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Abstract
Wepropose and analyze newnumericalmethods to evaluate fractional norms and apply
fractional powers of elliptic operators. Bymeans of a reduced basismethod, we project
to a small dimensional subspace where explicit diagonalization via the eigensystem is
feasible. Themethod relies on several independent evaluations of (I−t2i �)−1 f , which
can be computed in parallel. We prove exponential convergence rates for the optimal
choice of sampling points ti , provided by the so-called Zolotarëv points. Numerical
experiments confirm the analysis and demonstrate the efficiency of our algorithm.

Mathematics Subject Classification 46B70 · 65N12 · 65N15 · 65N30 · 35J15

1 Introduction

Fractional powers of differential operators are a field of substantial interest in different
branches of mathematics. Their augmented appearance in real world problems, such
as ecology [11], finance [6], image processing [25], material science [9], and porous
media flow [10] has given rise to several approaches in order to understand and analyze
problems of this kind.

Typically, direct computations rely on matrix approximations L of the desired
operator, whose sth-power is computed subsequently. This procedure requires diag-
onalization of L , which amounts to a large number of time-consuming eigenvalue
problems, making this approach inapplicable for general purposes. Adding to this
difficulty, many practical scenarios demand numerical methods that allow efficient
evaluations in s. In [20], the fractional exponent is determined in a way, such that the
observed data matches the mathematical model. In [44], s serves as control param-
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eter to minimize a given cost functional. All these investigations suggest that one is
interested in the entire family of solutions for s ∈ (0, 1) rather than one specific value
of s. The demand for suitable methods that address these problems has substantially
increased throughout the last years.

Fractional powers of the Laplace operator appear to be of particular interest.Widely
varying definitions of (−�)s have emerged, e.g., as pseudo differential operator
defined by the Fourier transform, by means of its involved eigensystem, as a singular
integral operator, or as inverse of the Riesz potential operator. All these definitions turn
out to be equivalent in R

n , see [30]. This result no longer holds as bounded domains
are incorporated. A detailed excursion of its versatile definitions as well as the com-
parison of both existing and newly proposed numerical schemes is explained in [32]
and [13].

A difficulty that all fractional operators have in common is their nonlocal character.
Caffarelli and Silvestre managed to avoid this inconvenience in [22] by relating any
fractional power of the Laplacian inRn to a Dirichlet-to-Neumann map of an involved
harmonic extension problem in R

n × R
+, providing a local realization of (−�)s .

Adaptions for boundeddomains�havebeen conducted in [19], [21], and [23], yielding
a boundary value problem on the semi-infinite cylinder C := � ×R

+. Enhancements
for a more general class of operators has been presented in [45].

A large number of methods exploits the structure of harmonic extension techniques
to approximate fractional differential operators and their inverses, see [2], [5], [7], and
[4]. In [38], the solution of the aforementioned boundary value problem is computed
on the truncated cylinder Cγ := �×[0, γ ), with γ > 0 of moderate size, by standard
finite element techniques, at the cost of one additional space dimension. Truncation
can be justified by the fact that the solution decreases exponentially in the extended
direction.Other strategies rely on block-wise low-rank approximation of the associated
stiffness-matrix [36]. Of particular interest are fractional elliptic operators in context
of parabolic equations. Tackling problems of this kind has been a matter of several
recent publications, e.g., [3, 15, 37, 43].

In this article, we interpret fractional operators as interpolation operators and make
use of the K-method [40] to provide attractive approximations for any arbitrary sym-
metric, uniformly elliptic operatorL. This approach requires the knowledge of themap
t �→ v(t) := (I + t2L)−1 f , whose smoothness in t justifies the usage of standard
reduced basis technology, see e.g., [8, 33, 34]. Providing an optimal choice of snap-
shots ti , we pursue a proper orthogonal decomposition (POD) strategy, see e.g., [29],
to project a matrix approximation L of the desired operator to a lower dimensional
space, where its fractional power can be determined directly.The decoupled structure
of the projection trivially admits an efficient implementation in parallel. Multigrid pre-
conditioner can be utilized, whose convergence rates are bounded independently of the
shift parameter ti and uniform mesh size h. The proposed method can be interpreted
as model order reduction of the approach devised in [38], without requiring truncation
of the domain. Among others, it provides accurate approximations for evaluations of
both types s �→ (−�)su and u �→ (−�)su with considerably reduced computational
expense. The arising operator incorporates a nonlinear dependency in u. This inconve-
nience is compensated by its analytically affirmed exponential convergence property,
while, at the same time, the computational effort grows only logarithmically in the
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condition number. Emerging estimates rely on rational approximation of the bivariate
function (1 + λ2t2)−1 over a suitable spectral interval of the discrete operator. Real-
ization of the inverse operator and parabolic problems that involve fractional diffusion
operators is the matter of a consecutive paper.

We emphasize that this is not the first investigation that recognizes the importance
of v(t) in context of fractional operators. The approach developed in [17] and later
improved in [16] relies on the Dunford-Taylor integral representation of (−�)−s .
A sinc quadrature scheme especially tailored for integrals of this type is presented
and requires the evaluation of v(t) at the quadrature nodes. Exponential decay of
the error in the number of nodes is shown. Further modifications are discussed in
[14] where computations of the quadrature are accelerated by means of a reduced
basis method. While the construction of the reduced basis differs from the one we
pursue, the involved proof of convergence also relies on rational approximations and
partially follows the outline of our analysis. A similar approach is proposed in [24] in
consideration of a different quadrature rule, where exponential convergence rates are
observed numerically. A model order reduction that relies on the extension method is
proposed in [5].

It remains to be mentioned that we are not the first to relate fractional powers of
differential operators to rational approximation. In [27], for instance, the so-called
best uniform rational approximation (BURA) of t−s , which was originally proposed
in [28], is utilized as matrix function to approximate (−�)−s .

The paper is organized as follows. In Sect. 2, we introduce three different concepts
of Hilbert space interpolation. They serve as abstract template to provide a setting that
is suitable for the study of our problem. Equivalence of all three methods appears to be
the main result of this section. A reduced basis strategy is applied in Sect. 3. Feasible
choices of the reduced space and the efficient implementation of its arising reduced
basis interpolation norms are taken into account. Having understood its underlying
structure, we proceed, in Sect. 4, to deduce the induced fractional operator, providing
the essential definition of this paper. Numerical analysis is performed in Sect. 5. The
optimal choice of the reduced space is elaborated, yielding exponential decay in the
error for both norm and operator approximation. The core of this paper is summarized
in Theorem 12. Thereupon, in Sect. 6, we conduct several numerical examples that
illustrate the performance of our method. Eventually, in the appendix, we prove two
technical results that are referred to within Sect. 2.

2 Notation and preliminaries

In this section, we establish the notation and terminology we utilize throughout this
paper and introduce several function spaces we address in the subsequent.

Throughout what follows, let the induced norm ‖ · ‖ of a Hilbert space (V, 〈·, ·〉)
be defined as

‖ · ‖ := √〈·, ·〉. (2.1)
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Conversely, given a Banach space (V, ‖ · ‖), such that ‖ · ‖ satisfies the parallelogram
law, we define the induced scalar product of ‖ · ‖ as the unique scalar product 〈·, ·〉
on V that satisfies (2.1), obtained by polarization identity. Whenever referring to a
Banach space (V, ‖ · ‖) as Hilbert space, we mean that ‖ · ‖ induces a scalar product
〈·, ·〉, such that (V, 〈·, ·〉) is a Hilbert space.

2.1 Hilbert space interpolation

Throughout what follows, let Vi , i = 0, 1, denote two real Hilbert spaces with inner
products 〈·, ·〉i , respectively, such that V1 ⊆ V0 is dense with compact embedding. It
is well-known that there exists an orthonormal basis (ϕk)

∞
k=1 of V0 and a sequence of

positive real numbers (λk)
∞
k=1 with λk −→ ∞ as k −→ ∞, satisfying

∀w ∈ V1 : 〈ϕk, w〉1 = λ2k〈ϕk, w〉0
for all k ∈ N. Along with these premises, we introduce, based on [12, 18, 31], the first
of three space interpolation techniques. For each s ∈ (0, 1) we define an interpolation
space between V0 and V1 by

[V0,V1]Hs := {u ∈ V0 : ‖u‖Hs(V0,V1) < ∞},

equipped with its Hilbert interpolation norm

‖u‖2Hs (V0,V1)
:=

∞∑

k=1

λ2s
k u2

k, uk := 〈u, ϕk〉0.

([V0,V1]Hs , ‖ · ‖Hs(V0,V1)

)
incorporates a Hilbert space structure and satisfies

V1 ⊆ [V0,V1]Hs ⊆ V0.

Another approach is provided by the real method of interpolation in terms of the
K-functional. It was first published by Peetre [40], Lions and Magenes [31] and also
works for Banach spaces. Let ‖ · ‖0 and ‖ · ‖1 denote the induced norms on V0 and
V1, respectively. We define for all t > 0 and u ∈ V0 the K-functional as

K(V0,V1)(t; u) := inf
v∈V1

√
‖u − v‖20 + t2‖v‖21

to obtain the K-norm

‖u‖2Ks(V0,V1)
:=
∫ ∞

0
t−2s−1K2

(V0,V1)
(t; u) dt .

Alongwith its inner product, obtained by parallelogram law, the norm induces aHilbert
space

[V0,V1]Ks := {u ∈ V0 : ‖u‖Ks(V0,V1) < ∞},
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which again turns out to be intermediate.
Based on the work of Peetre and Lions, it has been shown that [V0,V1]K s can be

characterized as space of trace, see [46, 47]. The arising norm, which turns the trace
space into a Banach space, is known to be equivalent to the K-norm. We affirm this
observation by proving that these norms are not only equivalent but do also coincide
up to a multiplicative constant. This result is well-known for some particular choices
of V0 and V1, see e.g., [23, Proposition 2.1], but has not been recorded in its most
general setting to the best of our knowledge. To make matters precise, we investigate
some technical results.

For each s ∈ (0, 1) let α := 1−2s henceforth. For all i = 0, 1, we define the space
L2(R

+,Vi ; yα) of all measurable functions v : R+ −→ Vi , such that

∫

R+
yα‖v(y)‖2i dy < ∞,

and further

H1(R+,V0; yα) := {v ∈ L2(R
+,V0; yα) : v′ ∈ L2(R

+,V0; yα)}.

Thereupon, we introduce

V(V0,V1; yα) := H1(R+,V0; yα) ∩ L2(R
+,V1; yα)

and endow it with the norm

‖v‖2
V(V0,V1;yα) :=

∫

R+
yα
(
‖v(y)‖21 + ‖v′(y)‖20

)
dy.

This space is amenable to trace evaluations, as the following Theorem shows.

Theorem 1 There exists a linear, surjective trace operator

tr : V(V0,V1; yα) −→ [V0,V1]Hs ,

v(y) �→ v(0),

such that for all v ∈ V(V0,V1; yα) there holds

√
ds‖ tr v‖Hs(V0,V1) ≤ ‖v‖V(V0,V1;yα). (2.2)

By ds we refer to a positive constant whose value can be specified by means of the
Gamma function,

ds = 21−2s �(1 − s)

�(s)
.

Proof See Appendix. ��
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Theorem 1 justifies the introduction of an interpolation space

[V0,V1]Es := tr(V(V0,V1; yα)), (2.3)

endowed with the extension-norm

‖u‖Es(V0,V1) := inf
U∈V(V0,V1;yα)

trU=u

‖U‖V(V0,V1;yα), (2.4)

which is is well-defined by standard arguments from calculus of variation. Due to
surjectivity, (2.3) coincides with [V0,V1]Hs .

By means of Euler-Lagrange formalism, we observe that the infimum in (2.4) is
the unique solution of an involved variational formulation. Thereupon, we introduce
the following definition.

Definition 1 The α-harmonic extension U of u ∈ [V0,V1]Es is defined as the unique
solution of the variational formulation: Find U ∈ V(V0,V1; yα), such that for all
y ∈ R

+ and W ∈ V(V0,V1; yα) there holds

〈yαU(y),W(y)〉1 − ∂

∂ y

(
yα〈U′(y),W(y)〉0

) = 0,

trU = u.

(2.5)

Lemma 1 Let U denote the α-harmonic extension of u ∈ [V0,V1]Es . Then there holds

‖u‖Es(V0,V1) = ‖U‖V(V0,V1;yα).

Proof Follows directly from the fact that (2.5) is the Euler-Lagrange equation of the
minimization problem in (2.4). ��
As the following Theorem shows, all three interpolation methods coincide.

Theorem 2 Let V0,V1 denote two Hilbert spaces, such that V1 ⊆ V0 is dense with
compact embedding. Then there holds

‖ · ‖Es(V0,V1) = √ds‖ · ‖Hs(V0,V1) = √dsCs‖ · ‖Ks(V0,V1),

where Cs :=
√

2 sin(πs)
π

.

Proof See Appendix. ��
Throughout what follows, we denote by [V0,V1]s the unique interpolation space
emerging from one and hence from all three interpolation methods. The interpola-
tion norms ‖ · ‖Hs(V0,V1) and ‖ · ‖Ks(V0,V1) satisfy the parallelogram law on [V0,V1]s .
By virtue of Theorem 2, this property also applies to ‖ · ‖Es(V0,V1). We summarize
these observations in the following corollary.
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Corollary 1 All three interpolation norms, ‖ · ‖Es(V0,V1), ‖ · ‖Hs(V0,V1), and ‖ ·
‖Ks(V0,V1), induce a respective scalar product, 〈·, ·〉Es(V0,V1), 〈·, ·〉Hs(V0,V1), and
〈·, ·〉Ks(V0,V1), such that for all v,w ∈ [V0,V1]s

〈v,w〉Es(V0,V1) = ds〈v,w〉Hs(V0,V1) = dsC2
s 〈v,w〉Ks(V0,V1).

Definition 2 Let ‖ ·‖s ∈ {‖ ·‖Es(V0,V1), ‖ ·‖Hs(V0,V1), ‖ ·‖Ks(V0,V1)}. By means of the
Riesz-representation Theorem, we define the induced operator of ‖ · ‖s as the unique
linear function Ls : [V0,V1]s −→ V0, such that

∀v ∈ [V0,V1]s : 〈v,Lsw〉0 = 〈v,w〉s

for each w ∈ [V0,V1]s , where 〈·, ·〉s refers to the induced scalar product of ‖ · ‖s .

Corollary 1 immediately reveals the following result.

Corollary 2 All three interpolation norms, ‖ · ‖Es(V0,V1), ‖ · ‖Hs(V0,V1), and ‖ ·
‖Ks(V0,V1), induce an operator, LEs (V0,V1), LHs (V0,V1), and LKs (V0,V1), such that
for all v,w ∈ [V0,V1]s

〈v,LEs (V0,V1)w〉0 = ds〈v,LHs (V0,V1)w〉0 = dsC2
s 〈v,LKs (V0,V1)w〉0.

Remark 1 Let � ⊆ R
d , d ∈ N, be a bounded domain with Lipschitz boundary. Along

with the choice V0 = (L2(�), ‖ · ‖L2) and V1 = (H1
0 (�), ‖∇ · ‖L2), LHs (V0,V1)

coincides with the spectral fractional Laplacian subject to homogeneous Dirichlet
boundary conditions and LEs (V0,V1) with the involved Dirichlet-to-Neumann map
from Caffarelli and Silvestre.

2.2 The finite element framework

Results from Sect. 2.1 are also valid in a discretized setting. Depending on two fixed
Hilbert spaces V0 and V1 which satisfy the premises from Sect. 2.1, we denote by
Vh ⊆ V1 a conforming finite element space of dimension N henceforth. Further, let
(bk)

N
k=1 ⊆ Vh denote an arbitrary basis of Vh . By M, A ∈ R

N×N , we refer to the
mass- and stiffness-matrix of Vh , arising from finite element discretization in terms
of

M ji = 〈bi , b j 〉0, A ji = 〈bi , b j 〉1. (2.6)

Due to its finite dimensional nature, the spaces (Vh, ‖ · ‖0) and (Vh, ‖ · ‖1) satisfy the
conditions from Sect. 2.1, such that the discrete interpolation norms on Vh

‖uh‖Es :=‖uh‖Es ((Vh ,‖·‖0),(Vh ,‖·‖1)), ‖uh‖Hs := ‖uh‖Hs((Vh,‖·‖0),(Vh,‖·‖1)),

‖uh‖2K s :=
∫ ∞

0
t−2s−1 K2

((Vh ,‖·‖0),(Vh ,‖·‖1))(t; uh)
︸ ︷︷ ︸

=:K 2(t;uh)

dt, (2.7)
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are well-defined. The finite element space equipped with each of these norms is a
Banach space, inducing both scalar product, 〈·, ·〉Es , 〈·, ·〉Hs , 〈·, ·〉K s , and operator,
LEs , LHs , LK s , respectively. The aim of this paper is to provide an accurate approxi-
mation of these operators with considerably reduced computational expense. By virtue
of Corollary 2, it suffices to address this problem in any of those three interpolation
settings. Each of them comes with its own benefits and difficulties attached. In the
following section, we exploit the advantages of all three strategies to derive a compu-
tationally beneficial norm approximation, such that the induced operator satisfies the
desired properties.

3 Approximation of the interpolation norms

The goal of this section is to devise an accurate approximation of the discrete interpola-
tion norms, introduced in (2.7), with downsized computational effort. For convenience,
we neglect the subscript h for all finite element functions uh ∈ Vh and solely write u
henceforth. Furthermore, by (ϕk, λ

2
k)

N
k=1 ⊆ Vh × R

+ we refer to the 0-orthonormal
eigenpairs of (Vh, ‖ · ‖0) and (Vh, ‖ · ‖1) from now on, such that

∀w ∈ Vh : 〈ϕk, w〉1 = λ2k〈ϕk, w〉0. (3.1)

The eigenvalues are assumed to be in ascending order according to their value, such
that

0 < λ21 ≤ · · · ≤ λ2N .

3.1 The reduced basis approach

Utilizing standard reduced basis technology for one dimensional parametric elliptic
partial differential equations, we define for each u ∈ Vh its approximate interpolation
norms as follows.

Definition 3 (Reduced basis interpolation norms) For each t ∈ R
+ we define vN (t) ∈

Vh as the unique solution of

〈vN (t), w〉0 + t2〈vN (t), w〉1 = 〈u, w〉0 (3.2)

for all w ∈ Vh . Given some real parameters 0 = t0 < t1 < · · · < tr , specified in
Sect. 5, we introduce the reduced space

Vr := span{vN (t0), . . . , vN (tr )}. (3.3)
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The reduced basis interpolation norms on Vr are defined by either of the three equiv-
alent definitions

‖u‖Es
r

:= ‖u‖Es ((Vr ,‖·‖0),(Vr ,‖·‖1)), (3.4a)

‖u‖Hs
r

:= ‖u‖Hs((Vr,‖·‖0),(Vr,‖·‖1)), (3.4b)

‖u‖2K s
r

:=
∫ ∞

0
t−2s−1 K2

((Vr ,‖·‖0),(Vr ,‖·‖1))(t; u)
︸ ︷︷ ︸

=:K 2
r (t;u)

dt . (3.4c)

Remark 2 The choice t0 = 0 yields vN (t0) = u and hence u ∈ Vr , such that (3.4a)-
(3.4c) are well defined. Definition (3.3) is motivated by means of the K-method.
The variational problem (3.2), which is uniquely solvable according to Lax-Milgram,
appears to be the Euler-Lagrange equation of K 2(t; u), such that vN (t) coincides with
the minimizer of K 2(t; u). Based on a sophisticated selection of t1, . . . , tr , the choice
of Vr aims to provide a both accurate and efficient approximation to the family of
solutions (vN (t))t∈R+ .

Remark 3 Definition 3 incorporates a nonlinear dependency in u. For simplicity, we
neglect this relation in both terminology and notation throughout our discussions. We
point out, however, that all Vr -connected constructions are subject to this dependency.

In analogy to (3.1), we denote the eigenpairs of (Vr , ‖ · ‖0) and (Vr , ‖ · ‖1) by
(φ j , μ

2
j )

r
j=0 ⊆ Vr × R

+ from now on, such that

〈φ j , φi 〉0 = δ j i , 〈φ j , wr 〉1 = μ2
j 〈φ j , wr 〉0, wr ∈ Vr , (3.5)

with

0 < μ2
0 ≤ · · · ≤ μ2

r .

In general, the construction of Vr yields a r + 1 dimensional space. The proof is
carried out in two steps.

Lemma 2 For all t ∈ R
+ there holds

vN (t) =
N∑

k=1

uk

1 + t2λ2k
ϕk, uk := 〈u, ϕk〉0.

Proof Both vN (t) and u provide expansions in the eigenbasis

vN (t) =
N∑

k=1

〈vN (t), ϕk〉0ϕk, u =
N∑

k=1

〈u, ϕk〉0ϕk .

Plugging into (3.2) with w = ϕi yields

〈vN (t), ϕi 〉0 + t2λ2i 〈vN (t), ϕi 〉0 = 〈u, ϕi 〉0 = ui .
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Resolving the equation for 〈vN (t), ϕi 〉0 concludes the proof. ��
Lemma 3 Let |{λ2k ∈ {λ21, . . . , λ2N } : uk �= 0}| =: m ∈ N denote the number of pair-
wise distinct eigenvalues, whose corresponding eigenspaces contribute nontrivially to
the linear combination of u. Then there holds

r + 1 ≤ m �⇒ {vN (t0), . . . , vN (tr )} is linearly independent.

Proof W.l.o.g. we assume that {k ∈ {1, . . . , N } : uk �= 0} = {1, . . . , l}, where
l ≥ m.We show linear independency straight forwardwith the result from the previous
Lemma. Assume that

0 =
r∑

j=0

α jvN (t j ) =
r∑

j=0

α j

l∑

k=1

uk

1 + t2j λ
2
k

ϕk =
l∑

k=1

r∑

j=0

α j
uk

1 + t2j λ
2
k

ϕk

for some coefficients α0, . . . , αr ∈ R. The orthonormal system (ϕk)
l
k=1 is linearly

independent, yielding

∀k ∈ {1, . . . , l} :
r∑

j=0

α j
1

1 + t2j λ
2
k

= 0. (3.6)

Let now I ⊆ {1, . . . , l}, such that {λ2k ∈ {λ21, . . . , λ2N } : k ∈ I} = {λ21, . . . , λ2l } and|I| = m. Then, condition (3.6) is equivalent to

∀k ∈ I :
r∑

j=0

α j
1

1 + t2j λ
2
k

= 0.

Exploiting r + 1 ≤ m and the pairwise distinctness of both (t j )
r
j=0 and (λ2k)k∈I, one

deduces that α0 = · · · = αr = 0. ��
The proof of Lemma 3 immediately reveals that the set {vN (t0), . . . , vN (tr )} becomes
linearly dependent as r + 1 > m. In practice, we observe two possible constellations.
In the common case, where u provides contributions from multiple basis vectors ϕk ,
solutions of (3.2) for different shift parameters ti indeed lead to an enrichment of Vr ,
as long as r is small enough. If the amount of non-zero Fourier-components of u is
rather small, we might be confronted with the case, where augmenting r does not
affect the dimension of Vr any further. In this case, however, enlargement of Vr is no
longer necessary, as the following Theorem shows.

Theorem 3 Let |{λ2k ∈ {λ21, . . . , λ2N } : uk �= 0}| =: m ∈ N. If r + 1 ≥ m, then the
reduced basis interpolation norms (3.4a)-(3.4c) coincide with the exact finite element
interpolation norms from (2.7), respectively.
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Proof It suffices to validate the claim with respect to the Hilbert space interpolation
norm for the case r + 1 = m. Let therefore I = {i0, . . . , ir } ⊆ {1, . . . , N }, such that
{λ2i0 , . . . , λ2ir } = {λ2k ∈ {λ21, . . . , λ2N } : uk �= 0}. Moreover, let

u =
⊕

i∈I
ui

refer to the orthogonal decomposition of u according to the corresponding eigenspaces.
Due to

vN (t j ) =
∑

i∈I

1

1 + t2j λ
2
i

ui , j = 0, . . . , r ,

and the regularity of the matrix B ∈ R
(r+1)×(r+1) with Bkl := (1+ t2k λ2l )

−1, we have
that (ui )i∈I is a basis of Vr , which is orthogonal by construction. We deduce λ2i j

= μ2
j

for all j = 0, . . . , r . Direct computations reveal

‖u‖2Hs
r

=
m−1∑

j=0

μ2s
j 〈u, φ j 〉20 =

m−1∑

j=0

λ2s
i j

〈u, ui j 〉20
‖ui j ‖20

=
m−1∑

j=0

λ2s
i j

‖ui j ‖20 = ‖u‖2Hs .

��
With exception of Theorem 6, we only consider the case where r + 1 ≤ m for the rest
of this paper, such that the dimension of Vr coincides with r + 1.

3.2 Computational aspects

The remainder of this section reviews the major ingredients to supply the reduced
basis interpolation norms with a computationally applicable form. Before addressing
this issue explicitly, we specify some further notation. Throughout what follows, for
each v ∈ Vh we denote by v ∈ R

N its uniquely assigned coefficient vector, such that

v =
N∑

k=1

(v)kbk,

where (bk)
N
k=1 denotes the finite element basis from (2.6). Moreover, we introduce the

sth-power of any symmetric matrix Q ∈ R
l×l , l ∈ N, by diagonalization, i.e.,

Qs := �s−1,

where ∈ R
l×l denotes the matrix of eigenvectors of Q and�s the involved diagonal

matrix, containing the sth-power of all corresponding eigenvalues. If Q is also positive
definite, we set

∀x, y ∈ R
l : ‖x‖2Q := xT Qx, 〈x, y〉Q := xT Qy.
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Based on these definitions, we follow the idea of POD [29] to propose an accurate
procedure that computes (3.4a) - (3.4c) for one and hence for all norms efficiently.
The structure of ‖u‖Es

r
and ‖u‖K s

r
is less amenable to direct computations, since this

would require quadrature rules on the unbounded domain R
+. A more convenient

setting can be provided by the eigensystem. Targeting at the computation of Vr , we
introduce the matrix

V̂r := [vN (t0), . . . , vN (tr )] ∈ R
N×(r+1),

whose j th column consists of the coefficient vector of vN (t j ), i.e.,

vN (t j ) = (M + t2j A)−1Mu. (3.7)

Thereupon, we introduce an orthonormal basis of Vr that is suitable for the study of
our problem.

Definition 4 The reduced basis matrix Vr ∈ R
N×(r+1) is defined as the unique matrix

that arises from Gram-Schmidt orthonormalization chronologically applied to the
columns of V̂r with respect to the scalar product 〈·, ·〉M .

Remark 4 The chronological performance of Gram-Schmidt orthonormalization in
Definition 4 yields that the first column of Vr coincides with β−1u, where β := ‖u‖0.
The reduced basis matrix suggests a canonical basis on Vr by referring to the unique
functions br

1, . . . , br
r ∈ Vr ⊆ Vh , whose assigned coefficient vectors coincide with

the columns of Vr , i.e.,

Vr =
[
br
1, . . . , br

r

]
.

Thereupon, we introduce for all vr ∈ Vr its uniquely assigned coefficient vector
vr ∈ R

r+1, such that

vr =
r∑

j=0

(
vr

)

j
br

j .

There holds

〈vr , wr 〉1 = 〈vr , wr 〉A = vr
T Awr = vr

T V T
r AVrwr , (3.8a)

〈vr , wr 〉0 = vr
T V T

r MVrwr = vr
T wr (3.8b)

for all vr , wr ∈ Vr , where the last equality follows by the orthonormal property of Vr .
Thereupon, we introduce the following definition.

Definition 5 The projected stiffness matrix Ar ∈ R
(r+1)×(r+1) is defined by

Ar := V T
r AVr .

123



A reduced basis method for fractional diffusion operators I

Theorem 4 Let e1 ∈ R
r+1 denote the first unit vector and β = ‖u‖0. Then there holds

‖u‖Hs
r

= β‖e1‖As
r
.

The proof is postponed to Sect. 4. Theorem 4 highlights the beneficial structure of
the proposed reduced basis algorithm. The arising problem size is of much smaller
magnitude r � N , making direct computations of the eigensystem affordable.

4 Approximation of the operators

All three reduced basis interpolation norms (3.4a)–(3.4c) induce an operator, LEs
r
,

LHs
r
, and LK s

r
on Vr , which do all coincide up to s-dependent constants. In the same

way as LHs
r
serves as reduced basis surrogate for the spectral finite element operator

LHs =
N∑

k=1

λ2s
k 〈·, ϕk〉0ϕk,

LEs
r
can be interpreted as model order reduction of the generalized Dirichlet-to-

Neumann map from [45]. The latter coincides with LEs (V0,V1), if V0 and V1 are
chosen appropriately. The purpose of LK s

r
is more of a technical than theoretical kind.

We make use of the K-method as vital tool to proof convergence for one and hence for
all three reduced basis operators. However, due to its computationally beneficial form,
we stick to the equivalent spectral setting at first and refer to LHs

r
as our truth reduced

basis approximation. In dependency of u ∈ Vh , we state the essential definition of this
paper.

Definition 6 (Reduced basis operator) For all r ∈ N we define the reduced basis
operator LHs

r
of LHs as the induced operator of ‖ · ‖Hs

r
.

Remark 5 In order to indicate its nonlinear nature, we write arguments of the reduced
basis operator in brackets, i.e., LHs

r
(u) instead of LHs

r
u.

As one can show, the matrix representation of LHs , i.e., the unique matrix L Hs ∈
R

N×N , such that

LHs u = L Hs u

for all u ∈ Vh , is given by (M−1A)s . It serves as matrix approximation of the original
fractional operator LHs (V0,V1) in a finite element setting. Direct computations, how-
ever, are not feasible due to the typically large problem size. The proposed algorithm
provides a remedy for this difficulty. In the following,wederive theu-dependentmatrix
representation L Hs

r
of the reduced basis operator, providing the necessary information

to carry out the actual computations.
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Theorem 5 For all u ∈ Vh there holds

‖u‖2Hs
r

= uT MVr As
r V T

r Mu. (4.1)

Moreover, the induced scalar product 〈·, ·〉Hs
r

on (Vr , ‖ · ‖Hs
r
) satisfies

〈vr , wr 〉Hs
r

= vr
T MVr As

r V T
r Mwr (4.2)

for all vr , wr ∈ Vr . The matrix representation of LHs
r

is given by

L Hs
r

= Vr As
r V T

r M .

Proof It suffices to prove (4.1). Recalling (3.5), we define

r :=
[
φ0, . . . , φr

]
∈ R

(r+1)×(r+1), �r := diag(μ2
0, . . . , μ

2
r ) ∈ R

(r+1)×(r+1).

Equation (3.5) combined with (3.8a) and (3.8b) yields

T
r r = Ir , T

r Arr = �r .

Thus,

uT MVr As
r V T

r Mu = uT M(Vrr )�
s
r (Vrr )

T Mu =
r∑

j=0

μ2s
j 〈u, φ j 〉20 = ‖u‖2Hs

r
.

��
We catch up on the postponed proof from the previous section.

Proof of Theorem 4 Follows directly from Theorem 5 and Remark 4 by utilizing the
substitution u = βVr e1. ��

L Hs
r
serves as efficient approximation of (M−1A)s . Ahead of investigating its accu-

racy, we examine the arising computational costs, requiring knowledge of the map
r �→ (t1, . . . , tr ) and its involved complexity. We address this problem adequately in
Sect. 5, indicating for now that its essential computational expense amounts to finding
a lower and upper bound for the spectrum of M−1A. The overall complexity has to be
regarded from two different perspectives, the so-called offline and online phase, and
depends on the particular problem.

At first, we consider evaluations of type u �→ LHs
r
(u), which are of nonlinear char-

acter. The underlying offline phase encompasses computations of the spectral bounds
as a one-time investment. The online phase has to be performed for each argument
separately. It incorporates computations of r finite element solutions vN (t j ) of the
original, expensive problem size, followed by orthonormalization of V̂r ∈ R

N×(r+1)

to obtain the reduced basis matrix Vr . Furthermore, the projectedmatrix Ar = V T
r AVr
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has to be established in order to determine its eigensystem. The assembly of first As
r

and second of Vr As
r V T

r Mu completes the computations. Despite its nonlinear nature,
the savings gained substantially outweigh the arising inaccuracy, if r is of moderate
size.

The offline-online decomposition is of particular interest, if we target at approx-
imations of type s �→ LHs

r
(u) for fixed u and several values of s ∈ (0, 1). In this

case, the online phase breaks down to the assembly of As
r and Vr As

r V T
r Mu, while

all remaining computations are the matter of a one-time investment within the offline
phase.

Several properties of the reduced basis interpolation norms also apply to Definition
6. Exemplary, the operator counterpart of Theorem 3 is procured in the following.

Theorem 6 Let |{λ2k ∈ {λ21, . . . , λ2N } : uk �= 0}| =: m ∈ N. If r + 1 ≥ m, then there
holds

LHs
r
(u) = LHs u.

Proof Follows the very same arguments as the proof of Theorem 3. ��

5 Convergence analysis

The goal of this section is to specify the choice of snapshots in Definition 3 to gain
optimal convergence properties.We affirm that there exists a tuple of positive numbers
t1, . . . , tr , naturally arising from the analysis, such that exponential decay in the error
for both norm and operator action is obtained. While computations are carried out
in the spectral setting, the approach involving the K-functional turns out to provide
a more beneficial environment for the analysis. We adopt Theorem 5 in this context
and take advantage of the, up to a multiplicative constant, interchangeable role of the
reduced basis scalar products. Before going further into detail, we investigate two
fundamental definitions that are based on [26, 48], see also [39], involving the theory
of elliptic integrals and Jacobi elliptic functions, see [1, Section 16 & 17].

Definition 7 Let δ ∈ (0, 1). For each r ∈ Nwe define the Zolotarëv pointsZ1, . . . ,Zr

on the interval [δ, 1] by

Z j := dn

(
2(r − j) + 1

2r
K(δ′), δ′

)
, j = 1, . . . , r ,

where dn(θ, k) denotes the Jacobi elliptic function, K(k) the corresponding complete
elliptic integral of first kind with elliptic modulus k, and δ′ := √

1 − δ2.

Definition 8 Let 0 < a < b ∈ R
+. For each r ∈ N we define the transformed

Zolotarëv points Ẑ1, . . . , Ẑr on [a, b] by

Ẑ j := bZ j , j = 1, . . . , r ,

where Z1, . . . ,Zr refer to the Zolotarëv points on
[ a

b , 1
]
.
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As shown in the further course of action, the transformed Zolotarëv points on
[λ−2

N , λ−2
1 ] turn out to be perfectly tailored for our reduced basis strategy. We recap

that λ21 and λ2N refer to the minimal and maximal eigenvalue of the discrete operator
and agree on the following nomenclature.

Definition 9 A reduced space Vr = span{vN (t0), . . . , vN (tr )} ⊆ Vh is called
Zolotarëv space, if and only if there exist two constants λ2L , λ2U ∈ R

+ with

λ2L ≤ λ21, λ2U ≥ λ2N ,

such that the squared snapshots t21 , . . . , t2r coincide with the transformed Zolotarëv
points on σ inv := [λ−2

U , λ−2
L ]. We call σ := [λ2L , λ2U ] the spectral interval of Vr .

5.1 Error of the reduced basis interpolation norms

We specify some further notation. By a � b we mean that there exists a constant
C ∈ R

+, independent of a, b, and r , such that a ≤ Cb. Along with this premiss, we
prove that Definition 9 provides an optimal choice for the reduced space.

Theorem 7 (Exponential convergence of the reduced basis interpolation norms) Let
u ∈ Vh and Vr ⊆ Vh a Zolotarëv space with σ = [λ2L , λ2U ] and δ = λ2L/λ2U . Then there
holds

∃C ∈ R
+ : 0 ≤ ‖u‖2K s

r
− ‖u‖2K s � e−Cr‖u‖21. (5.1)

The constant C only depends on δ and satisfies

C(δ) = O
(

1

ln
( 1

δ

)

)

, as δ → 0.

Its precise value coincides with 2C∗, where C∗ refers to the constant from Remark 7.

Verifying the claim of Theorem 7 is challenging, which is why we conduct the proof
in several steps. Under the prescribed assumptions, we start with the first inequality
of (5.1).

Lemma 4 There holds

‖u‖K s
r

≥ ‖u‖K s .

Proof The relation Vr ⊆ Vh immediately reveals

K 2
r (t; u) = inf

vr ∈Vr

‖u − vr‖20 + t2‖vr‖21 ≥ inf
v∈Vh

‖u − v‖20 + t2‖v‖21 = K 2(t; u).

for all t ∈ R
+. Hence,
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‖u‖2K s
r

=
∫ ∞

0
t−2s−1K 2

r (t; u) dt ≥
∫ ∞

0
t−2s−1K 2(t; u) dt = ‖u‖2K s .

��
Due to

‖u‖2K s
r
− ‖u‖2K s =

∫ ∞

0
t−2s−1

(
K 2

r (t; u) − K 2(t; u)
)

dt, (5.2)

the error of the norms can be traced back to the error of the K-functionals. To make
matters precise, we conduct some technical preparations.

Definition 10 For all t ∈ R
+ we denote by vr (t) ∈ Vr the unique minimizer of

K 2
r (t; u).

Remark 6 Similarly to vN (t), utilizing Euler-Lagrange formalism, the minimizer
vr (t) ∈ Vr is the unique solution of the variational problem

∀wr ∈ Vr : 〈vr (t), wr 〉0 + t2〈vr (t), wr 〉1 = 〈u, wr 〉0,

or equivalently, vr (t) ∈ R
r+1 solves the linear system of equations

(Ir + t2Ar )vr (t) = V T
r Mu,

where Ir ∈ R
(r+1)×(r+1) represents the identity matrix.

Lemma 5 For all t ∈ R
+ and wr ∈ Vr there holds

‖u − wr‖20 + t2‖wr‖21 − ‖u − vN (t)‖20 − t2‖vN (t)‖21
= ‖vN (t) − wr‖20 + t2‖vN (t) − wr‖21.

Proof For convenience, we omit the dependency in t in consecutive elaborations. One
observes

‖u − wr‖20 − ‖u − vN ‖20 = 〈u − wr , u − wr 〉0 − 〈u − vN , u − vN 〉0
= −2〈u, wr 〉0 + ‖wr‖20 + 2〈u, vN 〉0 − ‖vN ‖20.

We define the bilinear form a(u, w) := 〈u, w〉0 + t2〈u, w〉1 onVh ×Vh . Due to (3.2),
there holds

‖u − wr‖20 − ‖u − vN ‖20 = −2a(vN , wr ) + ‖wr‖20 + 2a(vN , vN ) − ‖vN ‖20.

Thus,

‖u − wr ‖20 + t2‖wr ‖21 − ‖u − vN ‖20 − t2‖vN ‖21 = a(wr , wr ) − 2a(vN , wr ) + a(vN , vN )

= a(wr − vN , wr − vN )
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= ‖vN − wr ‖20 + t2‖vN − wr ‖21.

��
The accuracy of K 2

r (t; u) rests upon the approximation quality of the minimizer
vr (t) ≈ vN (t), as the following result shows.

Corollary 3 For all t ∈ R
+ there holds

K 2
r (t; u) − K 2(t; u) = ‖vN (t) − vr (t)‖20 + t2‖vN (t) − vr (t)‖21. (5.3)

Proof Follows directly from Lemma 5 with wr = vr (t). ��
Dealing with (5.3) is challenging. We derive an upper bound for the error which turns
out to be more amenable to analytical considerations.

Corollary 4 For all t ∈ R
+ and wr ∈ Vr there holds

K 2
r (t; u) − K 2(t; u) ≤ ‖vN (t) − wr‖20 + t2‖vN (t) − wr‖21. (5.4)

Proof Due to the minimization property of vr (t), there holds

K 2
r (t; u) − K 2(t; u) ≤ ‖u − wr‖20 + t2‖wr‖21 − ‖u − vN (t)‖20 − t2‖vN (t)‖21

for all t ∈ R
+ and wr ∈ Vr . Utilizing Lemma 5 concludes the proof. ��

In the subsequent, we aim to choose

wr =
r∑

j=0

α jvN (t j ) ∈ Vr (5.5)

from Corollary 4 in a clever way, such that the upper bound in (5.4) becomes small.
The idea of how to choose its coefficients α j emerges from the following investigation.

Theorem 8 For all α0, . . . , αr ∈ R there holds

K 2
r (t; u) − K 2(t; u) ≤

N∑

k=1

(1 + t2λ2k)

(
1

1 + t2λ2k
−

r∑

j=0

α j
1

1 + t2j λ
2
k

)2
u2

k .

Proof Due to Corollary 4, there holds for any function of type (5.5)

K 2
r (t; u) − K 2(t; u) ≤ ‖vN (t) − wr‖20 + t2‖vN (t) − wr‖21.

Spectral decomposition combined with Lemma 2 yields

vN (t) − wr =
N∑

k=1

uk

1 + t2λ2k
ϕk −

r∑

j=0

α j

N∑

k=1

uk

1 + t2j λ
2
k

ϕk
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=
N∑

k=1

(
1

1 + t2λ2k
−

r∑

j=0

α j
1

1 + t2j λ
2
k

)
ukϕk .

Based on the orthogonal property of (ϕk)
N
k=1, we observe

‖vN (t) − wr‖21 =
N∑

k=1

∥∥∥
(

1

1 + t2λ2k
−

r∑

j=0

α j
1

1 + t2j λ
2
k

)
ukϕk

∥∥∥
2

1

=
N∑

k=1

λ2k

(
1

1 + t2λ2k
−

r∑

j=0

α j
1

1 + t2j λ
2
k

)2
u2

k .

Computations in the 0-norm can be concluded analogously, proving the claim. ��
Theorem 8 reveals that (5.5) has to be chosen in a way, such that for all λ1, . . . , λN ,
or more generally, for all values of λ ∈ [λ1, λN ], the difference

⎛

⎝ 1

1 + t2λ2
−

r∑

j=0

α j
1

1 + t2j λ
2

⎞

⎠ (5.6)

becomes small. Typically, neither λ1 nor λN are known a-priori, which is why we
consider (5.6) with respect to the spectral interval from Definition 9, admitting λ ∈
[λL , λU ] instead. Any possible bound of (5.6) then trivially also holds on [λ1, λN ].

In the further course of action,we derive two different candidates for the coefficients
(α j )

r
j=0 in dependency of t . The first one ensures that (5.6) becomes small for t ≥ 1,

while the second achieves the same as t < 1. To this extent, we make a first ansatz and
set α0 = 0. The latter coefficients are determined by means of a rational interpolation
problem, which we inquire in the subsequent Lemma.

Lemma 6 Assume that κ ∈ R
+, κ1, . . . , κr ∈ σ inv , and κi �= κ j for i �= j . Consider

the space R of all rational functions R, which admit a representation

R(x) =
r∑

j=1

α j
1

1 + κ j x

for coefficients α1, . . . , αr ∈ R. Further define

gκ(x) := 1

1 + κx
.

Then the solution of the rational interpolation problem: Find q ∈ R, such that

∀ j ∈ {1, . . . , r} : q

(
1

κ j

)
= gκ

(
1

κ j

)
(5.7)
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satisfies

∀x ∈ σ : |gκ(x) − q(x)| ≤ 1

1 + κx

r∏

j=1

∣∣∣∣
1 − κ j x

1 + κ j x

∣∣∣∣ . (5.8)

Proof Let

q(x) =
r∑

j=1

α̂ j
1

1 + κ j x

denote the unique solution of (5.7). Then there holds

gκ(x) − q(x) = 1

1 + κx
−

r∑

j=1

α̂ j
1

1 + κ j x
= p(x)

(1 + κx)
∏r

j=1(1 + κ j x)
(5.9)

for a suitable polynomial p of degree r . The interpolation property yields

∀ j ∈ {1, . . . , r} : p

(
1

κ j

)
= 0.

The fundamental Theorem of algebra affirms the existence of a constant c ∈ R, such
that

p(x) = c
r∏

j=1

(1 − κ j x).

The constant c can be further specified. Multiplying (5.9) by (1 + κx) and setting
x = − 1

κ
yields

1 = c
r∏

j=1

1 + κ j
κ

1 − κ j
κ

, and hence, c =
r∏

j=1

(κ − κ j )

(κ + κ j )
.

All together, we obtain for all x ∈ σ

|gκ(x) − q(x)| = 1

1 + κx

r∏

j=1

∣∣∣∣
(κ − κ j )

(κ + κ j )

(1 − κ j x)

(1 + κ j x)

∣∣∣∣ ≤
1

1 + κx

r∏

j=1

∣∣∣∣
1 − κ j x

1 + κ j x

∣∣∣∣ .

��
Minimizing the maximal deviation of the upper bound in (5.8) leads to a min-max
problem of the following kind: Find κ1, . . . , κr ∈ σ inv , such that

min
θ1,...,θr ∈σ inv

max
x∈σ

r∏

j=1

∣∣∣∣
1 − θ j x

1 + θ j x

∣∣∣∣ = max
x∈σ

r∏

j=1

∣∣∣∣
1 − κ j x

1 + κ j x

∣∣∣∣ . (5.10)
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Closely related problems have been investigated in [26, 48]. We summarize the
essential results. Consider the slightly modified problem: Find κ1, . . . , κr ∈ [δ, 1],
δ = λ2L/λ2U , such that

min
θ1,...,θr ∈[δ,1] max

x∈[δ,1]

r∏

j=1

∣∣∣∣
x − θ j

x + θ j

∣∣∣∣ = max
x∈[δ,1]

r∏

j=1

∣∣∣∣
x − κ j

x + κ j

∣∣∣∣ . (5.11)

Zolotarëv andGonchar showed that its unique solution is given by the Zolotarëv points
Z1, . . . ,Zr on [δ, 1]. They further approved that there exists a positive constant C ,
depending on δ only, such that

max
x∈[δ,1]

r∏

j=1

∣∣∣∣
x − Z j

x + Z j

∣∣∣∣ � e−Cr . (5.12)

The product in (5.12), considered as function in x , features r + 1 points of alternance
and has the least deviation from zero on [δ, 1] among all functions of this form. We
set results from problem (5.11) in correspondence with (5.10).

Theorem 9 The unique solution κ1, . . . , κr of problem (5.10) satisfies κ j = Ẑ j for all
j = 1, . . . , r , where Ẑ j denotes the j th transformed Zolotarëv point on σ inv .

Proof Consider the linear transformation � : [δ, 1] −→ σ inv with �(x) := λ−2
L x .

Direct computations, based on the results of [48], reveal

min
θ1,...,θr ∈σ inv

max
x∈σ

r∏

j=1

∣∣∣∣
1 − θ j x

1 + θ j x

∣∣∣∣ = min
θ1,...,θr ∈σ inv

max
x∈σ inv

r∏

j=1

∣∣∣∣
x − θ j

x + θ j

∣∣∣∣

= min
θ1,...,θr ∈[δ,1] max

x∈[δ,1]

r∏

j=1

∣∣∣∣
�(x) − �(θ j )

�(x) + �(θ j )

∣∣∣∣

= max
x∈[δ,1]

r∏

j=1

∣∣∣∣
x − Z j

x + Z j

∣∣∣∣

= max
x∈[δ,1]

r∏

j=1

∣∣∣∣
�(x) − �(Z j )

�(x) + �(Z j )

∣∣∣∣

= max
x∈σ inv

r∏

j=1

∣∣∣∣∣
x − Ẑ j

x + Ẑ j

∣∣∣∣∣
= max

x∈σ

r∏

j=1

∣∣∣∣∣
1 − Ẑ j x

1 + Ẑ j x

∣∣∣∣∣
.

��
Within the proof of Theorem 9, we have additionally shown that

max
x∈σ

r∏

j=1

∣∣∣∣∣
1 − Ẑ j x

1 + Ẑ j x

∣∣∣∣∣
= max

x∈[δ,1]

r∏

j=1

∣∣∣∣
x − Z j

x + Z j

∣∣∣∣ ,
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which, due to (5.12), immediately reveals the following result.

Corollary 5 Let Ẑ1, . . . , Ẑr denote the transformed Zolotarëv points on σ inv . Then
there holds

∃C ∈ R
+ : max

x∈σ

r∏

j=1

∣∣∣∣∣
1 − Ẑ j x

1 + Ẑ j x

∣∣∣∣∣
� e−Cr . (5.13)

Remark 7 As shown in [35], constants fromCorollary 5 can be further specified. More
precisely, the maximal deviation in (5.13) can be bounded by means of

max
x∈σ

r∏

j=1

∣∣∣∣∣
1 − Ẑ j x

1 + Ẑ j x

∣∣∣∣∣
≤ 2e−C∗r ,

with

C∗ := πK(μ1)

4K(μ)
, μ :=

(
1 − √

δ

1 + √
δ

)2
, μ1 :=

√
1 − μ2,

and K the elliptic integral from Definition 7. The following asymptotic formulas are
known to hold,

K(μ) ≈ 1

2
ln

(
16

1 − μ

)
, K(μ1) ≈ π

2
, as μ → 1,

see e.g., [1, Section 17]. This yields the asymptotic behaviour of C∗ in dependency of
δ,

C∗(δ) ≈ 1

ln
( 1

δ

) , as δ → 0.

Along with the choice λL := λ1 and λU := λN , this reveals that the constant C∗ only
deteriorates at logarithmical rate as the condition number λ2N/λ21 = δ−1 increases. The
number of solves required to achieve a prescribed precision ε > 0 behaves like

r = O(ln(ε) ln(δ)).

We eventually return to the original problem of interest in (5.6).

Lemma 7 Denote by α̂1, . . . , α̂r ∈ R the coefficients of the unique solution q ∈ R
from the rational interpolation problem (5.7) with κ := t2 for some t ∈ R

+ and
κ j := t2j . Let C∗ denote the constant from Remark 7. Then there holds

∣∣∣∣∣∣

1

1 + t2λ2k
−

r∑

j=1

α̂ j
1

1 + t2j λ
2
k

∣∣∣∣∣∣
� e−C∗r

1 + t2λ2k
, k = 1, . . . , N . (5.14)
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Proof According to Lemma 6, Corollary 5, and Remark 7, there holds

∣∣∣∣∣∣

1

1 + t2λ2
−

r∑

j=1

α̂ j
1

1 + t2j λ
2

∣∣∣∣∣∣
≤ 1

1 + t2λ2

r∏

j=1

∣∣∣∣∣

1 − t2j λ
2

1 + t2j λ
2

∣∣∣∣∣
� e−C∗r

1 + t2λ2

for all λ ∈ [λL , λU ]. By construction, there holds λk ∈ [λL , λN ] for all k = 1, . . . , N ,
which is why (5.14) is valid. ��
Assembling results from above finally enables us to derive an upper bound for the
error in the reduced basis K-functional.

Theorem 10 Let C∗ denote the constant from Remark 7. Then there holds for all
t ∈ R

+

K 2
r (t; u) − K 2(t; u) � e−2C∗r

N∑

k=1

1

1 + t2λ2k
u2

k .

Proof Theorem 8 combined with Lemma 7 yields

K 2
r (t; u) − K 2(t; u) �

N∑

k=1

(1 + t2λ2k)

(
e−C∗r

1 + t2λ2k

)2
u2

k = e−2C∗r
N∑

k=1

1

1 + t2λ2k
u2

k .

��
As it turns out in the further course of action, the upper bound derived in Theorem 10 is
only sharp enough in case of t ≥ 1, but not as t < 1. We overcome this inconvenience
by subtle adjustments of the interpolation problem (5.7), such that its arising solution
leads to the desired properties.

Theorem 11 Let C∗ denote the constant from Remark 7. Then there holds for all
t ∈ R

+

K 2
r (t; u) − K 2(t; u) � e−2C∗r

N∑

k=1

t4λ4k
1 + t2λ2k

u2
k .

Proof In analogy to Lemma 6, we consider the following rational interpolation prob-
lem: For κ ∈ R

+ and κ1, . . . , κr ∈ σ inv pairwise distinct, find q ∈ R̂, such that

∀ j ∈ {1, . . . , r} : q

(
1

κ j

)
= gκ

(
1

κ j

)
,

q(0) = gκ(0),

where R̂ denotes the linear span ofR enriched by constant functions. We remark that
α0 = 0 is no longer constrained. Similarly to the proof of Lemma 6, one affirms that
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|gκ(x) − q(x)| = κx

1 + κx

r∏

j=1

∣∣∣∣
(κ − κ j )

(κ + κ j )

(1 − κ j x)

(1 + κ j x)

∣∣∣∣ ≤
κx

1 + κx

r∏

j=1

∣∣∣∣
1 − κ j x

1 + κ j x

∣∣∣∣ .

The transformed Zolotarëv points on σ inv ensure exponential convergence of the
product. Proceeding in the same manner as before, one concludes the proof. ��

We have now all the required tools to prove exponential convergence of the reduced
basis interpolation norms in the K-setting.

Proof (Proof of Theorem 7) Theorem 10 and 11 together with (5.2) yield

‖u‖2K s
r
− ‖u‖2K s � e−2C∗r

N∑

k=1

(∫ 1

0

t3−2sλ4k

1 + t2λ2k
u2

k dt +
∫ ∞

1

t−2s−1

1 + t2λ2k
u2

k dt

)

≤ e−2C∗r
N∑

k=1

u2
k

(∫ 1

0

t3−2sλ4k

t2λ2k
dt +

∫ ∞

1
t−2s−1 dt

)

� e−2C∗r
N∑

k=1

u2
k

(
λ2k − 1

)
� e−2C∗r‖u‖21.

��

5.2 Error of the reduced basis operator

The reduced basis interpolation norms provide an exponential decay in the error, grant-
ing good chances that similar results are valid with respect to the induced operators.
Indeed, convergence of the operators is based on the results from Sect. 5.1. The core
of this paper is summarized in the following Theorem, relying on the notation

‖v‖22 :=
N∑

k=1

λ4k〈v, ϕk〉20, v ∈ Vh .

Theorem 12 (Exponential convergence of the reduced basis operator) Let u ∈ Vh and
Vr ⊆ Vh a Zolotarëv space with σ = [λ2L , λ2U ] and δ = λ2L/λ2U . Then there exists a
constant C ∈ R

+, such that

‖LHs
r
(u) − LHs u‖0 � e−Cr‖u‖2. (5.15)

The constant C only depends on δ and satisfies

C(δ) = O
(

1

ln
( 1

δ

)

)

, as δ → 0.

Its precise value coincides with the constant C∗ from Remark 7. Moreover, if s ∈ (0, 1
2

)
,

the 2-norm of u in (5.15) can be replaced by ‖u‖1.
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The rest of this section is dedicated to the proof of Theorem 12 and therefore sub-
ject to the prescribed assumptions. All arising matrix-valued integrals are understood
component-by-component.

Lemma 8 There holds

‖u‖2K s = uT M
∫ ∞

0
t−2s−1

(
M−1 − (M + t2A)−1

)
dt Mu.

Moreover, the induced scalar product 〈·, ·〉K s on (Vh, ‖ · ‖K s ) satisfies

〈v,w〉K s = vT M
∫ ∞

0
t−2s−1

(
M−1 − (M + t2A)−1

)
dt Mw

for all v,w ∈ Vh.

Proof We show the first equality. Due to (3.2), there holds

‖u − vN (t)‖20 = ‖u − (M + t2A)−1Mu‖2M
= uT Mu − 2uT M(M + t2A)−1Mu + ‖(M + t2A)−1Mu‖2M .

Utilizing the identity t2A = (M + t2A) − M yields

t2‖vN (t)‖21 = t2‖(M + t2A)−1Mu‖2A
= ((M + t2A)−1Mu

)T
t2A
(
(M + t2A)−1Mu

)

= uT M(M + t2A)−1Mu − ‖(M + t2A)−1Mu‖2M .

This reveals

K 2(t, u) = ‖u − vN (t)‖20 + t2‖vN (t)‖21
= uT Mu − uT M(M + t2A)−1Mu = uT M(M−1 − (M + t2A)−1)Mu.

Hence,

‖u‖2K s =
∫ ∞

0
t−2s−1K 2(t, u) dt

=
∫ ∞

0
t−2s−1uT M

(
M−1 − (M + t2A)−1

)
Mu dt

= uT M
∫ ∞

0
t−2s−1

(
M−1 − (M + t2A)−1

)
dt Mu.

��
Throughout the rest of this paper, the identity matrix on R

(r+1)×(r+1) is denoted by
Ir , giving rise to the following claim.
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Lemma 9 There holds

‖u‖2K s
r

= uT MVr

∫ ∞

0
t−2s−1

(
Ir − (Ir + t2Ar )

−1
)

dt V T
r Mu.

Moreover, the induced scalar product 〈·, ·〉K s
r

on (Vr , ‖ · ‖K s
r
) satisfies

〈vr , wr 〉K s
r

= vr
T MVr

∫ ∞

0
t−2s−1

(
Ir − (Ir + t2Ar )

−1
)

dt V T
r Mwr (5.16)

for all v,w ∈ Vh. The matrix representation of LK s
r

is given by

L K s
r

= MVr

∫ ∞

0
t−2s−1

(
Ir − (Ir + t2Ar )

−1
)

dt V T
r M .

Proof In analogy to the proof of Lemma 8, one shows that

K 2
r (t; u) = uT MVr (Ir − (Ir + t2Ar )

−1)V T
r Mu.

Plugging into the integral representation of ‖u‖2K s
r
eventually proves the claim. ��

Definition 11 For all v ∈ Vh and wr ∈ Vr we define

〈v,wr 〉Hs
r

:= 〈v, L Hs
r
wr 〉M ,

〈v,wr 〉K s
r

:= 〈v, L K s
r
wr 〉M .

Lemma8and9 are fundamental to showpointwise convergenceof the inducedoperator
in the K-setting. We proceed in two steps.

Theorem 13 For all w ∈ Vh there holds

|〈w, u〉K s
r
− 〈w, u〉K s | ≤ ‖w‖0

∫ ∞

0
t−2s−1

√
K 2

r (t; u) − K 2(t; u) dt .

Proof Due to Lemma 8 and 9, 〈w, u〉K s
r

− 〈w, u〉K s can be expressed as

wT M

(∫ ∞

0
t−2s−1

(
Vr (Ir − (Ir + t2Ar )

−1)V T
r − M−1 + (M + t2A)−1

)
dt

)
Mu.

One ascertains that the first term cancels out the third, i.e.,

wT M
(

Vr V T
r − M−1

)
Mu = wT

(
MVr u − Mu

)
= 0.

Computations of the remaining terms together with (3.7) and Remark 6 reveal

wT M
(
−Vr (Ir + t2Ar )

−1V T
r Mu + (M + t2A)−1Mu

)
= wT M (−vr (t) + vN (t)) .
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Cauchy-Schwarz inequality leads to

|〈w, u〉K s
r
− 〈w, u〉K s | ≤

∫ ∞

0
t−2s−1|〈w, vN (t) − vr (t)〉0| dt

≤ ‖w‖0
∫ ∞

0
t−2s−1‖vN (t) − vr (t)‖0 dt .

There holds for all t ∈ R
+

‖vN (t) − vr (t)‖0 ≤
√

‖vN (t) − vr (t)‖20 + t2‖vN (t) − vr (t)‖21,

which validates the conjecture by virtue of Corollary 3. ��
Theorem 14 Let C∗ denote the constant from Remark 7. Then there holds

∀w ∈ Vh : |〈w, u〉K s
r

− 〈w, u〉K s | � e−C∗r‖w‖0‖u‖2. (5.17)

Moreover, if s ∈ (0, 1
2

)
, the 2-norm of u in (5.17) can be replaced by ‖u‖1.

Proof We prove that for anyw ∈ Vh and sufficiently small ε > 0, satisfying 4s+2ε <

4, there holds

|〈w, u〉K s
r
− 〈w, u〉K s | � e−C∗r‖w‖0

√√√√‖u‖21 +
N∑

k=1

λ4s+2ε
k u2

k,

which directly implies (5.17). Moreover, if s < 1
2 , we can choose ε < 1−2s to verify

the latter claim and conclude the proof. To this extent, let ε ∈ (0, 2 − 2s), if s ≥ 1
2 ,

and ε ∈ (0, 1 − 2s) otherwise. Applying Theorem 11 followed by Cauchy-Schwarz
inequality yields

∫ 1

0
t−2s−1

√
K 2

r (t; u) − K 2(t; u) dt �
∫ 1

0
t−

1
2 +εt−2s− 1

2 −ε

√√√√e−2C∗r
N∑

k=1

t4λ4k
1 + t2λ2k

u2
k dt

� e−C∗r

√√√√
∫ 1

0
t−4s−1−2ε

N∑

k=1

t4λ4k
1 + t2λ2k

u2
k dt

= e−C∗r

√√√√
N∑

k=1

u2
k

∫ 1

0

t3−4s−2ελ4k

1 + t2λ2k
dt .

Define i := min{k ∈ {1, . . . , N } : λk ≥ 1} to observe
i−1∑

k=1

u2
k

∫ 1

0

t3−4s−2ελ4k

1 + t2λ2k
dt ≤

i−1∑

k=1

u2
k

∫ 1
λk

0
t3−4s−2ελ4k dt �

i−1∑

k=1

u2
kλ

4s+2ε
k .
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Similarly, we obtain for the rest of the sum

N∑

k=i

u2
k

∫ 1

0

t3−4s−2ελ4k

1 + t2λ2k
dt ≤

N∑

k=i

u2
k

(∫ 1
λk

0
t3−4s−2ελ4k dt +

∫ 1

1
λk

t3−4s−2ελ4k

t2λ2k
dt

)

≤
N∑

k=i

u2
k

(
λ4s+2ε

k

4 − 4s − 2ε
+ λ2k − λ4s+2ε

k

2 − 4s − 2ε

)

� ‖u‖21 +
N∑

k=i

u2
kλ

4s+2ε
k ,

such that

∫ 1

0
t−2s−1

√
K 2

r (t; u) − K 2(t; u) dt � e−C∗r

√√√√‖u‖21 +
N∑

k=1

u2
kλ

4s+2ε
k .

On the interval [1,∞), we make use of Theorem 10 to conclude for all s ∈ (0, 1)

∫ ∞

1
t−2s−1

√
K 2

r (t; u) − K 2(t; u) dt �
∫ ∞

1
t−

1
2 −εt−2s− 1

2 +ε

√√√√e−2C∗r
N∑

k=1

u2
k

1 + t2λ2k
dt

� e−C∗r

√√√√
N∑

k=1

u2
k

∫ ∞

1

t−4s−1+2ε

1 + t2λ2k
dt

≤ e−C∗r

√√√√
N∑

k=1

u2
k

∫ ∞

1

t−4s−1+2ε

t2λ2k
dt

� e−C∗r ‖u‖0.

Adding up the integrals in combination with Theorem 13 proves the claim. ��

As shown in the subsequent, equality of the scalar products is also valid with respect to
Definition 11, providing the crucial link to transfer the error analysis form theK-setting
to the spectral setting.

Lemma 10 For all v ∈ Vh and wr ∈ Vr there holds

〈v,wr 〉Hs
r

= C2
s 〈v,wr 〉K s

r
. (5.18)

Proof If v ∈ Vr , then (5.18) holds due to Corollary 1. Let now �r : Vh → Vr denote
the 0-orthogonal projection on Vr , such that

∀wr ∈ Vr : 〈�rv,wr 〉0 = 〈v,wr 〉0
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for each v ∈ Vh . By virtue of the identity (�rv)T = vT MVr , equation (4.2) and

(5.16), there holds for any arbitrary v ∈ Vh and wr ∈ Vr

〈v,wr 〉Hs
r

= 〈�rv,wr 〉Hs
r

= C2
s 〈�rv,wr 〉K s

r
= C2

s 〈v,wr 〉K s
r
.

��
We are eventually able to conduct the proof of Theorem 12.

Proof (Proof of Theorem 12) Due to Corollary 1 and Lemma 10, there holds

∀w ∈ Vh : |〈w, u〉Hs
r

− 〈w, u〉Hs | ≤ |〈w, u〉K s
r
− 〈w, u〉K s |.

Hence,

‖LHs
r
(u) − LHs u‖0 = sup

w∈Vh\{0}
|〈w,LHs

r
(u) − LHs u〉0|
‖w‖0

= sup
w∈Vh\{0}

|〈w, u〉Hs
r

− 〈w, u〉Hs |
‖w‖0

≤ sup
w∈Vh\{0}

|〈w, u〉K s
r

− 〈w, u〉K s |
‖w‖0 � e−C∗r‖u‖2,

where the last inequality relies on (5.17). The fact that ‖u‖2 reduces to ‖u‖1 as s < 1
2

follows directly from the latter claim of Theorem 14. ��
Remark 8 Results from Theorem 7 and 12 can be ameliorated in a sense that the lower
and upper bound, λ2L and λ2U , solely have to be chosen with respect to that minimal and
maximal eigenvalue, whose corresponding eigenfunction nontrivially contributes to
the linear combination of the argument u. This leads to improvements of the constant
C∗ and hence to faster convergence.

6 Numerical examples

In the subsequent, we underpin our analytical results by several numerical examples,
which can be found on GitHub1. To make matters precise, let � ⊆ R

2 be an open,
bounded Lipschitz domain with Lipschitz boundary ∂�. We define V0 := (L2(�), ‖ ·
‖L2) andV1 := (H1

0 (�), ‖∇ ·‖L2) to consider its arising interpolation space [V0,V1]s .
The induced operatorLHs (V0,V1) of ‖·‖Hs(V0,V1) coincides with the spectral fractional
Laplacian subject to homogeneous Dirichlet boundary conditions, i.e.,

∀u ∈ [V0,V1]s : LHs (V0,V1)u = (−�)su :=
∞∑

k=1

λ2s
k 〈u, ϕk〉L2ϕk,

1 https://github.com/TobiasDanczul/FractionalDiffusion.git.
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Fig. 1 Error E Norm
u (s, r) of the

reduced basis interpolation norm
of a randomly chosen
u ∈ span{ϕ1, . . . , ϕn} for three
different values of s,
σ = [2π2, 4200], and
2C∗ ≈ 1.65

O(e−2C∗r)

2 4 6 8 10
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r
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ro
r

s = 0.1
s = 0.5
s = 0.9

where (ϕk, λ
2
k)

∞
k=1 ⊆ H1

0 (�) × R
+ denote the L2-orthonormal eigenfunctions and

eigenvalues of V0 and V1. This setting is utilized to adequately study and analyze the
performance of our method. All tests were implemented within the NGS-Py interface
of the open source finite element packages NETGEN and NGSolve2, see [41, 42].
Computations of the Zolotarëv points are performed by means of the special function
library from Scipy3.

Example 1 Consider the unit square � = (0, 1)2 and a finite element space Vh ⊆
H1
0 (�) of polynomial order p = 3 on a quasi-uniform, triangular mesh Th with mesh

size h = 0.08, together with its arising eigenbasis (ϕk)
N
k=1 and N = 1762. We set

u =
n∑

k=1

ciϕk

for some randomly chosen coefficients ci ∈ (−1, 1) with n = 300, such that the
reduced basis norm is exact for r ≥ 299. On �, the exact eigenvalues (ν2k )∞k=1 of −�

are given in closed form in terms of

ν2k = ν2i, j = π2(i2 + j2).

Consistent with Remark 8, we set λ2L := ν21 ≤ λ21 and utilize the power method
to obtain an upper bound λ2U := 4200 ≥ λ2n . In accordance with Theorem 7, Fig-
ure 1 affirms the exponential decay of the error E Norm

u (s, r) := ‖u‖2Hs
r

− ‖u‖2Hs in
r . Furthermore, we observe, as indicated in Sect. 5, that the error increases as s is
augmented.

Example 2 Consider the unit circle � = {x ∈ R
2 : ‖x‖ < 1}, where ‖ · ‖ denotes

the Euclidean norm. For the sake of simplicity, we approximate � using a quasi-
uniform triangular mesh Th of mesh-size h = 0.06. In particular, the boundary ∂�

2 www.ngsolve.org.
3 https://docs.scipy.org/doc/scipy/reference/special.html.
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Fig. 2 L2-error E Op
uh (s, r) of the

reduced basis operator for three
different choices of s O(e−C∗r)
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Fig. 3 Impact of the mesh
parameters h = 2−i on the error
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is approximated using (non-curved) line segments. We highlight, however, that our
theory equally holds true when curved elements are used. Provided the mesh, we
use polynomials of order p = 2 to construct the finite element space Vh . Let now
uh := �hu ∈ Vh denote the L2-orthogonal projection of

u(x) = u(x, y) = (1 − ‖x‖)y2 sin(‖x‖) ∈ H1
0 (�)

onto Vh . Having no further information which eigenfunctions contribute to the linear
combination of uh , we set λ2L := 1 ≤ λ21 and λ2U := λ̃2N + 1 ≈ 49723.4, where λ̃2N
denotes a numerical approximation of λ2N obtained by power iteration. The error of

the reduced basis operator, E Op
uh (s, r) := ‖LHs

r
(uh) − LHs uh‖L2 , from Theorem 12

is examined in Figure 2. Here, the exact operator action LHs uh has been replaced by
LHs

r∗ (uh), where r∗ ∈ N is taken large enough to neglect the arising inaccuracy. The

observed convergence rate is is in accordance with O
(

e−C∗r
)
, where C∗ ≈ 0.41.

The dominant computational effort for evaluating LHs
r
(uh) comes from the offline

phase, in which a basis for the reduced basis space is computed. The construction of
the latter requires the solution of r parametric reaction-diffusion equations, which can
be obtained inO(r N ) operations using an optimal solver such as a multigrid method.
For each new exponent queried during the online phase, the surrogate is found in
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the coordinate space with complexity O(k3) by diagonalizing the compressed matrix
Ar ∈ R

(r+1)×(r+1). Since typically k � N , this allows us to efficiently query the
surrogate for multiple values of s.

It is evident that the performance of our method relies on the condition of the
problem and thus on the mesh parameter h. The exponential convergence property of
LHs

r
for h = 2−i , i = 3, 5, 7, 9, on � with p = 1 and s = 0.1 is shown in Figure 3

with respect to a randomly chosen urand
h ∈ Vh . The example confirms that the rate of

convergence deteriorates as h → 0. The error approximately behaves like O
(
e−0.6r

)

for h = 2−3 and O
(
e−0.28r

)
for h = 2−9.
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7 Appendix

Proof of Theorem 1 The proof follows the outline of [23, Proposition 2.1] and [19,
Lemma 2.2]. Let v ∈ V(V0,V1; yα) with

v(y) =
∞∑

k=1

vk(y)ϕk,

and vk(y) = 〈v(y), ϕk〉0. Then there holds

‖v‖2
V(V0,V1;yα) =

∞∑

k=1

∫

R+
yα
(
λ2kvk(y)2 + v′

k(y)2
)

dy

≥
∞∑

k=1

vk(0)
2 min

ψk∈H1(R+)
ψk (0)=1

∫

R+
yα
(
λ2kψk(y)2 + ψ ′

k(y)2
)

dy.

(7.1)
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It is well-known that the minimizer ψk coincides with the solution of a Bessel-type
differential equation

⎧
⎪⎪⎨

⎪⎪⎩

ψ ′′
k + α

y ψ ′
k − λ2kψk = 0, in R+,

lim
y→∞ ψk(y) = 0,

ψk(0) = 1,

which admits the following representation

ψk(y) = ck ysKs(λk y).

Here, ck denotes a constant and Ks the modified Bessel function of second kind, see
[1]. The constant is chosen in a way, such that ψk(0) = 1, which allows us to write

ψk(y) = ψ(λk y) (7.2)

for a suitable function ψ ∈ H1(R+) with ψ(0) = 1. For all k ∈ N the value of the
minimum in (7.1) is given by

∫

R+
y1−2sλ2k

(
ψ(λk y)2 + ψ ′(λk y)2

)
dy = λ2s

k

∫ ∞

0
t1−2s

(
ψ(t)2 + ψ ′(t)2

)
dt .

Integration by parts and incorporating the asymptotic behaviour of Ks yields

∫ ∞

0
t1−2s

(
ψ(t)2 + ψ ′(t)2

)
dt = ds,

see e.g., [19, Remark 2.3]. Thus,

‖v‖2
V(V0,V1;yα) ≥ ds

∞∑

k=1

λ2s
k vk(0)

2 = ds‖v(0)‖2Hs(V0,V1)
.

We conclude that tr defines a linear, bounded operator that satisfies (2.2), such that
its range is contained in [V0,V1]Hs . To evidence surjectivity, we observe that for each
u ∈ [V0,V1]Hs the function

U(y) :=
∞∑

k=1

ukϕkψ(λk y)

is contained in V(V0,V1; yα) and satisfies trU = u. ��
Proof of Theorem 2 Let u ∈ [V0,V1]Es and consider the ansatz function

U(y) =
∞∑

k=1

ukϕkψ(λk y),
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with ψ as in (7.2). The proof of Theorem 1 validates that U ∈ V(V0,V1; yα) and

‖U‖V(V0,V1;yα) = √ds‖u‖Hs(V0,V1).

Moreover, U satisfies (2.5), by construction of ψ . What follows is that U is the α-
harmonic extension of u. Due to its minimization property from Lemma 1, we further
have

‖u‖Es(V0,V1) = ‖U‖V(V0,V1;yα) = √ds‖u‖Hs(V0,V1).

To evidence the second equality, we refer to [18, Theorem A.2]. ��
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