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2contrast to the traditional numerical methods such as �nite di�erence method which usesgrid functions as basis functions or �nite elements method which uses piecewise polynomialsfor this purpose.There are several approaches available for the selection of basis functions. One suchapproach is Taylor approach in which one uses solutions at a reference point in the param-eter space along with their derivatives as basis functions. Another approach which we callLagrange approach uses solutions of the problem at various parameter values as basis func-tions. Finally the Hermite approach is a hybrid of Lagrange and Taylor approaches whichuses solutions and their �rst derivatives of the problem at various parameter values as basisfunctions. The applications of reduced basis method to structural mechanics problems canbe found in [1] and [6]{[7].Our goal here is to demonstrate the applicability and feasibility of reduced basis methodfor control problems governed by Navier-Stokes type partial di�erential equations. We willconsider vorticity minimization problems in backward-facing-step type channel geometry.Two uid ow situations are considered: An electrically conducting uid under appliedmagnetic �eld and a thermally convective uid. In the �rst situation the control is e�ectedby boundary electric potential and in the latter the control is boundary temperature.2. Reduced Basis Spaces and Reduced-Order Equation. In order to illustratethe reduced basis method, we assume for ease in exposition that we are dealing with non-linear dynamics about the equilibrium points. Consider the the parameterized stationaryproblem E(y; �) = 0 for � 2 �; y 2 X;(2.1)where � represents some physical parameter, for example, Reynolds number or viscosityand E : X � �! X� is C2. Equation (2.1) de�nes a solution function � 2 �! y(�) 2 X .We construct the reduced basis elements by the interpolation of solution function �! y(�)as follows.The Taylor Subspace. In this choice, one uses the Taylor expansion of function y(�) ata reference value of �, say ��, and the reduced basis subspace XR is de�ned asXR = spanfyj jyj = @jy@�j j�=�� ; j = 0; :::;Mg(2.2)The jth derivative yj can be calculated from the equations resulted by successive di�eren-tiation of (1.1), i.e. Ey(y0; �0)yj = Fj(y0; y1; :::; yj�1; ��):(2.3)For example, y1 satis�es the equationEy(y0; ��)y1 = �E�(y0; ��):We note here that each yj can be obtained from its predecessors by solving a linear systemwith the same linear operator Ey(y0; ��). However, one cannot continue to use the same



3basis elements generated at �xed parameter �� to compute solutions when the parameterof interest is signi�cantly away from it. In such cases reduced basis elements have to beupdated and the solution is sought in the new reduced basis space. Moreover, generatingthe right hand side of (2.3) could be quite complicated in certain problems. This choice hasbeen extensively used in the literature, see for e.g [7] for structural analysis problems and[8] for high Reynolds number steady state uid ow calculations.The Lagrange Subspace. In this case, the basis elements are solutions of the nonlinearproblem under study at various parameter values �j . The reduced subspace is given byXR = spanfyj jyj = y(�j); j = 1; :::;Mg:(2.4)The Lagrange basis was used to study structural problems in [1]. A possible advantage inthis choice is that updating the basis elements can be done one basis element at a timeinstead of generating the whole space.The Hermite Subspace. This is a hybrid of the Lagrange and Taylor approach. Thebasis elements are solutions and their �rst derivatives at various parameter values �j . Thereduced subspace is given byXR = spanfyj = y(�j) and @y@� j�=�j ; j = 1; :::;fMg:(2.5)Suppose we have a reduced basis space XR in X . Let m = dim(XR) and f�ig is a basisof XR. Then we can construct the reduced-order equation by the Galerkin approximation,i.e., for ym =Pmi=1 �i �i 2 XREm(ym; �)i = hE(ym; �); �iiX��X(2.6)for 1 � i � m.For the evolution equation ddty(t) +E(t; y(t)) = 0(2.7)we, for example, generate reduced basis elements f�igmi=1 inX by the solutions atm di�erenttime instants to (2.7). Given the reduced basis space XR, we de�ne the reduced-orderequation for ym(t) =Pmi=1 �i(t)�i,h ddtym(t) +E(t; ym(t)); �iiX��X = 0(2.8)for all 1 � i � m. In [4] this method has been carried out and its feasibility has beendemonstrated for channel ow simulations in which reduced order solution um is formed bysetting um(t) = mXi=1 �i(t)���i;



4where ���i = ui+1 � ui, i = 1; 2; ::;m� 1 and ���m = um. We further take �m = 1 so that theboundary conditions are satis�ed. The solution um is computed from( @@tum;vm) + 1Rea(um;vm) + c(um;um;vm) = (f ;vm) for all vm 2 Vm0 ;where Vm0 = spanf���i : i = 1; ::::;m� 1g is the span of the test functions.The basis elements were generated by computing the ow from the full model at eleventime instances between 1 and 11. The time step used in the reduced order model was .001.The dimension of the reduced basis space is very much problem-dependent. The re-duced basis elements constructed by the above mentioned approach can be nearly linearlydependent. So we may further reduce the dimension by the conditioning of the mass matrixQ: Qi;j = (�i; �j)X :Our computational experiments and the computations reported for structural problemsin the references mentioned earlier seem to indicate that an accurate approximation canbe obtained for large range of parameter values using 5 to 10 basis elements. Therefore,although the resulting reduced order model is dense, they are small compared to the sparsebut large system that result from the standard basis functions.According to our comparison study carried out in [4] for driven cavity incompressibleNavier-Stokes calculations, the performance of Hermite approach is better than that ofLagrange. The basis elements for the Lagrange approach were selected at Reynolds numbers100, 300, 500 and 700, and that for the Hermite was selected at 300 and 700. The comparisonwas carried out by computing the driven cavity ow at Reynolds number 1200. The L2-normdi�erence between the full mixed-�nite element solution uf and the reduced basis solutionusing these two approaches are as follows: kul � ufk2 = 0:0889 and kuh � ufk2 = 0:0766,where ul is the solution obtained using Lagrange approach and uh is that obtained usingHermite approach.3. Error Analysis. In order to justify the reduced basis solution ym we need to havea post veri�cation criterion. In general we formulate it as an error analysis as follows. LetX and Y be two Banach spaces and � be a compact set. Given a C2 mappingE : (y; �) 2 X � �! E(y; �) 2 Y;and we consider the equation E(y; �) = 0:(3.1)The family f(y(�); �) : � 2 �g is said to be a branch of nonsingular solutions of equation(3.1), i.e., �! y(�) is a continuous function from � into X and DyE(y; �) isan isomorphism from X onto Y for all � 2 �.



5Let us consider the reduced order problemEm(ym; �) = 0:(3.2)de�ned on the reduced basis space Xn. We assume that Em : Xm � � ! Ym is C2. Forthe ease of our discussions we assume that Xm � X and Ym � Y . The norms on Xm andYm are induced from X and Y norms, respectively. The problem is to �nd the solutionym 2 Xm such that (3.2) is satis�ed for a given � 2 �.We assume that DyEm(~ym; �) is an isomorphism from Xm onto Ym where ~ym is a givenelement in Xm. We introduce the following notations;�m(�) = kEm(~ym; �)kYm ;m(�) = kDyEm(~ym; �)�1kL(Ym;Xm);Sm(y;�) = fv 2 Xm : ku� vkXm � �g;Lm(�;�) = supv2S(~ym;�)kDyEm(~ym; �)�DyEm(v; �)kL(Xm;Ym):We next state a theorem regarding the error estimate which is derived from Theorem IV.3.1in [3] for the approximation of branches of nonsingular solutions.Theorem 3.1. Suppose DyEm(~ym; �) is an isomorphism of Xm onto Ym and2m(�)Lm(�; 2m(�)�m(�)) < 1:Then the problem (3.2) has a unique solution (ym(�); �) such that:ym(�) 2 S(~ym; 2m(�)�m(�)):In addition, ym(�) is the only solution of (3.2) in the ball Sm(~ym;�) for all � � 2m(�)�m(�)that satisfy m(�)Lm(�;�) < 1 and we have the estimate:kym(�)� vmkX � [m(�)=(1� m(�)Lm(�;�)]kEm(vm; �)kY for all vm 2 Sm(~ym; �):Moreover, we have the following corollary.Corollary 3.2. Suppose there exists an element ~ym 2 Xm such that DyE(~ym; �) isan isomorphism of X onto Y and2(�)L(�; 2(�)�(�))< 1(3.3)where �(�) = kE(~ym; �)kY ;(�) = kDyE(~ym; �)�1kL(Y;X);S(y;�) = fv 2 X : ku� vkX � �g;L(�;�) = supv2S(~ym;�) kDyE(~ym; �)�DyE(v; �)kL(X;Y ):



6Then the problem (3.1) has a solution (y(�); �) such that:y(�) 2 S(~ym; 2(�)�(�)):In addition, y(�) is the only solution of (3.1) in the ball S(~ym;�) for all � � 2(�)�(�) thatsatisfy (�)L(�;�)< 1 and we have the estimate:ky(�)� vkX � [(�)=(1� (�)L(�;�)]kE(v; �)kYfor all v 2 S(~ym; �).We can apply Theorem 3.1 and Corollary 3.2 to obtain the following error estimate.Theorem 3.3. (i) Suppose ym(�) 2 Xm is a solution to (3.2) and assume ~ym = ym(�)satis�es the condition in Corollary 3.2. Then we have a solution y(�) 2 S(~ym; 2(�)�(�))to (3.1) and the estimateky(�)� ym(�)kX � [(�)=(1� (�)L(�;�)]kE(ym(�); �)kY(3.4)with � = (�)�(�).(ii) Suppose there exits an element ~ym 2 Xm such that the conditions in Theorem 3.1and Corollary 3.2 are satis�ed. Furthermore, we assume that �m = 2m(�)�m(�) satis�es(�)L(�;�m) < 1. Then we have (3.4) with � = �n.4. Optimal Control Problems. In this section we discuss the optimal control prob-lem and the application of reduced basis method. Consider the minimization problemmin J(y; u) subject to E(y; u) = 0(4.1)over u 2 Uad � U . Here X and U are Hilbert spaces and E : X�U ! X� is C2. We assumethat U = Rm and uad is closed and convex. The Lagrange reduced space can be de�ned byXR = spanfyj 2 X jE(yj; uj) = 0; j = 1; :::;Mg;where uj is a sampled point in Uad. In order to obtain a lower-order reduced basis space, ifm is large then we may consider the following pre-selecting step:(1) let u�; � 2 A be the points in Uad de�ned byu� = �u+X �i�i eiwhere � is the integer-valued vector, and �i and ei is the step size and unit vector in thei-th direction,(2) we determine y� 2 X by solving E(y; u�) for each � 2 A.(3) we �nd an index �0 in A such that J(y�; u�) is smallest, and then(4) we select the sampling set uj byu1 = u�0 ; u2i = u�0 + �i ei; and u2i+1 = u�0 � �i ei:



7The Hermite reduced space can be de�ned byXR = spanfyj 2 X � U jE(yj; uj) = 0 and @y@ui (uj); 1 � i � m; j = 1; :::;fMg:Here, �ji = @y@ui (uj) can be calculated by solving the sensitivity equationEy(yj ; uj)�ji = �Eui(y0; uj):(4.2)Here we can use the pre-selecting step to select uj as for the Lagrange case.Suppose we have the reduced basis space XR. Then we use the Galerkin method toproject the equation onto XR, i.e., ym =Pmi=1 �i �i 2 XR satis�esEm(ym; u)i = hE(y; u); �iiX��X :Then we consider the reduced-order control problemmin J(ym; u) subject to Em(ym; u) = 0 and u 2 Uad:(4.3)It is a �nite dimensional constrained minimization problem and can be readily solved bythe constrained optimization methods. A necessary optimality condition is given by(DyEm(ym; um))t�m +DyJ(ym; um) = 0(DuEm(ym; um)(u� um); �m) +DuJ(ym; um)(u� um) � 0(4.4)for all u 2 Uad, assuming DyEm at the optimal pair (ym; um) to (4.3) is an isomorphism.Similarly, we have the necessary optimality condition for (4.1): there exists a Lagrangemultiplier � 2 X such that(DyE(y�; u�))��+DyJ(y�; u�) = 0hDuE(y�; u�)(u� u�); �iX��X +DuJ(y�; u�)(u� u�) � 0(4.5)for all u 2 Uad, assuming DyEmL(y�; u�) at the optimal pair (y�; u�) to (4.1) is an isomor-phism. Suppose um and u� is interior points of Uad. Then we can apply Theorem 3.3 toequation for (y; �; u) 2 X �X � UE(y; u) = 0(DyE(y; u))��+DyJ(y; u) = 0(DuE(y; u))��+DuJ(y; u) = 0(4.6)In general we haveJ(ym; um) � J(ym(u); u) = J(ym(u); u)� J(y(u); u) + J(y(u); u)for u 2 Uad and thus setting u = u�, we obtainJ(y(um); um)� J� � J(y(um); um)� J(ym; um) + J(ym(u�); u�)� J(y(u�); u�):Hence, if Uad is compact thenJ(y(um); um)� J� � 2M maxu2uad kym(u)� y(u)kXfor some constant M .



8 5. The Reduced Basis Method for Flow Control. In this section we discuss vor-ticity minimization in uid ows using boundary temperature control and electromagneticcontrol. We �rst present the weak variational formulation of the optimal control problemsand then discuss their approximations in �nite element and reduced basis setting.5.1. Electrically Conducting Flow Equations and Variational Formulation.In this section we describe the governing equations for an electrically conducting owand their variational formulation. Suppose there is a length scale `, a velocity scale Uand a magnetic-�eld scale B0 in the ow, then one can de�ne nondimensional magneticReynolds number Rm = �0�U`, where �0 is the magnetic permiability, Alfven numberAl = B20=�0�U2 and Reynolds number Re = �0U`=�. Next, if we nondimensionalize ac-cording to x x=`, u u=U, j B0=`, E UB0 and p (p� g � x)=(�0U2), we obtainthe dimensionless equations 
;u � ru = �rp+Al (j�B) + 1Re �u and r � u = 0j = Rm [�r�+ (u�B)]; and r � j = 0r�B = j and r �B = 0:Here, u denotes the velocity �eld, p the pressure �eld, j the electric current density, B themagnetic �eld and � the electric potential. We denote by 
 the ow domain which is abounded in R2 with boundary �.Although the problems and methods studied here are applicable to the optimal controlfor general models of magneto-hydrodynamic ows, for the simplicity of explaining the ideaswe will deal with a special case in which the externally applied magnetic �eld is undisturbedby the ow; i.e., we assume that B is given. Such an assumption can be met in a variety ofphysical applications, e.g., in the modeling of electromagnetic pumps and the ow of liquidlithium for fusion reactor cooling blankets (see for e.g. [10]). Under this assumption, theterm j�B in the Navier-Stokes equations can be written asAl(j�B) = N (�r�+ u�B)�Bwhere N = Al �Rm and if we eliminate j by applying charge conservation condition r� j = 0to j = Rm [�r�+ (u�B)], we arrive at the following simpli�ed system modeling the ow:(5:1) � 1Re �u+ u � ru+rp+N (r�� u�B)�B = 0;r � u = 0���+r � (u�B) = 0where N is the interaction parameter. The system (5.1) is supplemented with boundaryconditions(5:2) u = u0 on �; � = g on �0 and n � j = 0 on �1



9where � is the disjoint union � = �0[�1 and g denotes the control function, namely, electricpotential on �0. Such a control can be e�ected by attaching electric sources with adjustableresistors to the electrode along the boundary. We assume that the ow is two-dimensionaland the applied magnetic �eld B is perpendicular to the ow plane, i.e., B = �0; 0; B0�t,and that the cross product u�B is understood as (u1; u2; 0)t��0; 0; B0�t. Let �u 2 (H1(
))2and �� 2 H1(
) be such that �u = u0 on � and �� = g on �0and V1 = f� 2 H1(
) : � = 0 on �0g. Then, variational formulation of (5.1){(5.2) is givenas follows: seek u 2 (H10(
))2+ �u, p 2 L2(
) and � 2 H10(
) + �� such that(5:3) 1Re(ru;rv) + b0(u;u;v)+N (r�� u�B;v�B)� (p;r � v) = 0; 8v 2 (H10(
))2(r � u; q) = 0; 8q 2 L2(
)(r�� u�B;r ) = 0; 8 2 V1:Here, the trilinear form b0 on (H1(
)2)3 is de�ned by(5:4) b0(u;v;w) = hu � rv;wifor u;v;w 2 (H1(
))2.5.2. Thermally Convective Flow Equations and Variational Formulation. Inthis section we describe the governing equations for a thermally conducting ow and theirvariational formulation.If we assume there is a length scale `, a velocity scale U and a temperature scaleT1 � T0 in the ow, then one can de�ne nondimensional Prandtl number Pr = �cp=�,Grashof number Gr = �`3�20jgj(T1� T0)=�2 and Reynolds number Re = �0U`=�. Next, ifwe nondimensionalize according to x x=`, u u=U, T  (T � T0)=(T1 � T0), and p (p� g � x)=(�0U2), we obtain the following nondimensional form of Boussinesq equations.� 1Re�u+ (u � r)u+rp+ GrRe2Tg = 0 in 
 ;r � u = 0 in 
 ;� 1RePr �T + u � rT = 0 in 
 ;where g is a unit vector in the direction of gravitational acceleration.We consider the boundary condition as follows.(5:6) u = u0 on �; T = g on �0 and @T@n = 0 on �1



10where g represents the boundary temperature control function. Let �T 2 H1(
) be suchthat �T = g on �0. Then, variational formulation of (5.5){(5.6) is given by(5:7) 1Re(ru;rv) + b0(u;u;v)+ (�T g;v)� (p;r � v) = 0; 8v 2 (H10(
))2(r � u; q) = 0; 8q 2 L2(
)b1(u; T;  )+ � (rT;r ); 8 2 V1for u 2 (H10(
))2 + �u, p 2 L2(
) and T 2 H10 (
) + �T , where � = GrRe2 , � = 1RePr and thetrilinear form b1 is given by b1(u; T;  ) = hu � rT;  i:for T;  2 H1(
) and u 2 (H1(
))2.We can establish the existence of solutions to (5.3) and (5.7) (e.g, see [5]), using theabove properties of the triliner forms and the Hopf's lemma.5.3. Mixed Finite Element Approximation. In order to construct the reducedbasis element we use the mixed �nite element method [3] to approximate solution to (5.1){(5.2) and (5.5){(5.6).Let us de�ne, using standard �nite element notations,Xh = fv 2 C0(
) : vjK 2 P2(K); on each element Kg ;Xh = fv = (v1; v2)T 2 C0(
) : vi 2 Xh; i = 1; 2gand Sh = fq 2 C0(
) : qjK 2 P1(K); on each element Kg:Also we de�ne Xh0 = fv 2 Xh : v = 0 on �g and Xh1 = Xh \ V1. That is, we choosecontinuous piecewise quadratic polynomials for both components of the velocity uh andelectric potential �h for (5.1) and temperature T h for (5.5), continuous piecewise linearpolynomials for the pressure ph. On each triangle, the degrees of freedom for quadraticelements are the function values at the vertices and midpoints of each edge; the degreesof freedom for linear elements are the function values at the vertices. Here, the spaces arede�ned over the same triangulation of the domain 
 = SK. This selection is known asTaylor-Hood element pair and has been shown to satisfy the LBB or inf-sup condition.The �nite element equation of (5.3) for uh 2 Xh, ph 2 Sh and �h 2 Xh is given by(5:3)h 1Re(ruh;rvh) + b0(uh;uh;vh)+N (r�h � uh �B;vh �B)� (ph;r � vh) = 0; 8vh 2 Xh0(r � uh; qh) = 0; 8qh 2 Sh(r�h � uh �B;r h) = 0; 8 h 2 Xh1 :



11where uhj� = uh0 and �hj�0 = gh and uh0 ; gh are the projection of u0; g onto the �niteelement spaces, respectively. Similarly, for the Boussinesq equation (5.7) we have(5:7)h 1Re(ruh;rvh) + b0(uh;uh;vh) + (�T h g;vh)� (ph;r � vh) = 0; 8vh 2 Xh0(r � uh; qh) = 0; 8qh 2 Shb1(uh; Th;  h) + � (rT h;r h); 8 h 2 Xh1 :where uh 2Xh; T h 2 Xh satisfy uhj� = uh0 and T hj�0 = gh, respectively.5.4. Boundary Control Problems and Reduced-Order Control Problems.Let U be the control space de�ned byU = fg = pXi=1 gi �i; gi 2 Rgwhere �i is the i-th basis function of U and is the trace of a H1(
) function onto �0. Weconsider the minimization of the form(5:8) min kr � uk2
 subject to (5:3) or (5:7)where the vorticity r� u is de�ned by r� u = @u2@x1 � @u2@x2 and the cost functional de�nesthe total friction forces in 
.We de�ne the reduced basis element by the �nite element approximation (5:3)h and(5:7)h, respectively for each control problem. For example, the Lagrange reduced basiselement (u; p; T ) given gj 2 U for problem (5.8) subject to (5.7) can be constructed by asolution (uh; ph; T h) to (5:7)h given gj 2 U . For the case of the boundary control problem,the reduced basis space XR � Xh �Xh should consist of the basis element �h0 that corre-sponds to the reference control �g 2 U , the element �hj that corresponds to the j-th controlin the direction of �j , and the test functions 	h 2 XR \ (Xh0 � Xh1 ). Since uh satis�esthe pseudo-divergence condition (r � uh; qh) = 0 for all qh 2 Sh we have the reduced-ordercontrol problem;(5:9) min kr � uhk2
 subject to1Re(ruh;rvh) + b0(uh;uh;vh) + (�T h g;vh)+b1(uh; Th;  h) + � (rT h;r h) = 0for all 	h = (vh;  h) 2 XR \ (Xh0 �Xh1 ). Here, the element in XR is represented by(uh; T h) = �h0 +X�i	hi + pXj=1 (gj � �gj)�j �hi



12where �h0 = (uh; Th)0 is a solution to (5:7)h corresponding to the reference control, �hj =(uh; Th)j � (uh; Th)0 for 1 � j � p, with (uh; T h)j being a solution to (5:7)h correspondingto �g + �j �j and f	hi g are a basis of the test function space XR \ (Xh0 �Xh1 ).Similarly, for problem (5.8) subject to (5.3) we have the reduced-order control problem;(5:10) min kr � uhk2
 subject to1Re(ruh;rvh) + b0(uh;uh;vh) +N (r�h � uh �B;vh �B)+(r�h � uh �B;r h) = 0;for all 	h = (vh;  h) 2 XR \ (Xh0 �Xh1 ).6. Computational Results. In this section we will give computational result by im-plementing the computational procedure for a speci�c control problem in channel owsusing the two proposed control mechanisms. We select the backward facing step channelfor our study, a schematic of this geometry is given in Figure 1. It has been observed ina number of computational and experimental study that a recirculation appears near thecorner region for large Reynolds number. Our aim is to remove the recirculation by meansof boundary control.6.1. Boundary Temperature Control. The aim is to shape the ow to a desiredcon�guration which in our study means to remove the recirculation by means of controllingthe temperature along the bottom part of the boundary.We assume that the inow and outow are parabolic, i.e. we take the inow to beui = 8(y � 0:5)(1� y) and the outow to be u = uo = y(1 � y). We take the Reynoldsnumber to be 200 and GrRe2 to be 1. For the temperature we used the following boundaryconditions: �s1 and �out : @T@n = 0�s2 and �bottom : T = g�in and �top : T = 1:Figure 2 qualitatively demonstrate the situation for high Reynolds number. Here our ob-jective is to remove the recirculation that occurs in the corner region 
�. Therefore weminimize vorticity in the corner region 
�. This leads us to a constrained minimizationproblem of the type (5.8) and we use the reduced basis computational method described inx5.4.Basis elements are computed with g=1, 0.875, 0.75, 0.625, 0.5, 0.3775, 0.25 and de-noted by (ui; Ti), i = 1; ::; 7. The test functions f	1; ::::;	5g are chosen so that theyhave zero boundary conditions. The trial function �1 corresponds to the control force suchthat �1 = 0 everywhere on the boundary except on the bottom.Then we set (u; T ) = �0 + (g � �g)� �1 + 5Xi=1 �i	i;



13where �g = 1, � = �0:75 and�0 = (u1; T1); �1 = (u7; T7)� (u1; T1);	1 = (u7; T7)� 2(u6; T6) + (u5; T5); 	2 = (u6; T6)� 2(u5; T5) + (u4; T4);	3 = (u5; T5)� 2(u4; T4) + (u3; T3); 	4 = (u4; T4)� 2(u3; T3) + (u2; T2);	5 = (u3; T3)� 2(u2; T2) + (u1; T1):We �nally employ Newtons method to the necessary optimality condition (4.4) to com-pute the control. We obtained the boundary temperature control T = 0:516 in 7 Newtoniterations. The computed control was then used in the full system to simulate the ow. Theresulting ow shown in Figure 3 shows signi�cant reduction in the size of the recirculationregion.6.2. Electromagnetic Control. In this problem, control is e�ected through bound-ary electric potential on the top boundary and on the bottom boundary of the backwardfacing step channel. A magnetic �eld B = (0; 0; 1) is applied into the uid. The boundaryconditions for the velocity are the same as in the preceding control problem except for theelectric potential whose boundary conditions are as follows:�s2 , �in and �out : @�@n = 0�top : � = g1�bottom : � = g2�s2 : � = 1:We take the Reynolds number to be Re = 200 and the interaction parameter to be N = 1.The basis elements were computed with(g1; g2)=(1,1), (1,0.5),(1,0), (0.5,1),(0.5,0.5), (0.5,0),(0,1), (0,0.5)and the corresponding elements are denoted by (ui; �i), i = 1; ::; 8. The test functionsf	1; ::::;	5g are chosen so that they have zero boundary conditions. The trial functions�1 and �2 corresponds to the control force such that �1 = 0 everywhere on the boundaryexcept on the top and �2 = 0 everywhere on the boundary except on the bottom. Then weset (u; �) = �0 + (g1 � �g1)�1 �1 + (g2 � �g2)�2 �2 + 5Xi=1 �i	i;where �g1 = �g2 = 1, �1 = �2 = �0:5 and�0 = (u1; �1); �1 = (u3; �3); �2 = (u7; �7);



14 	1 = (u1; �1)� 2(u2; �2)� 2(u4; �4); 	2 = (u1; �1)� (u3; �3)� (u7; �7);	3 = (u1; �1)� (u5; �5)� (u2; �2)� (u4; �4); 	4 = (u1; �1)� (u8; �8)� (u2; �2);	5 = (u1; �1)� (u6; �6)� (u4; �4):We employed the Newtons method to the necessary optimality condition (4.4) and obtainedthe boundary controls �top = 1:0423 and �top = 1:7735 respectively, in 5 Newton itera-tions. The computed control was then used in the full system to simulate the ow. Theresulting ow shown in Figure 4 shows signi�cant reduction in the size of the recirculationregion.In conclusion, we have demonstrated the feasibility of using reduced basis method inboth one parameter and two parameter control setting. Our numerical results seem toindicate that the reduced basis method can be successfully used in ow control problemswith signi�cant reduction in computational cost compare to the results presented in [9] forthe same problems where computations were performed by directly applying �nite elementmethods to the optimal control problems.REFERENCES[1] B.O. Almroth, P. Stern and F.A. Brogan, Automatic Choice of Global Shape Functions in Struc-tural Analysis, AIAA Journal, 16, (1978), 525-528.[2] M. Desai and K. Ito, Optimal Control of Navier-Stokes Equations, SIAM J. Control & Optim., 32(1994), 1428-1446.[3] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations (Springer-Verlag,New York, 1986).[4] K. Ito and S.S. Ravindran, A Reduced Order Method for Simulation and Control of Fluid Flows, J.Computational Physics (submitted) .[5] K. Ito and S.S. Ravindran, Optimal Control of Thermally Convected Flows, SIAM J. Scienti�cComputing (submitted).[6] A.K. Noor, Recent Advances in Reduction Methods for Nonlinear Problems, Computers & Structures,13 (1981), 31-44.[7] A.K. Noor, C.M. Anderson and J.M. Peters, Reduced Basis Technique for Collapse Analysis ofShells, AIAA Journal, 19 (1981), 393-397.[8] J.S. Peterson, The Reduced Basis Method for Incompressible Viscous Flow Calculations, SIAM J.Sci.Stat. Comput., 10 (1989), 777-786.[9] S.S. Ravindran, Computations of Optimal Control for Fluid Flows, To appear in Optimal Control ofViscous Flows, S. S. Sritharan (Ed.), Frontiers in Applied Mathematics, SIAM, 1996.[10] J.S. Walker, Large Interaction Parameter Magnetohydrodynamics and Applications in Fusion ReactorTechnology; in Fluid Mechanics in Energy Conversion, J. Buchmaster, Ed., SIAM, Philadelphia,1980.
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*FIG. 1. Schematic of backward-facing-step channel.

FIG. 2. Uncontrolled velocity �eld at Re=200
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FIG. 3. Controlled velocity �eld at Re=200
FIG. 4. Controlled velocity �eld at Re=200


