9)

with τ > 2. In this setting the damped nonlinear Landweber iteration applied to (4)

for noisy data is known to locally converge.

Proposition 2.2. Let σ+ ∈ D(F) be a solution of F(σ) = u. Then, there exists a

radius ρ > 0 such that the following holds for every starting value σδ
0 ∈ Bρ(σ

+): if the

damped nonlinear Landweber iteration applied to noisy data uδ ∈ L2(Ω) is stopped with

n∗(δ, uδ) according to (9), then σδ
n∗(δ,uδ) converges to some solution σ̂ of F(σ) = u as

δ → 0.

Proof. Since H2(Ω) embeds continuously into L∞(Ω) and therefore H2
+(Ω) is open

as mentioned in the beginning of the section, we can always find an open ball

Br1(σ
+) ⊂ D(F) = H2

+(Ω) around σ+ with r1 > 0 such that ess inf (σ) > c1 for all

σ ∈ Br1(σ
+), where c1 depends on ess inf (σ+). Furthermore, the triangle inequality

yields ‖σ‖H2(Ω) ≤ ‖σ − σ+‖H2(Ω) + ‖σ+‖H2(Ω) < r1 + ‖σ+‖H2(Ω) =: c2 for every

σ ∈ Br1(σ
+). We mention that H2

+(Ω) is convex. Hanke showed in [11, Corollary

3.2] that

‖F(σ)− F(σ̃)−F ′(σ̃)(σ − σ̃)‖L2(Ω) ≤ C ‖σ − σ̃‖H2(Ω)‖F(σ)−F(σ̃)‖L2(Ω)

holds for all σ, σ̃ ∈ Br1(σ
+), where C depends on c1, c2 and Ω. Therefore, there exist

0 < r2 ≤ r1 and η < 1
2
such that the tangential cone condition

‖F(σ)− F(σ̃)− F ′(σ̃)(σ − σ̃)‖L2(Ω) ≤ η‖F(σ)−F(σ̃)‖L2(Ω)

is true for all σ, σ̃ ∈ Br2(σ
+). We now choose τ in (9) as

τ > 2
1 + η

1− η
> 2. (10)

Finally, we can find 0 < r3 ≤ r2 such that
√
ω‖F ′(σ)‖ ≤ ‖F ′(σ)‖

‖F ′(σ+)‖ ≤ 1 for all

σ ∈ Br3(σ
+). We now choose ρ = r3

3
such that for every σδ

0 ∈ Bρ(σ
+) all assumptions of

[8, Theorem 11.5] are fulfilled and the assertion follows.
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Remark 2.3.

(i) Hanke [12] extends the convergence result of [8, Theorem 11.5] to choices τ > 1. In

the same article Hanke also mentions that the solution σ̂ found with Theorem 2.2

depends on the starting value σδ
0 and does not need to coincide with σ+ if F ′(σ+)

happens to have a nontrivial null space.

(ii) Since in a practical application σ+ is unknown, we will make a heuristic choice of

the damping parameter ω in Section 4.3.

3. Reduced basis methods

Before we introduce the key ingredients of the classical reduced basis method and for

further numerical treatment, we discretize our model problem.

3.1. Discretization

We introduce a standard finite element space and a discrete parameter space. Note that

the unit square, despite lacking a C2-boundary, still meets the demands on the domain

required for the theory in Section 2. Therefore, we choose Ω := [0, 1]2 as computational

domain for the remainder of this article.

Definition 3.1. For a given n ∈ N, n ≥ 2, we choose a uniform triangulation of Ω

with (n+2)2 grid nodes xi and Iin the index set of inner nodes. We use piecewise linear

nodal basis functions, denoted as ϕi, i ∈ Iin, on the inner nodes. The discrete function

space Y then is defined via

Y := {u : Ω → R | u(x) =
∑

i∈Iin

uiϕi(x), ui ∈ R, i ∈ Iin}.

Y is equipped with the L2-norm and and for u ∈ Y let u = (ui)i∈Iin ∈ R
n2

denote the

vector of coefficients.

Definition 3.2. For a given square number p = q2, q ∈ N, we divide Ω into a uniform

partition of p squared subdomains Ωi, i = 1, . . . , p, and define Pp via

Pp := {σ : Ω → R | σ(x) =
p

∑

i=1

σi χΩi
(x), σi ∈ R+ := (0,∞), i = 1, . . . p},

with χΩi
being the characteristic function on the subdomain Ωi. Pp is equipped with the

L2-norm and for σ ∈ Pp let σ = (σi)
p
i=1 ∈ R

p
+ denote the vector of coefficients.

The following discrete problems will have R
p
+ and R

p as definition space. Note the

isomorphisms between R
p
+ and Pp as well as Rp and its (analogously to Definition 3.2

defined) function space. Furthermore, we recall that b, f and g are the bilinear and

linear forms introduced in Section 2 and the stability constants of b, f and g carry over

to Y and R
p
+ such that existence and uniqueness of the discrete problems are guaranteed

via Lax-Milgram. The discrete forward operator is given by

F : Rp
+ −→ Y, σ 7−→ uσ, u = (uσi )i∈Iin solving

B(σ)u = f with (B(σ))ij := b(ϕi, ϕj ; σ), (f )i := f(ϕi), i, j ∈ Iin.
(11)
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The associated discrete inverse problem is

for uσ ∈ Y find σ ∈ R
p
+ such that (11) is fulfilled. (12)

In the upcoming sections uσ, the solution of (11), will simply be denoted by u. For

σ ∈ R
p
+, the Jacobian F ′(σ) is given by

F ′(σ)(·) : Rp −→ Y, κ 7−→ vσκ , v =
(

vσκ,i
)

i∈Iin
solving

B(σ)v = g(κ) with B(σ) as in (11) and (g(κ))i := g(ϕi; κ), i ∈ Iin.
(13)

Remark 3.3.

(i) The discrete setting introduced in this section deviates from the continuous setting

introduced in Section 2, where the forward operator F was a mapping from H2
+(Ω)

to L2(Ω). Here, the discrete forward operator F is a mapping from a finite subspace

Pp of L2(Ω) into another finite subspace Y of L2(Ω). This choice is made since

it resembles the common numerical setting for the inverse problem tackled in this

paper, where no continuity for the searched for diffusion coefficient can be assumed.

Do note that due to this choice the result of Proposition 2.2 does not need to hold in

this discrete setting. Also, to our knowledge, it is an open question if the tangential

cone condition required in the proof of Proposition 2.2 holds in this discrete setting.

(ii) Since we use the L2-norm instead of the energy-norm on Y , it is α(σ) := min(σ)

C2
PF

>

0, for all σ ∈ Pp, the coercivity constant of b with respect to Y . For Ω = [0, 1]2

we refer to the proof of [1, Thm. 6.30] and choose CPF = 1√
2
such that we use

α(σ) = 2min(σ) > 0 for all σ ∈ Pp throughout this article.

3.2. The reduced basis method

Reduced basis methods aim at constructing a low-dimensional subspace YN of Y , with

N = dimYN ≪ dimY = n2, such that the reduced basis solution uN is an accurate

approximation of u, the high-dimensional forward solution of (11). Typically YN will

consist of so called snapshots that are solutions of (11) to meaningful parameters. We

will not discuss the construction of YN in this section but assume a reduced basis space

to be given. In order to give a brief overview of the reduced basis method, this section is

kept very generic. For a detailed survey of the reduced basis method we refer to [25, 9].

Definition 3.4. Let a forward operator (11) and a reduced basis space YN ⊂ Y , with

dimYN = N and basis ΨN := {ψ1, . . . , ψN}, be given. We define the discrete reduced

forward operator

FN : Rp
+ −→ YN , σ 7−→ uσN =

N
∑

i=1

uσN,iψi, uN = (uσN,i)
N
i=1 solving

BN (σ)uN = fN with (BN (σ))ij := b(ψi, ψj ; σ), (fN)i := f(ψi), i, j = 1, . . . , N.

(14)

We call uσN the reduced basis approximation and will often write uN instead.

Remark 3.5.
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(i) Existence and uniqueness of (14) follow from the properties of (11).

(ii) If the reduced basis ΨN is orthonormal, cond(BN (σ)) ≤ γ(σ)
α(σ)

holds independent of

N with BN (σ) defined in (14).

For the sake of completeness, we include the proof of the well-known rigorous error

estimator for the reduced basis error, here measured in the L2-norm, ‖u− uN‖L2(Ω), cf.

[25] or [9, Proposition 2.15 & 2.19].

Lemma 3.6. For σ ∈ Pp we define the residual r(·; σ) ∈ Y ′ via

r(v; σ) := f(v)− b(uN , v; σ), v ∈ Y.

Then, let vr ∈ Y denote the Riesz-representative of r(·; σ), i.e.,
〈vr, v〉L2(Ω) = r(v; σ), v ∈ Y, ‖vr‖L2(Ω) = ‖r(·; σ)‖Y ′.

Then, the error u− uN ∈ Y is bounded for all σ ∈ Pp by

‖u− uN‖L2(Ω) ≤ ∆N (σ) :=
‖vr‖L2(Ω)

α(σ)
. (15)

Proof. Introducing the notation e := u− uN we can calculate

b(e, v; σ) = b(u, v; σ)− b(uN , v, σ) = f(v)− b(uN , v; σ) = r(v; σ) for all v ∈ Y.

Testing this equation with e ∈ Y yields

α(σ)‖e‖2
L2(Ω) ≤ b(e, e; σ) = r(e; σ) ≤ ‖r(·; σ)‖Y ′ ‖e‖L2(Ω) = ‖vr‖L2(Ω)‖e‖L2(Ω).

Division by ‖e‖L2(Ω) and α(σ) concludes the proof.

We want to remind the reader that this is an estimator for the error between the

reduced basis approximation and the discrete forward solution. Since the construction

method for YN in Section 4 will be snapshot-based, we note an important property of

such methods, the reproduction of solutions. It guarantees exactness in the reduced

basis approximation for parameters whose snapshots are part of YN .

Lemma 3.7. Let σ ∈ Pp, F (σ), FN (σ) be solutions of (11) and (14) and ei ∈ R
N the

i-th unit vector. Then the following holds

(i) if F (σ) ∈ YN then FN (σ) = F (σ).

(ii) if F (σ) = ψi ∈ ΨN then uN = ei ∈ R
N .

Proof. Immediately follows from (11) and (14), see, e.g., [9, Proposition 2.16].

To conclude this brief overview of the reduced basis method we present both

offline/online decompositions of (14) and the error estimator (15) that allow for the

rapid computation of uN and ∆N . The essential assumption for those decompositions is

that the bilinear form b and the linear form f are parameter-separable, which is fulfilled

by (11).
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Corollary 3.8. Using the notation of Definition 3.2, the set {σ(1)(x), . . . , σ(p)(x) |
σ(i)(x) = χΩi

(x), i = 1, . . . , p} is a basis of Pp with corresponding coefficient vectors

σ(i) = ei ∈ R
p, i = 1, . . . , p, ei being the i-th unit vector. Therefore, we can rewrite b

and f as

b(u, v; σ) =

Qb
∑

q=1

Θq
b(σ)b

q(u, v), f(v; σ) =

Qf
∑

q=1

Θq
f(σ)f

q(v),

for all u, v ∈ Y and σ ∈ Pp, with Qb = p, Qf = 1 coefficient functions Θq
b(σ) :=

(σ)q, q = 1, . . . , p, Θ1
f(σ) := 1 and components

bq(u, v) := b(u, v; σ(q)), q = 1, . . . p, f 1(v) := f(v), u, v ∈ Y.

If the bilinear form b and the linear form f can be rewritten this way, they are said to

be parameter-separable. Regarding the residual we set Qr := Qf + N · Qb = 1 + N · p
and define the components of the residual rq ∈ Y ′, q = 1, . . . , Qr via

(r1, . . . , rQr) := (f 1(·), . . . , fQf (·), b1(ψ1, ·), . . . , bQb(ψ1, ·), . . . , b1(ψN , ·), . . . , bQb(ψN , ·))
= (f 1(·), b1(ψ1, ·), . . . , bQb(ψ1, ·), . . . , b1(ψN , ·), . . . , bQb(ψN , ·)),

and let vqr ∈ Y denote the Riesz-representative of rq. For uσN =
∑N

i=1 u
σ
N,iψi a solution

of (14) we define the corresponding coefficient functions Θq
r(σ), q = 1, . . . , Qr via

(Θ1
r, . . . ,Θ

Qr

r ) := (Θ1
f , . . . ,Θ

Qf

f ,−Θ1
bu

σ
N,1, . . . ,−ΘQb

b uσN,1, . . . ,−Θ1
bu

σ
N,N , . . . ,−ΘQb

b uσN,N)

= (1,−(σ)1u
σ
N,1, . . . ,−(σ)pu

σ
N,1, . . . ,−(σ)1u

σ
N,N , . . . ,−(σ)pu

σ
N,N).

Using this, the residual r and its Riesz-representative vr are parameter-separable as

r(v; σ) =

Qr
∑

q=1

Θq
r(σ)r

q(v), vr(σ) =

Qr
∑

q=1

Θq
r(σ)v

q
r .

For problems that are not parameter-separable, the empirical interpolation method

[2] is available. The general idea of an offline/online decomposition is: compute all

parameter independent quantities in a nonrecurring possibly expensive offline phase

and then, for every new parameter, rapidly compute the desired quantity in the online

phase. We first formulate the offline/online decomposition of (14).

Procedure 3.9.

Offline phase (one-time)

(i) Generate reduced basis ΨN = {ψ1, . . . , ψN} and YN .

(ii) Galerkin projection of components onto YN , i.e., compute Bq
N := (bq(ψi, ψj))

N

i,j=1 ∈
R

N×N and f
q
N := (f q(ψi))

N

i=1 ∈ R
N .

Online phase (for each new σ ∈ Pp)

(i) Evaluate coefficient functions Θq
b(σ), Θ

q
f(σ), assemble BN(σ), fN and solve linear

system in (14).

(ii) Reconstruct reduced basis solution uN =
∑N

i=1 uN,iψi.
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A Reduced Basis Landweber method for nonlinear inverse problems 10

Since the online phase only involves linear combination and the solution of a

linear system of dimension N , with N ≪ n2, it is very cheap. We conclude with

the offline/online decomposition of the residual norm ‖vr‖L2(Ω) and therefore the error

estimator.

Procedure 3.10.

Offline phase: After the offline phase of Procedure 3.9, compute the matrix Gr :=
(

〈vqr , vq
′

r 〉L2(Ω)

)Qr

q,q′=1
.

Online phase: For given σ ∈ Pp and corresponding u
σ
N , evaluate Θr := (Θi

r(σ))
Qr

i=1 ∈ R
Qr

and compute ‖vr‖L2(Ω) =
√

Θ
⊺

rGrΘr.

4. Reduced Basis Landweber (RBL) method

Before we develop the Reduced Basis Landweber (RBL) method, we introduce needed

results and comment on the alternative direct approach that was mentioned in the

Introduction of this paper.

4.1. Preliminaries

With the notation introduced in Section 3.1 the nonlinear Landweber iteration defined

in (8) applied to (12) is reasonable. As mentioned in Section 2 we consider the damped

nonlinear Landweber iteration with damping parameter ω > 0 terminated with the

discrepancy principle as it is stated in Algorithm 1.

Algorithm 1 Landweber(σstart, τ)

1: n := 0, σδ
0 := σstart

2: while ‖F (σδ
n)− uδ‖L2(Ω) > τδ do

3: σδ
n+1 := σδ

n + ωF ′(σδ
n)

∗(uδ − F (σδ
n))

4: n := n+ 1

5: end while

6: return σLW := σδ
n

In the upcoming sections we will write σLW to denote the element in Pp

corresponding to σLW . We introduce a dual problem that allows for a simple calculation

of the Landweber update in line 3 of Algorithm 1.

Proposition 4.1. For σ ∈ R
p
+, κ ∈ R

p and l ∈ Y it holds

〈κ, F ′(σ)∗ l〉2 = 〈F ′(σ)κ, l〉L2(Ω) =

∫

Ω

κ∇uσ · ∇uσl dx, (16)

with F ′(σ)∗ the adjoint of F ′(σ) and uσl ∈ Y the unique solution of the discrete dual

problem

B(σ)u = m(l) with B(σ) as in (11) and

(m(l))i := m(ϕi; l) := −
∫

Ω

ϕi l dx, i ∈ Iin.
(17)

This is an author-created, un-copyedited version of an article accepted for publication in Inverse Problems. 
The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. 

The Version of Record is available online at http://dx.doi.org/10.1088/0266-5611/32/3/035001.



A Reduced Basis Landweber method for nonlinear inverse problems 11

Proof. Note that uσl ∈ Y solving (17) is equivalent to uσl solving b(uσl , v; σ) = m(v) for

all v ∈ Y . The first equality in (16) is the definition of the adjoint. The second equality

follows from (13) and (17)

〈F ′(σ)κ, l〉L2(Ω) =

∫

Ω

F ′(σ)κ l dx =

∫

Ω

vσκ l dx = −
∫

Ω

σ∇uσl · ∇vσκ dx

=

∫

Ω

κ∇uσ · ∇uσl dx.

Using Proposition 4.1, we calculate the Landweber update in line 3 of Algorithm

1. For σ ∈ Pp, l ∈ Y let uσ =
∑

i∈Iin u
σ
i ϕi and u

σ
l =

∑

i∈Iin u
σ
l,iϕi ∈ Y be solutions of

(11) and (17) with corresponding coefficient vectors uσ = (uσi )i∈Iin and uσ
l = (uσl,i)i∈Iin

such that it holds for κ ∈ R
p

〈κ, F ′(σ)∗l〉2 =
∫

Ω

κ∇uσ · ∇uσl dx =
∑

i,j∈Iin

uσi u
σ
l,j

∫

Ω

κ∇ϕi · ∇ϕj dx

=
∑

i,j∈Iin

uσi u
σ
l,jb(ϕi, ϕj; κ) = (uσ)

⊺

B(κ)uσ
l .

(18)

Therefore, we can evaluate F ′(σ)∗l for given σ ∈ Pp, l ∈ Y by consecutively

inserting a basis vector of R
p as the parameter κ. Following Corollary 3.8, we

choose the standard basis of Rp such that B(κ) in (18) is the k-th component matrix

Bk :=
(

bk(ϕi, ϕj)
)

i,j∈Iin if κ is the k-th unit vector. Using this, the calculation of the

Landweber update in line 3 of Algorithm 1 consists of the following steps.

Procedure 4.2.

1. Compute uσ
δ
n the primal forward solution of (11). Define l := uδ − uσ

δ
n.

2. Compute u
σδ
n

l the dual forward solution of (17).

3. Evaluate the Landweber update
(

F ′(σδ
n)

∗(uδ − F (σδ
n))

)

k
= (uσδ

n)
⊺

Bku
σδ
n

l , k = 1, . . . , p.

We conclude this preliminary section with a extensive comment on the alternative

direct approach to couple reduced basis methods and the Landweber method.

Remark 4.3. Due to Procedure 4.2, every Landweber step contains two forward

solutions and Algorithm 1 as an iterative regularization algorithm provides a many-

query context such that the application of reduced basis methods is intuitive. The direct

approach consists of constructing one global reduced basis space, yielding accurate

reduced basis approximations for all σ ∈ Pp, per forward problem and replacing the

corresponding forward solution required in the Landweber iteration with its reduced

counterpart. We note that this methodology surely could be applied to other regularization

algorithms as well and that similar techniques have successfully been applied to problems

with a low-dimensional parameter space, see, e.g., [22, 21, 15]. The application of this

direct approach to our model problem is limited for two reasons. First, concerning (11),
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it is possible to construct a global reduced basis space via e.g. the well-known greedy

algorithm, see, e.g., [28, 25, 9]. Concerning (17), due to the varying right hand side,

this is not possible. Therefore, we could only speed up one of the two forward solutions

such that this approach would be inefficient for the chosen model problem. Second, global

reduced basis spaces can only be constructed when the parameter space is bounded and

of low dimension (say up to 100, where in [14, 7, 10, 27] various methods to construct

such spaces are presented) and therefore it is not feasible for our purpose that lies in

imaging.

4.2. Development of the method

One way to couple reduced basis methods and the nonlinear Landweber method is the

direct approach that was discussed in Remark 4.3 which had several drawbacks. In this

section we want to develop a new method that overcomes these drawbacks via adaptive

online updates of the reduced basis space during the solution process of the inverse

problem. Online updates in model order reduction have also been considered recently

in other contexts [6, 3, 20, 29].

We no longer aim at constructing a global reduced basis space that could be used

for the reconstruction of every σ ∈ Pp. Instead, for a given measurement, we aim at

adaptively constructing a small problem-oriented reduced basis space YN,1 while also

solving the associated inverse problem. Therefore, YN,1 aims only at a specific yet

unknown region of Pp that is relevant for the solution of the inverse problem. This

breaks the typical offline/online framework of reduced basis methods but the resulting

method will still have offline and online segments. Nevertheless, the procedure provides

considerable acceleration of the computational time.

For the construction of this problem-oriented space we use the nonlinear Landweber

method projected onto the current reduced basis space as a criterion to select

meaningful parameters. These are then used to enrich the reduced basis space with

the corresponding snapshot. By this choice we construct a reduced basis space that is

tailored around the inverse problem in the sense that it provides accurate reduced basis

approximations for parameters lying in the a priori unknown region of the parameter

space that is relevant for the solution of the inverse problem. Simultaneously the inverse

problem is solved in this process. Since the Landweber method makes use of the adjoint

of the derivative, we introduce a second reduced basis space YN,2 containing the required

information. We gather these thoughts.

Procedure 4.4.

1. Start with an initial guess σstart ∈ Pp and initial possibly empty spaces YN,1, YN,2.

2. Update the spaces YN,1, YN,2 using the current iterate. In the first step use σstart.

3. Solve the inverse problem up to a certain accuracy with the nonlinear Landweber

method projected onto YN,1 and YN,2 and thus determine a new parameter for space

enrichment.
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4. If the current iterate fulfills (9), terminate, else go to step 2.

For now, we treat the update of the reduced spaces and the projected Landweber

method as modular blocks of our procedure and elaborate on these after the final

algorithm has been presented. First, we need to find meaningful termination criteria

for the projected nonlinear Landweber method in step 3 of Procedure 4.4. Let in the

following σ ∈ Pp be the current iterate of the projected method.

Terminating with a high-dimensional discrepancy principle as soon as ‖F (σ) −
uδ‖L2(Ω) ≤ τδ is out of question since we do not want to compute the expensive

solution of (11) in each iteration. Instead, we want to terminate via a low-dimensional

discrepancy principle as soon as ‖FN(σ)− uδ‖L2(Ω) ≤ τδ. Taking a look at

‖F (σ)− uδ‖L2(Ω) ≤ ‖F (σ)− FN (σ)‖L2(Ω) + ‖FN (σ)− uδ‖L2(Ω), (19)

‖FN (σ)− uδ‖L2(Ω) − ‖FN(σ)− F (σ)‖L2(Ω) ≤ ‖F (σ)− uδ‖L2(Ω), (20)

we can see that ‖F (σ)−uδ‖L2(Ω) and ‖FN (σ)−uδ‖L2(Ω) are connected via the reduced

basis error ‖FN (σ) − F (σ)‖L2(Ω) that will grow over the course of the projected

Landweber iteration since each consecutive iterate will be worse and worse approximated

by the current set of reduced basis spaces. Therefore, we want to control this error which

can be done using the rigorous error estimator ∆N introduced in Lemma 3.6. As long

as σ does not fulfill the reduced discrepancy principle (τ − 2)δ is a reasonable upper

bound for ∆N since it follows from (20) that ‖F (σ) − uδ‖L2(Ω) > 2δ (and therefore σ

is rejected by (9) as well) as long as ∆N(σ) ≤ (τ − 2)δ. This is a strong motivation to

suggest the termination of step 3 of Procedure 4.4 if one of the following criteria is met

‖FN (σ)− uδ‖L2(Ω) ≤ τδ or ∆N(σ) > (τ − 2)δ. (21)

The latter alternative termination criterion in (21) is in fact a trust region criterion:

as soon as the error estimator grows too large we cannot ensure that the error

‖FN(σ) − F (σ)‖L2(Ω) stays small enough, thus we do not trust the current reduced

basis spaces anymore (they might not produce feasible approximations anymore such

that further iterations might be misleading) and enrich them using the current iterate.

We add these thoughts to Procedure 4.4 and call the resulting new method Reduced

Basis Landweber (RBL) method, see Algorithm 2.

Remark 4.5.

(i) The reduced bases ΨN,1, ΨN,2 are orthonormalized to ensure numerical stability

according to Remark 3.5.

(ii) Computing ∆N(σ
δ
i ) is crucial regarding the total computational time of Algorithm

2. We will elaborate in Section 4.3.

(iii) The alternative termination criterion in (21) guarantees that the reduced basis

error stays very small. Due to (19), we expect Algorithm 2 to terminate as soon

as the inner repeat loop terminates with ‖FN (σ
δ
i )− uδ‖L2(Ω) ≤ τδ.

(iv) A possible drawback of the alternative termination criterion could be the error

estimator being inefficient, i.e., in the notation of Lemma 3.6, ∆N (σ
δ
i )/‖e‖L2(Ω)
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Algorithm 2 RBL(σstart, τ,ΨN,1,ΨN,2)

1: n := 0, σδ
0 := σstart, YN,1 := span(ΨN,1), YN,2 := span(ΨN,2)

2: while ‖F (σδ
n)− uδ‖L2(Ω) > τδ do

3: compute ψn,2 as described in (22)

4: ΨN,1 := ΨN,1 ∪ {F (σδ
n)}, ΨN,2 := ΨN,2 ∪ {ψn,2}

5: YN,1 = span{ΨN,1}, YN,2 = span{ΨN,2}
6: i := 1, σδ

i := σδ
n

7: repeat

8: compute sn,i as described in Procedure 4.6

9: σδ
i+1 := σδ

i + ωsn,i
10: i := i+ 1

11: until ‖FN(σ
δ
i )− uδ‖L2(Ω) ≤ τδ or ∆N (σ

δ
i ) > (τ − 2)δ

12: σδ
n+1 := σδ

i

13: n := n+ 1

14: end while

15: return σRBL := σδ
n

being large. This could result in a premature termination of the repeat loop, wasting

possible cheap repeat loop iterations and possibly causing more than necessary

expensive while loop iterations.

(v) Analogous to Algorithms 1 we write σRBL to denote the element in Pp

corresponding to σRBL.

We want to elaborate on line 3 and 8 of Algorithm 2 with respect to our chosen

model problem. Regarding the space update of YN,2, we refer to Procedure 4.2 and

choose snapshots of the dual problem for the basis update ψn,2 of YN,2

enrich ΨN,2 with ψn,2 = u
σδ
n

l solving (17) for l := uδ − F (σδ
n). (22)

The reduced Landweber update in line 8 of Algorithm 2 is done along the lines

of Procedure 4.2 as well: for given spaces YN,1 = span{ψ1,1, . . . , ψ1,N1}, YN,2 =

span{ψ2,1, . . . , ψ2,N2} and current iterate σδ
i , we replace the forward solutions of (11)

and (17) with their reduced counterpart. This is summarized in the following Procedure.

Procedure 4.6.

1. Compute FN(σ
δ
i ) = u

σδ
i

N the primal reduced basis approximation via (14) using YN,1

as reduced basis space. Define l := uδ − u
σδ
i

N .

2. Compute the dual reduced basis approximation u
σδ
i

N,l =
∑N2

j=1 u
σδ
i

N,l,jψ2,j with u
σδ
i

N,l =

(u
σδ
i

N,l,j)
N2
j=1 solving the small linear system

B̃N (σ
δ
i )u

σδ
i

N,l = m̃N(l) with

(B̃N (σ
δ
i ))j,k := b(ψ2,j , ψ2,k; σ

δ
i ), (m̃N(l))j := m(ψ2,j ; l), j, k = 1, . . . , N2.

(23)
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3. Evaluate the reduced Landweber update sn,i via

(sn,i)k = (u
σδ
i

N )
⊺

Qku
σδ
i

N,l, k = 1, . . . , p,

with Qk = bk(ψ1,i, ψ2,j)
N1,N2

i,j=1 ∈ R
N1×N2 being parameter independent.

Since both reduced problems (14) and (23) are offline/online decomposable, i.e., the

online phases are of complexity polynomial in N1 and N2, independent of n2, and the

matrices Qk, k = 1, . . . p, can be computed as soon as the reduced spaces are updated

in line 4, the projected reduced Landweber method in the repeat loop from line 7 to 10

can be implemented in an efficient and cheap way. It only consists of the online phases

of (14) and (23) and the reduced Landweber update in step 3 of Procedure 4.6. In this

sense the repeat loop is the online segment of Algorithm 2, where we elaborate on the

computational cost of the error estimator ∆N in the upcoming section. The remainder

of the algorithm is then the offline segment since, with the enrichment of the reduced

basis spaces, i.e., computing solutions of (11) and (17), and the projection onto the new

set of reduced basis spaces, it involves computations depending on n2.

We conclude this section with final remarks about the RBL method.

Remark 4.7.

(i) For a fixed σ ∈ Pp let 〈·, ·〉σ := b(·, ·; σ) denote the energy scalar product

and Pσ : Y −→ YN,1 the corresponding orthogonal projection. With YN,1 =

span{ψ1,1, . . . , ψ1,N1} it holds for all i = 1, . . . , N1

〈Pσ(F (σ))− F (σ), ψ1,i〉σ = 0

⇔ b(Pσ(F (σ))− F (σ), ψ1,i; σ) = 0

⇔ b(Pσ(F (σ)), ψ1,i; σ) = f(ψ1,i)

such that Pσ ◦ F (σ) is a solution of (14) and therefore uσN = FN(σ) = Pσ ◦ F (σ),
since the solution of (14) is unique. Using this and the fact that Pσ ∈ L(Y, YN,1) is

an orthogonal projection, it is easy to see that F ′
N (σ) = Pσ◦F ′(σ) and (for l ∈ YN,1)

F ′
N(σ)

∗l = F ′(σ)∗(P ∗
σ l) = F ′(σ)∗l. Therefore, the reduced Landweber update

sn,i calculated in step 3 of Procedure 4.6 does not coincide with the expression

F ′
N(σ

δ
i )

∗(uδ−FN (σ
δ
i )) (see Procedure 4.2). The consequence here is, that in general

there is no closed expression of the iteration scheme of the RBL method. Instead,

the main idea of the RBL method is to determine what kind of PDE solutions are

required for the update of the Landweber method and replace them with suitable

reduced basis approximations.

(ii) In [26] Scherzer proposes a different methodology where a sequence {XN}N∈N0 of

nested subspaces of X (the infinite dimensional parameter space) with
⋃

N∈N0
XN

being dense in X is employed. The orthonormal projection PN on those spaces

is then used to develop a multi-level discrete Landweber method. In [4] a similar

approach is made for a steepest descent method in Banach spaces. As we can

see our approach can not be formulated in such a way and the convergence theory

developed in the mentioned works can not be adapted to the RBL method.
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(iii) Because of (i) and (ii), we postpone a theoretical investigation of the RBL method

to future work.

4.3. Experiments

We want to compare Algorithms 1 & 2. To this end we choose a specific setting to which

all experiments refer. We use the parameter space P900, n = 149 for the finite element

space Y and want to reconstruct

σ+(x) := 3 + 2χΩ(1)(x)− 2χΩ(2)(x) x ∈ Ω with subdomains

Ω(1) = [5/30, 9/30]× [3/30, 27/30] ∪ ([9/30, 27/30]× ([3/30, 7/30] ∪ [23/30, 27/30])) ,

Ω(2) = {x ∈ Ω | ‖(18/30, 15/30)⊺ − x‖2 < 4/30}.
This is a piecewise constant function with background 3, contrast 2 on the C-shaped

subdomain Ω(1) and contrast −2 on the disk Ω(2). The starting value σstart ≡ 3 as

well as the function σ+ are visualized in the top left and bottom left of Figure 1. The

noisy measurement uδ is generated in the following way: we compute the PDE-solution

for σ+ using ComsolR© and evaluate it at the nodes of the finite element space Y .

Afterwards we add uniformly distributed random noise with a certain noise level. If not

specified differently we add 1% relative noise (corresponding to 1.243 · 10−4 absolute

noise) and choose τ = 2.5 in this section. Note that the noise is only added on

the inner nodes of the discretization since we assume that the homogeneous Dirichlet

data are known and measured correctly. The damping parameter ω is heuristically

chosen as ω = 1
2
(‖F ′(σstart)‖)−1 with the 1

2
resembling local uniform boundedness.

Note that ‖F ′(σstart)‖ ≪ 1 such that ω actually serves as a speed-up of the iteration.

The numerical experiments are done using MatlabR© in conjunction with the libraries

RBmatlab and KerMor, which both can be found online‡.
In the following, three experiments will be carried out in the above full setting.

Additionally, the same experiments are done for the (accordingly modified) versions of

Algorithms 1 & 2 applied to the partial inverse problem (5) introduced in Remark 2.1.

In this partial setting, we use the same numerical setting as above but measure the

data only on the subdomain Ω̃ = [0, 1]× [0, 0.5], add 1% relative noise (corresponding

to 8.786 · 10−5 absolute noise) and use ω̃ = 1
2
(‖F̃ ′(σstart)‖)−1 as damping parameter.

Figures 1 & 2 as well as Table 1 contain results for both (partial and full) settings where

our discussion will focus on the full setting.

Figure 1 shows the reconstructions of σ+ in the full setting via Algorithm 2 in the

top middle and via Algorithm 1 in the bottom middle. In addition the reconstructions

in the partial setting via Algorithm 2 in the top right and via Algorithm 1 in the bottom

right are shown, where the black box indicates the subdomain Ω̃.

Concerning the middle column, we cannot distinguish the two reconstructions

visually from each other, which is also stated by ‖σRBL − σLW‖L2(Ω) ≈ 1.118 · 10−5,

such that both algorithms numerically yield the same reconstruction. The shape and

‡ http://www.ians.uni-stuttgart.de/MoRePaS/software/
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Figure 1. The reconstructions of σ+ in the full setting via Algorithm 2 (top middle)

and Algorithm 1 (bottom middle), as well as the starting value σstart (top left) and the

exact value σ
+ (bottom left). The reconstruction in the partial setting via Algorithm

2 (top right) and Algorithm 1 (bottom right) including the subdomain Ω̃ as a black

box.

location of as well as the contrast on Ω(1) are well reconstructed. Regarding Ω(2), only

the location is well reconstructed. The contrast is not fitting everywhere and there is

another small circular inclusion with opposite sign inside of Ω(2). In the partial setting

we have a good reconstruction on Ω̃ and some indications of a reconstruction close to

Ω̃.

Next, we want to compare the Algorithms with respect to the computational time:

for Algorithm 1 we measure the total time, the amount of iterations until the discrepancy

principle is reached and therefore the time per iteration, as well as the total amount

of forward solves. Due to Procedure 4.2, both discretized problems (11) and (17) are

considered here. For Algorithm 2, we are interested in the total time and therefore the

speed up compared to Algorithm 1, the amount of and the time per outer iteration (line

2 - 14 excluding the repeat-loop from line 7 - 11), as well as the amount of and the time

per inner iteration (one step of the repeat-loop from line 7 - 11) and again the total

amount of high-dimensional forward solves. Table 1 contains the respective information.

In the full setting the RBL method needs around 4 hours and the Landweber

method needs around 52 hours of computational time resulting in a speed-up of 13. Due

to (21), the reduced spaces are very accurate such that the amount of inner iterations

of Algorithm 2 roughly coincides with the amount of iterations of Algorithm 1. We
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Setting time (s) # Iterations time per Iter. (s) # forward solves

LW, full 187189 608067 0.308 1216134

outer inner outer inner

RBL, full 14661 20 608083 3.705 0.024 40

LW, partial 173759 580129 0.299 1160258

outer inner outer inner

RBL, partial 10638 20 580133 3.670 0.018 40

Table 1. Runtime comparison of Algorithms 1 & 2 in the full and partial setting.

want to highlight that Algorithm 2 only needed 40 expensive forward solves compared

to the 1216134 forward solves required for Algorithm 1. If we look at the average

iteration times of Algorithm 2, it becomes clear that sufficient inner iterations have to

be made per outer iteration for Algorithm 2 to pay off in time. We will see in our next

experiment that this is the case in the chosen setting. Regarding the average time per

inner iteration, we have to mention our implementation of the error estimator (15): we

do not use the offline/online decomposition presented in Procedure 3.10 since this would

result in each online phase to contain a vector-matrix-vector multiplication of dimension

Qr = N1 ·p+1, with p = 900 and N1 = dimYN,1. But the matrix in this multiplication is

full as we can see in Corollary 3.8, which prohibits this approach. Therefore, we compute

the Riesz-representative and its norm in each inner iteration according to Lemma 3.6

such that the online segment of Algorithm 2 is not completely independent of n2 in this

example and roughly 50% of the total computational time is spent in computing the

error estimator in the inner loop. Hence, it might be interesting to develop termination

criteria that still guarantee accurate reduced basis spaces but are less expensive. Similar

conclusions can be drawn for the partial setting as it can be seen in Table 1.

In the third experiment we want to see that both Algorithms 1 & 2 behave the same

way, with the latter simply being faster. To this end we define the nonlinear Landweber

update sn,LW := F ′(σδ
n)

∗(uδ − F (σδ
n)) in addition to the update of the RBL method

(here denoted by sn,RBL) described in Procedure 4.6. Figure 2 shows the update error

‖sn,RBL − sn,LW‖L2(Ω) over the course of the iteration. The plot also includes a vertical

dashed line whenever an outer iteration in Algorithm 2 is performed.

We observe the expected behaviour: the more inner iterations of the RBL method

are performed for a given set of spaces, the worse the update error gets until one of

the termination criteria is met. Note that in this test the alternative termination

criterion always triggered except in the very end where the reduced discrepancy principle

is reached. With ‖FN (σRBL) − F (σRBL)‖L2(Ω) ≈ 1.296 · 10−8 and (19), the high-

dimensional discrepancy principle in line 2 of Algorithm 2 is then met as well and the

whole algorithm terminates. According to Remark 4.5 this behaviour was expected.

If we look at the iteration sequence in Figure 2 we can observe two further aspects:

the more outer iterations are performed, the better the set of reduced spaces fits the

region of the parameter space relevant for the solution of the inverse problem, resulting
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Figure 2. Update error ‖sn,RBL − sn,LW ‖L2(Ω) over the course of the iteration for

the full setting (top) and the partial setting (bottom).

in the update error to decrease as a whole. Finally, the space updates are performed

more frequently in the beginning of the iteration sequence (note the logarithmic scale

of the iteration axis) to quickly adapt to the region of interest. Once the spaces are well

suited, more and more inner iterations per outer iteration can be performed, resulting

in Algorithm 2 to outperform Algorithm 1 by more than an order with respect to the

computational time. Again, similar observations can be made in the partial setting as

it can be seen on the bottom of Figure 2.

In Remark 4.7 we justified the current lack of a theoretical investigation of the

RBL method. Still, we can provide an experiment regarding its numerical regularization

property. In the usual full setting the error ‖σRBL−σ+‖L2(Ω) is shown over the decreasing

relative noise level δ in Figure 3.

By this we can conclude that a numerical regularization property is present for the

RBL method.

5. Conclusion

For the problem of reconstructing the conductivity in the stationary heat equation it

was investigated how reduced basis methods and the nonlinear Landweber method can

be combined to reduce the overall computational time. A direct approach was shortly

discussed to be inapplicable in the presence of high-dimensional parameter spaces. A

new approach, the RBL method, was presented. It combined adaptive space enrichment

of the reduced basis spaces with the nonlinear Landweber method. Using the RBL

method, high-resolution images of the conductivity could be reconstructed, with the
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Figure 3. Error ‖σRBL − σ+‖L2(Ω) over the decreasing relative noise level δ.

method being as accurate as the nonlinear Landweber method but roughly 13 times

faster. Future work should contain a theoretical investigation of the RBL method

including convergence theory as well as the application of its methodology to other

inverse problems and more sophisticated regularization algorithms.

Acknowledgment

We thank Vladimir Druskin for pointing out [6] and introducing us to his approach.

Appendix

We prove the statement made in (6) of Section 2.

For σ ∈ L∞
+ (Ω) and κ ∈ L2(Ω) with σ + κ ∈ L∞

+ (Ω) let uσ, uσ+κ denote the

corresponding solutions of (3), vσκ the solution of (7) and c := ess inf (σ). Note that uσ

solving (3) is equivalent to uσ solving b(uσ, v; σ) = f(v) for all v ∈ H1
0 (Ω). It holds for

all w ∈ H1
0 (Ω)

∫

Ω

(σ + κ)(∇uσ+κ · ∇w)− (σ∇uσ · ∇w) dx = 0

⇔
∫

Ω

σ(∇(uσ+κ − uσ) · ∇w) dx = −
∫

Ω

κ∇uσ+κ · ∇w dx. (A.1)

The test function w = uσ+κ − uσ in (A.1) and the Hölder inequality yield

c‖∇(uσ+κ − uσ)‖2
L2(Ω) ≤

∫

Ω

σ(∇(uσ+κ − uσ) · ∇(uσ+κ − uσ) dx

= −
∫

Ω

κ∇uσ+κ · ∇(uσ+κ − uσ) dx ≤ ‖κ‖∞‖∇uσ+κ‖L2(Ω)‖∇(uσ+κ − uσ)‖L2(Ω)

⇔ ‖∇(uσ+κ − uσ)‖L2(Ω) ≤
‖κ‖∞
c

‖∇uσ+κ‖L2(Ω).
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Similar arguments for σ + κ and test function w = uσ+κ in (3) together with the

inequality of Poincaré-Friedrich and the notation c := ‖1‖L2(Ω) yield

c‖∇uσ+κ‖2
L2(Ω) ≤

∫

Ω

(σ + κ)(∇uσ+κ · ∇uσ+κ) dx = −
∫

Ω

1 · uσ+κ dx ≤ ‖1‖L2(Ω)‖uσ+κ‖L2(Ω)

≤ c · CPF ‖∇uσ+κ‖L2(Ω).

Introducing the constant C ′ := c·CPF

c2
we get

‖∇(uσ+κ − uσ)‖L2(Ω) ≤ C ′‖κ‖∞. (A.2)

With (A.2) and the definition of vσκ in (7) it follows
∫

Ω

σ∇(uσ+κ − uσ) · ∇w − σ∇vσκ · ∇w dx = −
∫

Ω

κ∇uσ+κ · ∇w dx+
∫

Ω

κ∇uσ · ∇w dx

⇔
∫

Ω

σ∇(uσ+κ − uσ − vσκ) · ∇w dx =

∫

Ω

κ∇(uσ − uσ+κ) · ∇w dx. (A.3)

The test function w = uσ+κ − uσ − vσκ in (A.3), the Hölder inequality and (A.2) yield

c‖∇(uσ+κ − uσ − vσκ)‖2
L2(Ω) ≤

∫

Ω

σ∇(uσ+κ − uσ − vσκ) · ∇(uσ+κ − uσ − vσκ) dx

=

∫

Ω

κ∇(uσ − uσ+κ) · ∇(uσ+κ − uσ − vσκ) dx

≤ ‖κ‖∞‖∇(uσ − uσ+κ)‖L2(Ω)‖∇(uσ+κ − uσ − vσκ)‖L2(Ω)

⇔ ‖∇(uσ+κ − uσ − vσκ)‖L2(Ω) ≤
1

c
‖κ‖∞‖∇(uσ − uσ+κ)‖L2(Ω) ≤

C ′

c
‖κ‖2

∞.

Using the inequality of Poincaré-Friedrich again and introducing C ′′ := CPF ·C′

c
we get

‖uσ+κ − uσ − vσκ‖L2(Ω) ≤ CPF ‖∇(uσ+κ − uσ − vσκ)‖L2(Ω) ≤ C ′′‖κ‖2
∞.

Since C ′′ is independant of κ the statement follows

lim
‖κ‖∞→0

‖F(σ + κ)− F(σ)− F ′(σ)κ‖L2(Ω)

‖κ‖∞
= lim

‖κ‖∞→0

‖uσ+κ − uσ − vσκ‖L2(Ω)

‖κ‖∞

≤ lim
‖κ‖∞→0

C ′′‖κ‖2
∞

‖κ‖∞
= 0.
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