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Abstract. This article presents a reduced basis method for constructing a reduced order system for con-
trol problems governed by nonlinear partial differential equations. The major advantage of the reduced basis
method over others based on finite element, finite difference or spectral method is that it may capture the
essential property of solutions with very few basis elements. The feasibility of this method is demonstrated
for boundary control problems modeled by the incompressible Navier-Stokes equations with the boundary
temperature control and boundary electromagnetic control in channel flows.
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1. Introduction. Real time simulations of control problems that involve partial dif-
ferential equations as state equations are often formidable problems to solve. One such
situation arises in control of fluid dynamical systems in which the state equations are the
Navier-Stokes equations, the geometry is often complex and the time interval involved is
often very large. If one were to solve such problems using standard finite element or finite
difference method the resulting system is prohibitively large.

We in this article discuss a reduction type method which overcomes this difficulty. This
method hereafter we call reduced basis method uses functions as basis functions which
are closely related to and generated from the problem that is being solved. This is in
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contrast to the traditional numerical methods such as finite difference method which uses
grid functions as basis functions or finite elements method which uses piecewise polynomials
for this purpose.

There are several approaches available for the selection of basis functions. One such
approach is Taylor approach in which one uses solutions at a reference point in the param-
eter space along with their derivatives as basis functions. Another approach which we call
Lagrange approach uses solutions of the problem at various parameter values as basis func-
tions. Finally the Hermite approach is a hybrid of Lagrange and Taylor approaches which
uses solutions and their first derivatives of the problem at various parameter values as basis
functions. The applications of reduced basis method to structural mechanics problems can
be found in [1] and [6]-[7].

Our goal here is to demonstrate the applicability and feasibility of reduced basis method
for control problems governed by Navier-Stokes type partial differential equations. We will
consider vorticity minimization problems in backward-facing-step type channel geometry.
Two fluid flow situations are considered: An electrically conducting fluid under applied
magnetic field and a thermally convective fluid. In the first situation the control is effected
by boundary electric potential and in the latter the control is boundary temperature.

2. Reduced Basis Spaces and Reduced-Order Equation. In order to illustrate
the reduced basis method, we assume for ease in exposition that we are dealing with non-
linear dynamics about the equilibrium points. Consider the the parameterized stationary
problem

(2.1) E(y,p) =0 forpeA, yeX,

where p represents some physical parameter, for example, Reynolds number or viscosity
and £ : X x A — X*is C?. Equation (2.1) defines a solution function p € A — y(u) € X.
We construct the reduced basis elements by the interpolation of solution function p — y(u)
as follows.

The Taylor Subspace. In this choice, one uses the Taylor expansion of function y(u) at
a reference value of p, say p*, and the reduced basis subspace Xg is defined as

'y :
(2.2) Xr = span{y;ly; = G—,uf“:“*’] =0,...M}

The jth derivative y; can be calculated from the equations resulted by successive differen-
tiation of (1.1), i.e.

(2.3) Ey(Yo, 10)Y; = Fi(Yos Y1y wes Yj—1, 7).

For example, y; satisfies the equation

Ey(yo, k) = —Eu(yo, 17).

We note here that each y; can be obtained from its predecessors by solving a linear system
with the same linear operator &,(yo, ). However, one cannot continue to use the same
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basis elements generated at fixed parameter p* to compute solutions when the parameter
of interest is significantly away from it. In such cases reduced basis elements have to be
updated and the solution is sought in the new reduced basis space. Moreover, generating
the right hand side of (2.3) could be quite complicated in certain problems. This choice has
been extensively used in the literature, see for e.g [7] for structural analysis problems and
[8] for high Reynolds number steady state fluid flow calculations.

The Lagrange Subspace. In this case, the basis elements are solutions of the nonlinear
problem under study at various parameter values y;. The reduced subspace is given by

(2.4) Xp = span{y’|y’ = y(p;),j=1,..., M},

The Lagrange basis was used to study structural problems in [1]. A possible advantage in
this choice is that updating the basis elements can be done one basis element at a time
instead of generating the whole space.

The Hermite Subspace. This is a hybrid of the Lagrange and Taylor approach. The
basis elements are solutions and their first derivatives at various parameter values p;. The
reduced subspace is given by

(25) XR = Span{y] = y(lu]) and %M:M]?] = 17 7M}

Suppose we have a reduced basis space Xpin X. Let m = dim(Xg) and {¢;} is a basis
of Xp. Then we can construct the reduced-order equation by the Galerkin approximation,

Le, for y, =375 a;¢i € Xp
(2.6) Em(Yms 10)i = (E(Ym» 1), Di) X*x X

for 1 << m.
For the evolution equation

(27) LU+ Bl y(1) = 0

we, for example, generate reduced basis elements {¢; }7, in X by the solutions at m different
time instants to (2.7). Given the reduced basis space Xp, we define the reduced-order

equation for y,, () = > ity a;(t)ey,

(2.8) () Bt (1)), ) o = 0

for all 1 < ¢ < m. In [4] this method has been carried out and its feasibility has been
demonstrated for channel flow simulations in which reduced order solution u™ is formed by
setting
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where ¢, = u;1y —u;, 1 =1,2,..,m—1 and ¢, = u,,. We further take a,,, = 1 so that the
boundary conditions are satisfied. The solution u™ is computed from

(5™, V™) + gza(u™, v7™) + e(u™, w v = (£,v") for all v € VY,

where V(' = span{¢; : t = 1,....,m — 1} is the span of the test functions.
The basis elements were generated by computing the flow from the full model at eleven
time instances between 1 and 11. The time step used in the reduced order model was .001.
The dimension of the reduced basis space is very much problem-dependent. The re-
duced basis elements constructed by the above mentioned approach can be nearly linearly
dependent. So we may further reduce the dimension by the conditioning of the mass matrix

Q:
Qi = (i, 905)x-

Our computational experiments and the computations reported for structural problems
in the references mentioned earlier seem to indicate that an accurate approximation can
be obtained for large range of parameter values using 5 to 10 basis elements. Therefore,
although the resulting reduced order model is dense, they are small compared to the sparse
but large system that result from the standard basis functions.

According to our comparison study carried out in [4] for driven cavity incompressible
Navier-Stokes calculations, the performance of Hermite approach is better than that of
Lagrange. The basis elements for the Lagrange approach were selected at Reynolds numbers
100, 300, 500 and 700, and that for the Hermite was selected at 300 and 700. The comparison
was carried out by computing the driven cavity flow at Reynolds number 1200. The Ly-norm
difference between the full mixed-finite element solution uy and the reduced basis solution
using these two approaches are as follows: ||u; — usl|z = 0.0889 and |Juj, — uy|]; = 0.0766,
where u; is the solution obtained using Lagrange approach and uy is that obtained using
Hermite approach.

3. Error Analysis. In order to justify the reduced basis solution y,, we need to have
a post verification criterion. In general we formulate it as an error analysis as follows. Let
X and Y be two Banach spaces and A be a compact set. Given a (' mapping

E:(y,m) € X XA —E(y,p) €Y,
and we consider the equation

(3.1) E(y,p) = 0.

The family {(y(u),p) : o € A} is said to be a branch of nonsingular solutions of equation
(3.1),i.e.,

p— y(p) is a continuous function from A into X and D,E(y, 1) is
an isomorphism from X ontoY for all p € A.



Let us consider the reduced order problem

(3.2) En(Ym, 1) = 0.

defined on the reduced basis space X,. We assume that &, : X,, x A — Y, is C?. For
the ease of our discussions we assume that X,, C X and Y,, C Y. The norms on X,, and
Y,, are induced from X and Y norms, respectively. The problem is to find the solution
Ym € X, such that (3.2) is satisfied for a given p € A.

We assume that Dy, (Jim, 1) is an isomorphism from X, onto Y, where g, is a given
element in X,,. We introduce the following notations;

em (1) = 1Em(Fons 1)l

Yo (1) = 1Dy Em(Frn> 18) ™ | 2o, Xom)

Sm(yia) ={v € Xp : [Ju - vllx,, <o},

Lp(psa) = sup || DyEm(fims i) = DyEm (0, Wl (X, Yim)-

UES(ﬂmya)

We next state a theorem regarding the error estimate which is derived from Theorem IV.3.1
in [3] for the approximation of branches of nonsingular solutions.
THEOREM 3.1. Suppose D&y (G, ) is an isomorphism of X, onto Y, and

29m (1) Lo (5 29m ()€ (1)) < 1.
Then the problem (3.2) has a unique solution (y,,(p), 1) such that:
Ym (1) € S(Gims 27m (1) m (1))-

In addition, y,, (1) is the only solution of (3.2) in the ball Sy, (G o) for all a > 27y, ()€ (1)
that satisfy Ym () L (p; a) < 1 and we have the estimate:

1Ym (1) = v llx < [ (1) /(1 = Yo () L (15 | Ern (O, )|y for all v € S(Gim, @)

Moreover, we have the following corollary.
COROLLARY 3.2. Suppose there exists an element §,, € X,, such that DyE(yp,, p) is
an tsomorphism of X ontoY and

(3.3) 29 () L(p, 2v(p)e(p)) < 1

where

(1) = 1€ G )y
3001) = 1Dy s 1) v,
S(yio)={v € Xt u—ollx < a},

L(ps @) = supyes(gm.a) 1DyE (G, 1) — DyE(v, p)ll o(x v)-
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Then the problem (3.1) has a solution (y(p), 1) such that:

y(p) € S(Fms 2v(p)e( ).

In addition, y(p) is the only solution of (3.1) in the ball S(gm; ) for all o > 2y(p)e(p) that
satisfy y(p)L(p; o) < 1 and we have the estimate:

ly(u) = vllx < [y()/ (1= y() L @) E(v, )y

for allv € S(Gm, ).

We can apply Theorem 3.1 and Corollary 3.2 to obtain the following error estimate.
THEOREM 3.3. (1) Suppose y,, (1) € X, is a solution to (3.2) and assume Gy, = Y (1)

satisfies the condition in Corollary 3.2. Then we have a solution y(p) € S(Gm;27(p)e(p))

to (3.1) and the estimate

(3.4) y(1) = ym ()l x < [y () /(1 =y () L{ps NEYm (), 1)y

with o = y(p)e(p).

(ii) Suppose there exits an element §,, € X, such that the conditions in Theorem 3.1
and Corollary 3.2 are satisfied. Furthermore, we assume that o, = 27, (p)en (1) satisfies
V() L(ps a) < 1. Then we have (3.4) with o = a,.

4. Optimal Control Problems. In this section we discuss the optimal control prob-
lem and the application of reduced basis method. Consider the minimization problem

(4.1) min  J(y,u) subject to F(y,u)=0

over u € U,y C U. Here X and U are Hilbert spaces and F : X x U — X*is C?. We assume
that U = R™ and wu,q is closed and convex. The Lagrange reduced space can be defined by

Xp = span{y’ € X|E(yj,uj) =0,5=1,....,M},

where u/ is a sampled point in U,g. In order to obtain a lower-order reduced basis space, if
m is large then we may consider the following pre-selecting step:
(1) let u®, a € A be the points in U,q defined by

u® Iﬂ—l—z b; 00 €;

where « is the integer-valued vector, and é; and e; is the step size and unit vector in the
i-th direction,

(2) we determine y® € X by solving E(y,u®) for each a € A.

(3) we find an index ag in A such that J(y®,u®) is smallest, and then

(4) we select the sampling set u; by

wl = w0, u¥ = u® 4 §;e;, and uFt!= Ugy — 0; €.



The Hermite reduced space can be defined by

(W), 1<i<m,j=1,..,M}.

Xp =span{y’ € X x U|E(y’,v’) =0 and 88

U
Here, 52] = %(Uj) can be calculated by solving the sensitivity equation

Here we can use the pre-selecting step to select u/ as for the Lagrange case.
Suppose we have the reduced basis space Xp. Then we use the Galerkin method to
project the equation onto Xg, i.e., y™ =3, «a; ¢; € Xp satisfies

gm(ymv u)z = <g(y7 u)v ¢i>X*><X .
Then we consider the reduced-order control problem
(4.3) min  J(y™,u) subject to &,(y",u) =0 and u € Uyq.

It is a finite dimensional constrained minimization problem and can be readily solved by
the constrained optimization methods. A necessary optimality condition is given by

(Dygm(ymvum»t’\m + DyJ(ymaum) =0
(4.4)
(Do (Yo, i ) (= )y M) + Do (Y, i ) (2 — 2, ) > 0

for all u € U,q, assuming D, &, at the optimal pair (y,, u,) to (4.3) is an isomorphism.
Similarly, we have the necessary optimality condition for (4.1): there exists a Lagrange
multiplier A € X such that

(D,E(y" u" )N+ Dyl (") = 0
(4.5)

(DL E(y ,u)(u—u), Ny xxx + Dy J (¥, u*)(u—u*) >0
for all w € U,q, assuming D, &, L(y*, u*) at the optimal pair (y*,v*) to (4.1) is an isomor-
phism. Suppose u,, and u* is interior points of U,q. Then we can apply Theorem 3.3 to
equation for (y,A\,u) € X x X x U

E(y,u)=0
(4.6) (D,€(y. )N+ Dy J(yu) = 0

In general we have
I (Y W) < J(y" (u),w) = J(y™ (w), u) = J(y(u), u) + J(y(u), v)
for u € U,q and thus setting u = v, we obtain
J(Y(um )y ) = I < T(Y(um)s tm) = T (Yo um ) + T (" (07), ™) = J(y(u”), u”).
Hence, if U,q is compact then

Tyt ), ) = J7 < 2M max Iy () = y(w)]x

for some constant M.



5. The Reduced Basis Method for Flow Control. In this section we discuss vor-
ticity minimization in fluid flows using boundary temperature control and electromagnetic
control. We first present the weak variational formulation of the optimal control problems
and then discuss their approximations in finite element and reduced basis setting.

5.1. Electrically Conducting Flow Equations and Variational Formulation.
In this section we describe the governing equations for an electrically conducting flow
and their variational formulation. Suppose there is a length scale £, a velocity scale U
and a magnetic-field scale By in the flow, then one can define nondimensional magnetic
Reynolds number R,, = pooUl, where pg is the magnetic permiability, Alfven number
Al = B2/popU? and Reynolds number Re = polU/{/u. Next, if we nondimensionalize ac-
cording to x « x/{,u «— u/U,j « Bo/{,E «— UBg and p — (p — g -x)/(poU?), we obtain
the dimensionless equations §2;

u-Vu:—Vp—l—Al(ij)—l—ﬁAu and V-u=0
J=R,[-Vo+(uxB)], and V-j=0

VxB=j) and V-B=0.

Here, u denotes the velocity field, p the pressure field, j the electric current density, B the
magnetic field and ¢ the electric potential. We denote by 2 the flow domain which is a
bounded in R? with boundary T.

Although the problems and methods studied here are applicable to the optimal control
for general models of magneto-hydrodynamic flows, for the simplicity of explaining the ideas
we will deal with a special case in which the externally applied magnetic field is undisturbed
by the flow; i.e., we assume that B is given. Such an assumption can be met in a variety of
physical applications, e.g., in the modeling of electromagnetic pumps and the flow of liquid
lithium for fusion reactor cooling blankets (see for e.g. [10]). Under this assumption, the
term j X B in the Navier-Stokes equations can be written as

Al(jxB)=N(-V¢+uxB)xB

where N = Al- R,, and if we eliminate j by applying charge conservation condition V-j= 0
toj= Ry [-V¢+ (uxB)], we arrive at the following simplified system modeling the flow:

—a-Autu-Vu+ Vp+ N(Vé—uxB)xB=0,
(5.1) V-ou=0

—Ap+V-(uxB)=0

where N is the interaction parameter. The system (5.1) is supplemented with boundary
conditions

(5.2) u=uy onl, ¢=gonly and n-j=0 onl}y
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where I is the disjoint union I' = I'UT'y and ¢ denotes the control function, namely, electric
potential on I'y. Such a control can be effected by attaching electric sources with adjustable
resistors to the electrode along the boundary. We assume that the flow is two-dimensional

¢
and the applied magnetic field B is perpendicular to the flow plane, i.e., B = (0,0,Bo) ,
¢
and that the cross product ux B is understood as (uy, uz, 0)* x (0, 0, Bo) . Let u e (HY(Q))?
and ¢ € H'(Q) be such that

a=ug onl' and ¢ =g only

and Vy = {¢ € H'(Q): ¢ =0 on I'y}. Then, variational formulation of (5.1)~(5.2) is given
as follows: seek u € (H3(2))*+ u, p € L*(Q) and ¢ € HI(Q) + ¢ such that

2=(Vu,Vv) + by(u, u,v)
+N(Vp—uxB,vxB)—(p,V-v)=0, Vve(H}N))?

(V-u,q) =0, VYqe L*(Q)

(Vo —ux B, V) =0, Vel

Here, the trilinear form by on (H(Q)?)? is defined by
(5.4) bo(u,v,w)= (u-Vv,w)

for u,v,we (H'(Q))~

5.2. Thermally Convective Flow Equations and Variational Formulation. In
this section we describe the governing equations for a thermally conducting flow and their
variational formulation.

If we assume there is a length scale £, a velocity scale U and a temperature scale
Ty — Ty in the flow, then one can define nondimensional Prandtl number Pr = pe,/s,
Grashof number Gr = B03pd|g|(Ty — Tp)/p? and Reynolds number Re = polU/{/p. Next, if
we nondimensionalize according to x — x/{, uw — u/U, T — (T = Ty)/(T1 — 1p), and p —
(p— g -x)/(poU?), we obtain the following nondimensional form of Boussinesq equations.

—ﬁAu—l—(u-V)u—l—Vp—l— GTTg:O in Q,

Re2
V-u=0 in 0,
— 7= AT +u-VI'=0 inQ,

where g is a unit vector in the direction of gravitational acceleration.
We consider the boundary condition as follows.

oT
(5.6) u—ug onl, T =g only and 3_:0 on I'y
n
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where g represents the boundary temperature control function. Let T € HY(Q) be such
that "= g on I'g. Then, variational formulation of (5.5)—(5.6) is given by

ﬁ(Vu, VV) + bo(uv uvv) + (ﬂTg,V) - (pv ' V) =0, Vve (H(}(Q))z
(5.7) (V-u,q)=0, Vge L*Q)

bl(uv T, ¢) T K (VTv V¢)7 Vi ey

for u € (H}(Q))?+ u, pe L2(Q) and T € HY(Q)+ T, where 8 = %, Kk = gop- and the
trilinear form by is given by

bl(u7T7 ¢) = <11 VT, ¢>

for T, ¥ € H'() and u € (H(Q))%.
We can establish the existence of solutions to (5.3) and (5.7) (e.g, see [5]), using the
above properties of the triliner forms and the Hopf’s lemma.

5.3. Mixed Finite Element Approximation. In order to construct the reduced
basis element we use the mixed finite element method [3] to approximate solution to (5.1)—
(5.2) and (5.5)—(5.6).

Let us define, using standard finite element notations,

X" ={ve C%Q):v|x € Po(K), on each element K},

X" ={v = (v1,0)T € COQ):0; € X", i=1,2}
and
5" ={qeC%9): q|x € Pi(K), on each element K}.

Also we define X} = {v € X" : v = 0 on I'} and X}’ = X" nVj. That is, we choose
continuous piecewise quadratic polynomials for both components of the velocity u” and
electric potential ¢" for (5.1) and temperature T" for (5.5), continuous piecewise linear
polynomials for the pressure p". On each triangle, the degrees of freedom for quadratic
elements are the function values at the vertices and midpoints of each edge; the degrees
of freedom for linear elements are the function values at the vertices. Here, the spaces are
defined over the same triangulation of the domain € = |J K. This selection is known as
Taylor-Hood element pair and has been shown to satisfy the LBB or inf-sup condition.
The finite element equation of (5.3) for u* € X*, p* € §" and ¢" € X" is given by

A (Vu", Vv") + bo(u”, u", v")
+N (Vo' —u' xB,vi x B) - (", V-v) =0, vvhecX}
h
(5:3) (V-u' ¢")=0, V¢'ecsh

(Veh —ut x B,Veph) =0, Vol € X
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where uw”|r = u} and ¢"|r, = ¢" and ull, g" are the projection of ug, g onto the finite
element spaces, respectively. Similarly, for the Boussinesq equation (5.7) we have

ﬁ(vuhv Vvh) + bo(uhv uhvvh) + (ﬁTh gvvh) B (phv V- Vh) =0, yvh € Xg
(B (V-uh¢") =0, V¢esh
bu(ut, TP, 6 + 5 (VTH, Voh), Vb € X].
where u* € X T" ¢ X" satisfy u|r = u} and T"|r, = ¢", respectively.
5.4. Boundary Control Problems and Reduced-Order Control Problems.
Let U be the control space defined by
p
U={9=>gixi, gi€R}
=1

where y; is the i-th basis function of U and is the trace of a H'(€2) function onto I'y. We
consider the minimization of the form

(5.8) min ||V x ul|§ subject to (5.3) or (5.7)
where the vorticity V X u is defined by V x u = g% — g% and the cost functional defines

the total friction forces in 2.

We define the reduced basis element by the finite element approximation (5.3)" and
(5.7)h, respectively for each control problem. For example, the Lagrange reduced basis
element (u,p,T) given ¢/ € U for problem (5.8) subject to (5.7) can be constructed by a
solution (u”, p", T") to (5.7)" given ¢ € U. For the case of the boundary control problem,
the reduced basis space Xp C X" x X" should consist of the basis element ®} that corre-
sponds to the reference control g € U, the element <I>§L that corresponds to the j-th control
in the direction of y;, and the test functions ¥" € Xp N (X% x XJ'). Since u® satisfies
the pseudo-divergence condition (V - u”,¢") = 0 for all ¢" € S* we have the reduced-order
control problem;

min ||V x u*||3 subject to
(5.9) A (Vu", Vv") 4 bo(u”, uP, v") + (3T" g, v")
+oy(uh, Th M) + & (VT V) = 0

for all ¥* = (v* ") € Xpn (X} x X}'). Here, the element in Xg is represented by

(uthh <I>S+Zaz\11h—l-z g] (I)h
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where ®f = (u",T")o is a solution to (5.7)" corresponding to the reference control, ® =
(u, Th); — (u", T")g for 1 < j < p, with (u”,T"); being a solution to (5.7)" corresponding
to g+ 6; x; and {U%} are a basis of the test function space Xp N (XA x X7').

Similarly, for problem (5.8) subject to (5.3) we have the reduced-order control problem;

min ||V x u*||3 subject to
(5.10) A(Vu", V") + bo(u, 0, v") + N (V¢ —u” x B,v" x B)

H(Veh - x B, Vo) = 0,
for all U" = (v* ¢") € Xpn (XE x X]).

6. Computational Results. In this section we will give computational result by im-
plementing the computational procedure for a specific control problem in channel flows
using the two proposed control mechanisms. We select the backward facing step channel
for our study, a schematic of this geometry is given in Figure 1. It has been observed in
a number of computational and experimental study that a recirculation appears near the
corner region for large Reynolds number. Our aim is to remove the recirculation by means
of boundary control.

6.1. Boundary Temperature Control. The aim is to shape the flow to a desired
configuration which in our study means to remove the recirculation by means of controlling
the temperature along the bottom part of the boundary.

We assume that the inflow and outflow are parabolic, i.e. we take the inflow to be
u; = 8(y — 0.5)(1 — y) and the outflow to be u = u, = y(1 — y). We take the Reynolds
number to be 200 and % to be 1. For the temperature we used the following boundary
conditions:

I'y, and Tyt - % =0
Is, and I'yottom @ T =9

Ijp and I'yop = T=1

Figure 2 qualitatively demonstrate the situation for high Reynolds number. Here our ob-
jective is to remove the recirculation that occurs in the corner region Q*. Therefore we
minimize vorticity in the corner region ©*. This leads us to a constrained minimization
problem of the type (5.8) and we use the reduced basis computational method described in
§5.4.

Basis elements are computed with g=1, 0.875, 0.75, 0.625, 0.5, 0.3775, 0.25 and de-
noted by (u;,T;), ¢ = 1,..,7. The test functions {V¥y,...., U5} are chosen so that they
have zero boundary conditions. The trial function ®; corresponds to the control force such
that &1 = 0 everywhere on the boundary except on the bottom.

Then we set

— 5
(u,T) =Py + 7(9 5 g)(I)l + Zai\pia
=1
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where g = 1, 6 = —0.75 and

®o = (ulle)v ¢, = (1177T7) - (u17T1)7
Uy = (ur,17) — 2(ue, 1) + (us,15), Vo= (us,Ts) — 2(us,T5) + (ug, Ty),
Us = (us,15) — 2(ug, Ty) + (us, 15), Yy = (uy,Ty) —2(us, T5) + (uz, 13),

\115 = (113,T3) — Q(HQ,TQ) —|— (lll,Tl).

We finally employ Newtons method to the necessary optimality condition (4.4) to com-
pute the control. We obtained the boundary temperature control T = 0.516 in 7 Newton
iterations. The computed control was then used in the full system to simulate the flow. The
resulting flow shown in Figure 3 shows significant reduction in the size of the recirculation
region.

6.2. Electromagnetic Control. In this problem, control is effected through bound-
ary electric potential on the top boundary and on the bottom boundary of the backward
facing step channel. A magnetic field B = (0,0,1) is applied into the fluid. The boundary
conditions for the velocity are the same as in the preceding control problem except for the
electric potential whose boundary conditions are as follows:

Iy, [y and Tyt 22 =0
Ltop: ¢=m

Ihottom © @ =92
Ig,: ¢=1.

We take the Reynolds number to be Re = 200 and the interaction parameter to be N = 1.
The basis elements were computed with

(g1,92)=(1,1), (1,0.5),(1,0),(0.5,1),(0.5,0.5), (0.5,0),(0,1),(0,0.5)

and the corresponding elements are denoted by (u;,¢;), ¢ = 1,..,8. The test functions
{V¥y,...., U5} are chosen so that they have zero boundary conditions. The trial functions
&, and @, corresponds to the control force such that ®; = 0 everywhere on the boundary
except on the top and ®; = 0 everywhere on the boundary except on the bottom. Then we
set

_ _ 5
(u,¢) = &0 + (91 3 91)4)1 + (926 92)(1)2 + Z%"I’ia
1 2 =1

where g1 = g2 = 1, 61 = 6o = —0.5 and

¢0 = (u17¢1)7 ¢1 = (113,¢3)7 ¢2 = (117,¢7),
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Uy = (ug,¢1) — 2(ug, ¢2) — 2(ug, ¢4), Yo = (uy,¢1) — (us, ¢3) — (ur, é7),
Uz = (uy,é1) — (us, ¢5) — (ug, ¢2) — (g, ¢4), Yy = (ug, 1) — (ug, ¢5) — (uz, ¢2),

Vs = (ug, ¢1) — (s, ¢6) — (U4, Pa).

We employed the Newtons method to the necessary optimality condition (4.4) and obtained
the boundary controls ¢t0p = 1.0423 and ¢t0p = 1.7735 respectively, in 5 Newton itera-
tions. The computed control was then used in the full system to simulate the flow. The
resulting flow shown in Figure 4 shows significant reduction in the size of the recirculation
region.

In conclusion, we have demonstrated the feasibility of using reduced basis method in
both one parameter and two parameter control setting. Qur numerical results seem to
indicate that the reduced basis method can be successfully used in flow control problems
with significant reduction in computational cost compare to the results presented in [9] for
the same problems where computations were performed by directly applying finite element
methods to the optimal control problems.
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FIG. 1. Schematic of backward-facing-step channel.
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FIG. 2. Uncontrolled velocity field at Re=200
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FIG. 3. Controlled velocity field at Re=200
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FIG. 4. Controlled velocity field at Re=200



