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Abstract. We consider a convection-diffusion problem in a box in which rigid
bodies are present. The location and orientation of these bodies are subject

to a set of parameters. In order to use a reduced basis method, we perform

a two-step method. In the first step, we transform the parameter-dependent
geometric situation to a reference situation (also mapping the mesh). Then,

we use the Empirical Interpolation Method (EIM) in order to separate the

parameter from the variables of the pde. We present several numerical results
that indicate the efficiency of the method. The corresponding analysis will be

presented in a forthcoming paper, [2].

1. Introduction

Flow problems around moving bodies naturally occur in several applications, e.g.
propulsion systems for ships or helicopters. The flow problems are typically modeled
by instationary nonlinear pde’s and usually lead to highly complex, extremely high
dimensional nonlinear systems. Hence, for an efficient numerical solution, a model
reduction is strongly required.
There is a huge literature on reduced basis methods in particular for flow problems,
a complete list goes beyond the scope of this paper. Let us just mention [4, 5,
7, 8, 9, 10, 15, 16, 19, 23, 25] for fluid flow, [11, 13, 17, 18, 19, 20] for elliptic
and [6, 22] for parabolic problems. All investigations are concerned either with
stationary problems or with instationary problems, where the domain is fixed in
time. More recently, also parameter-dependent problems have been investigated,
[11, 13, 18, 19, 25]. In most of the papers the influence of these parameter is affine.
Just recently, non-affine parameter dependencies have been investigated, [12, 14].
We want to develop a new reduced basis framework that allows us to construct a
reduced model for instationary problems with moving bodies. As a first step in this
direction, we aim to develop a reduced basis framework for linear and nonlinear
convection-diffusion problems in a box containing one or more rigid bodies whose
position and orientation are subject to a parameter (which can be time-dependent
in a next step also playing the role of a control).
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Our method consists of two steps. Firstly, we use domain decomposition and map-
ping to reduce the problem to reference situation. Then, we use the Empirical
Interpolation Method (EIM) to separate the influence of the parameter (which is
non-affine here) from the pde. This idea has also been used in [12, 14] to treat
parametrized problems where the influence of the parameter is non-affine. The
basis functions for the reduced model are then defined by taking snapshots with
respect to the parameter space.
In a forthcoming paper, [2], we will present the numerical analysis (e.g. error esti-
mates) for the presented method. Investigations in this direction can be found e.g.
in [3, 21]. More details on the particular computations can be found in [24].
The remainder of this paper is organized as follows. In Section 2, we introduce
the considered convection-diffusion problem and describe appropriate parameter
spaces. Section 3 is devoted to the description of the domain transformation and
Section 4 contains the Empirical Interpolation Method. The final reduced basis
model is introduced in Section 5, Section 6 contains our numerical results and
Section 7 conclusions and an outlook.

2. A convection-diffusion problem around rigid bodies

We consider a stationary convection–diffusion problem in a rectangle � ⊂ R
2 in

which one or more rigid bodies are located in dependence of a parameter µ. We
assume that the shape of the bodies are identical and fixed. The bodies can be
interpreted as blades of a rotor or propeller and in the case of only one body B(µ)
is a rotated blade of some B = B(0) around an angle µ ∈ D = [0, π

2 ], see the left
part of Figure 1.
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Figure 1. Geometry for one blade (left) and five (right) blades.

In the case of several blades we also assume that they are oriented in dependence of
a parameter which now is a vector. We consider here the case of five blades. To be
precise, the five blades are fixed on a rotating disc (the rotor) which is rotated with
an angle φ. Since the whole model is periodic, it is sufficient to consider φ ∈ [−π

5 , π
5 ]

in the case of five blades. At each rotation angle φ (also called phase angle) of the
rotor, each blade Bi is oriented around an angle νi with respect to the tangential
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of the circle. For technical reasons, one typically restricts the range

νi ∈
[

−
π

36
,

π

36

]

= [−5◦, 5◦].

Thus, the parameter vector reads

(φ, ν1, . . . , ν5) ∈ D :=
[

−
π

5
,
π

5

]

×
[

−
π

36
,

π

36

]5

.

Let us denote by NB the number of blades (as already said, we detail the cases
NB = 1 and NB = 5), then

B(µ) :=

NB
⋃

n=1

Bn(µ)

denotes the part of � containing the rigid bodies. Here, µ ∈ D is the parameter
described above. We subdivide �\B(µ) =: Ω(µ) in subdomains according to Figure
1, so that we obtain

Ω(µ) :=

NS
⋃

n=1

Ωn(µ)

with subdomains Ωn(µ) ⊂ � and NS ∈ N denoting the number of subdomains
(NS = 3 for one and NS = 13 for five blades).
Given coefficients a and b (that may also be non-constant or even also depend on
the solution itself), we consider the following convection-diffusion problem.

(2.1)



























−a∆u + b · ∇u = 0 , in Ω(µ),

u = 0 , on ∂B(µ),

u = 1 , on ΓD,

∂u
∂n = 0 , on ΓN ,

where ΓN := ∂� ∩ {x = 1.5} is the Neumann part of the outer boundary ∂� and
ΓD := ∂� \ ΓN the Dirichlet part of ∂�.
Then, defining for µ ∈ D and g ∈ H1/2(ΓD)

(2.2) V (µ, g) :=
{

v ∈ H1(Ω(µ)) : v = g on ΓD, v = 0 on ∂B(µ)
}

the variational formulation of (2.1) is well-known to read as follows: Find u ∈
V (µ, 1), such that

(2.3)

∫

Ω(µ)

a(x)∇u(x)∇v(x) dx +

∫

Ω(µ)

b(x) · ∇u(x) v(x) dx = 0 ∀v ∈ V (µ, 0),

or, equivalently in operator form

(2.4) 〈A(µ)u, v〉 + 〈B(µ)u, v〉 = 0 ∀v ∈ V (µ, 0) ,

where

(2.5)

〈A(µ)u, v〉 :=

NS
∑

n=1

∫

Ωn(µ)

a(x)∇u(x) · ∇v(x) dx,

〈B(µ)u, v〉 :=

NS
∑

n=1

∫

Ωn(µ)

b(x) · ∇u(x) v(x) dx.

As already said, we want to investigate if a reduced basis method can be used for
such a parameter-dependent problem. Reduced basis models have been studied
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in the literature also for bilinear forms that depend on a parameter, see e.g. [11,
13, 18, 19, 25]. However, there the parameter needs to enter the bilinear form in
a very specific way, e.g. as multiple factor. Our case above does not fit into that
framework. A possible wayout is described in [12, 14], by approximating the bilinear
forms using the so-called empirical interpolation method (see Section 4 below).

3. Transformation to a reference domain

In our problem, the shape of the body is invariant, only its location and orientation
depends on a specific parameter µ ∈ D. Hence, it is a natural idea to transform
the problem to a reference situation, say µ = 0. Since in our particular problem,
the parameter µ represents a rotation, the desired transformation seems obvious.
Thus, we transform the variational formulation (2.3) and (2.4), respectively, to

a reference domain Ω̂. It turns out that this step is also crucial to derive an
efficient algorithm, since it enables the application of a reduced basis method on
the reference domain. We start by deriving the mapping for the case of one blade
and five blades, respectively, and then perform the transformation itself. It turns
out that the transformation is quite similar in both cases.

One single blade. As already pointed out, we use the splitting Ω(µ) into NS = 3
subdomains as visualized in Figure 1. Furthermore, we choose the reference domain
Ω̂ = Ω(µ̂), where µ̂ = 0, i.e., the blade is aligned horizontal.
We can easily define the mapping on each particular subdomain. On Ω1, no map-
ping is applied, Ω2(µ) is rotated by an angle of (−µ), thus we have an affine trans-
formation in this subdomain. In Ω3, each point is rotated by an angle depending
on its position, i.e., points near to the outer circle are almost not rotated, while
points near to the inner circle are rotated almost by (−µ). As the rotation depends
on the position this is a non-affine transformation.
Thus, one possible mapping reads:

(3.1) x̂ = T (x, µ) :=















x, in Ω1,

Q1(µ)x, in Ω2(µ),

Q2(µ, x)x, in Ω3,

where Q1(µ) is a (Givens-)rotation by (−µ) and

(3.2) Q2(x, µ) :=





cos(µρ(‖x‖2)) sin(µρ(‖x‖2))

− sin(µρ(‖x‖2)) cos(µρ(‖x‖2))



 ,

where ρ(z) := 1 − z−rI

rO−rI
and rI ,rO are the radii of the inner and outer circle,

respectively and we assume that the center of the inner and outer circle, respectively,
is the origin. By definition, this choice realizes a full rotation by (−µ) for points on
the inner circle (ρ(rI) = 1) and no rotation for points on the outer circle (ρ(rO) = 0).
The effect of the (inverse) mapping is shown in Figure 2. For the transformation
of the pde to the reference domain we also need the Jacobian of (3.1) which can be
computed in a straightforward way.
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Figure 2. Effect of inverse mapping (one blade).

Five blades. We assume that the orientation of the blade initially only depends
on its position, i.e., on the rotation angle of the rotor. A function

f ∈ C2
2π, f : φ 7→ α

is called blade steering curve (BSC), where α denotes the angle w.r.t. the tangential.

We define the reference domain Ω̂ by Ω(µ̂) = Ω(φ̂, ν̂1, ν̂2, ν̂3, ν̂4, ν̂5), where φ̂ = 0
and ν̂i = 0, i.e., we have no rotation of the rotor and no deviation from the BSC in
all five blades. Furthermore, Ω(µ) is divided into NS = 13 subdomains as visualized
in Figure 1. For this case one possible mapping reads x̂ = T (x, µ), where
(3.3)

T (x, µ) :=







































x, in ΩE ,

Q1(φ)x, in ΩI(φ),

Q2(x, φ)x, in ΩM ,

Q1(φ)[Q1(∆νi)(x − MBi
(φ)) + MBi

(φ)], in ΩI
Bi

(φ, νi),

Q1(φ)[Q2(x − MBi
(φ),∆νi(x − MBi

(φ)) + MBi
(φ)], in ΩM

Bi
(φ),

where Q1(α) is again a (Givens-)rotation by (−α), Q2(x, α) is defined by (3.2) and
MBi

(φ) is the center of the i-th blade (in the computational domain). Furthermore,
∆νi is the difference of the steering angle of the i-th blade, when mapping from the
original domain to the reference domain, i.e.,

∆νi =
(

f
(

φ̂i

)

+ ν̂i

)

−
(

f (φi) + νi

)

= f

(

2π
i − 1

5

)

− f

(

φ + 2π
i − 1

5

)

− νi,

where f is a given BSC. In other words, this is a concatenation of the mapping
introduced for the case of one blade.
To visualize the effect of the (inverse) mapping, the left part of Figure 3 shows a

mesh for the reference domain Ω̂ and the right part shows the resulting mesh when
applying the (inverse) mapping for µ = (φ, ν1, ν2, ν3, ν4, ν5) = (36◦, 0◦, 0◦, 0◦, 0◦, 0◦).
Again we have to compute the Jacobian of (3.3) which turns out to be a combination
of the case of one blade.
Now we are ready to use these transformations within the pde.
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Figure 3. Mesh on reference domain Ω̂ (left) and effect of the
inverse mapping (right) for the case of five blades.

Transformation of the pde to the reference domain. To transform the pde we
follow standard lines and set Ω̂ = Ω(µ̂) as well as V̂ (g) := V (µ̂, g) on the reference
domain. Then, the variational formulation for (2.1) on the reference domain takes

the form: Find û ∈ V̂ (1), such that

(3.4)
〈

Â(µ)û, v̂
〉

+
〈

B̂(µ)û, v̂
〉

= 0 ∀ v̂ ∈ V̂ (0),

for differential operators Â(µ) and B̂(µ) that take the form

(3.5)

〈

Â(µ)û, v̂
〉

=

NS
∑

n=1

∫

Ω̂n

∇û(x̂) · T (n)(x̂;µ)∇v̂(x̂) dx̂,

〈

B̂(µ)û, v̂
〉

=

NS
∑

n=1

∫

Ω̂n

v̂(x̂) t(n)(x̂;µ) · ∇û(x̂) dx̂,

where the matrix T (n) and the vector t(n) are obtained in a straightforward way by
the change of variable x ∈ Ωn 7→ x̂ ∈ Ω̂n and the chain rule.
Hence, we have shifted the dependence on the parameter from the domain depen-
dence to a dependence of the bilinear form, i.e., the coefficients of the corresponding

bilinear forms â(·, ·) and b̂(·, ·) depend on the parameter µ ∈ D. This allows us to
use a reduced basis approach. However, we are still lacking an important require-
ment for obtaining an efficient algorithm, namely the separability of (3.4) w.r.t. the
parameter µ. This will be discussed in the next section.

4. Empirical Interpolation Method

As already said above, reduced basis methods have already been investigated for
parameter-dependent problems, see e.g. [11, 13, 18, 19, 25]. This approach, however,
requires that the differential operator can be factorized so that the influence of the
parameter can be separated from the bilinear form of the pde. The bilinear forms

â(·, ·) and b̂(·, ·) associated with Â and B̂, respectively, do not have this form. This
is basically due to the fact that the transformation is not affine linear.
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In analogy to [12, 14], we aim to use the so-called empirical interpolation method

(EIM), [1], in order to approximate Â and B̂ by separable operators that will allow
to use a reduced basis approach. Moreover, of course, a separation of the parameter
from the differential operator also gives rise to efficient numerical methods. Let us
now briefly describe the EIM and then describe its application to our problem.
Let g : Ω × D → R be a function, depending on spatial coordinates x ∈ Ω and
the parameter µ ∈ D. The main idea of the empirical interpolation method is to
construct M basis functions qm : Ω → R, m = 1, . . . ,M , and M interpolation
points ξm, m = 1, . . . ,M , such that g(x, µ) is interpolated by

(4.1) gM (x, µ) :=
M
∑

m=1

λm(µ)qm(x),

where (for one particular µ) the weights λm(µ), m = 1, . . . ,M , are given by the
solution of the following interpolation problem

(4.2) gM (ξj , µ) =
M
∑

m=1

λm(µ)qm(ξj) = g(ξj , µ) , j = 1, . . . ,M.

In other words, we approximate a given function g by interpolating it by a tensor
product gM at appropriately chosen knots.
Furthermore, the number M of used basis functions is determined in such a way
that a specified tolerance εemp is reached, i.e.,

(4.3) εM (µ) := ‖g(x, µ) − gM (x, µ)‖L∞(Ω) ≤ εemp , ∀µ ∈ D.

One chooses the smallest M such that (4.3) is valid. Details on the construction of
the basis functions and the choice of the interpolation knots can be found in [1].

We apply the EIM on each subdomain Ω̂n to approximate T (n) and t(n) by
∥

∥

∥

∥

T (n)(x̂;µ) −

Ma,n

∑

m=1

Θ(n)
m (µ) Λ(n)

m (x̂)

∥

∥

∥

∥

L∞(Ω̂n)

≤ εemp,

∥

∥

∥

∥

t(n)(x̂;µ) −

Mb,n

∑

m=1

θ(n)
m (µ)λ(n)

m (x̂)

∥

∥

∥

∥

L∞(Ω̂n)

≤ εemp,

(where the norms are to be understood as those for vector fields) so that we obtain

the following approximations of Â and B̂, respectively:

〈

Âemp(µ)û, v̂
〉

=

NS
∑

n=1

∫

Ω̂n

∇û(x̂) ·

Ma,n

∑

m=1

Θ(n)
m (µ) Λ(n)

m (x̂)∇v̂(x̂) dx̂

=:

Q
∑

q=1

Θq(µ) Aq(û, v̂)(4.4)

and similarly

(4.5)
〈

B̂emp(µ)û, v̂
〉

=

S
∑

s=1

Φs(µ)Bs(û, v̂).

We finally obtain the approximate variational problem: Find û ∈ V̂ (1), such that

(4.6)
〈

Âemp(µ)û, v̂
〉

+
〈

B̂emp(µ)û, v̂
〉

= 0,
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for all v̂ ∈ V̂ (0).

5. Reduced-Basis Approximation

Now we are going to describe the reduced basis method we are considering. To this
end, we need to define our basis functions (also called modes) for the reduced model.
Often this is done by defining certain so-called snapshots as a starting point. We
take snapshots corresponding to the parameter µ, i.e., we fix N values µ1, . . . , µN

for the parameter and compute the corresponding snapshots as discrete solutions
of (3.4), i.e., find û(µn) ∈ V̂h(1), such that

(5.1)
〈

Â(µn)û(µn), v̂
〉

+
〈

B̂(µn)û(µn), v̂
〉

= 0 ,

for all v̂ ∈ V̂h(0), where V̂h(g) is a discrete subspace of V̂ (g) (e.g. a finite element
space with mesh size h). Next, we homogenize the problem (with respect to the
boundary conditions) by defining

(5.2) ũi :=







û(µ1) , if i = 0 ,

û(µi+1) − û(µ1) , if i = 1, · · · , N − 1,

i.e., ũ0 satisfies the non-homogeneous boundary conditions, whereas all others fulfill
homogeneous boundary conditions. We define the approximation space (trial space)

by V̂ N
h (g) := ũ0 + V̂ N

h (0), where V̂ N
h (0) := span{ũi : 1 ≤ i ≤ N − 1} is the test

space.
Using these spaces for any new parameter µ ∈ D we could directly apply a Galerkin
projection to obtain the reduced basis approximation by solving the following prob-
lem: Find ûN (µ) ∈ V̂ N

h (1), such that

(5.3)
〈

Â(µ)ûN (µ), v̂
〉

+
〈

B̂(µ)ûN (µ), v̂
〉

= 0,

for all v̂ ∈ V̂ N
h (0). As this would not lead to an efficient algorithm, we take

advantage of the derived approximation for (3.4) and solve instead the approximate

problem: Find ûN (µ) ∈ V̂ N
h (1), such that

(5.4)
〈

Âemp(µn)ûN (µn), v̂
〉

+
〈

B̂emp(µn)ûN (µn), v̂
〉

= 0

for all v̂ ∈ V̂ N
h (0).

5.1. Linear PDEs. Let us detail our approach first for a linear pde, where we can
use the full computational power of the EIM.

Algorithm 5.1 (Reduced basis approximation for linear problems).
Given a tolerance εemp.
Offline-Stage:

(1) Use EIM to compute Θq and Φs as above as well as the separated bilinear
forms Aq and Bs.

(2) Fix N values µ1, . . . , µN for the parameter and compute the snapshots by
solving the approximated problem (5.1).

Online-Stage: Given a new parameter µ ∈ D
(1) Compute Θq(µ) and Φs(µ) using (4.2). This requires the solution of NS ×

2 × 2 × 2 (small) linear systems of equations.
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(2) Assemble the linear system for the reduced model. This requires O((Q +
S)N2) + O((Q + S)N) operations.

(3) Solve the reduced (N × N)-system. This can be done in general in O(N3)
operations.

In the online stage the computational work is reduced from solving an Nh-dimen-
sional (finite element) problem to a N -dimensional (N ≪ Nh) problem. Obviously
this approach is in particular more efficient if the convection-diffusion problem has
to be solved several times.

5.2. Nonlinear PDEs. As we also want to deal with nonlinear pde’s, we consider
the following equation

(5.5) −a∆u + g(u)b · ∇u + h(u)u = 0,

using the same boundary conditions as above. One standard way to solve such
equations is by an iteration of linear problems of the form

(5.6) −a∆u + g(U)b · ∇u + h(U)u = 0,

where U typically denotes a solution of some previous iteration. Thus, we can re-
duce basically everything to the linear case. However, we have to take the functions
g(U) and h(U) into account for computing the EIM since otherwise we would have
to recompute these terms in the online-stage in each iteration. With this modifica-
tion (which also causes more computational work in the offline-stage) we can use
the presented algorithm within this framework.

6. Numerical Results

We now present some numerical results for two linear and two nonlinear problems,
namely

0 = −0.1∆u + (1, 0)T · ∇u,

0 = −∆u + (x, y)T · ∇u,

0 = −0.1∆u + (0.5, 0.5)T u · ∇u,

0 = −0.1∆u + (0.5, 0.5)T u · ∇u + u2.

All computations have been performed with FEMLAB using finite elements.

6.1. One Blade. The geometry is shown in Figure 1. The mesh size is fixed for
all computations to hmax = 0.1. The snapshots are taken by a uniform subdivision
of the parameter interval D = [0, π

2 ].
For different numbers of snapshots N , we compute the reduced basis approximation
ûN (µ) and compare it to the reference solution û(µ), which is computed on the same
mesh. This is done for M = 5 different angels of interest. We measure the error
eN (µ) := û(µ) − ûN (µ) terms of the following quantities:

∥

∥

∥

∥

∂eN (µ)

∂n

∥

∥

∥

∥

L1(∂B̂)

,

∥

∥

∥

∥

∂eN (µ)

∂n

∥

∥

∥

∥

L2(∂B̂)

,
∥

∥eN (µ)
∥

∥

L∞(Ω̂)
,

∥

∥eN (µ)
∥

∥

L2(Ω̂)
.

The first two quantities reflect the fact that in several applications the interesting
quantities (like e.g. forces or efficiency) are measured on the boundary of the blade.
We display the average values of these quantities for M different angles.
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∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)
,

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 2 4.5761e-01 3.3881e-01 1.2539e-01 5.4620e-03

N = 4 1.6949e-02 6.4470e-04 3.7161e-03 8.0362e-06

N = 6 3.6594e-04 3.7995e-07 6.6941e-05 4.2811e-09

N = 8 5.2275e-06 7.5078e-11 1.1455e-06 1.0824e-12

N = 10 2.6008e-07 2.6797e-13 6.5634e-08 5.0167e-15

Table 1. Results for one blade and example 1.

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)
,

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 2 1.1024e-01 2.3864e-02 1.0885e-02 1.3184e-04

N = 4 3.7916e-03 2.8802e-05 1.8383e-04 3.4300e-08

N = 6 2.6304e-05 3.7832e-09 3.4220e-06 1.4072e-11

N = 8 5.7911e-07 1.7271e-12 7.8264e-08 1.1656e-14

N = 10 4.0959e-08 7.9742e-15 4.9690e-09 5.5172e-17

Table 2. Results for one blade and example 2.

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)
,

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 2 1.7430e-01 5.3947e-02 5.0205e-02 1.4509e-03

N = 4 3.2225e-03 2.2602e-05 8.9602e-04 6.3792e-07

N = 6 4.3833e-05 6.0672e-09 2.1547e-05 4.2519e-10

N = 8 3.2445e-07 4.5052e-13 3.6249e-07 1.0633e-13

N = 10 1.4655e-08 1.2759e-15 1.9834e-08 4.1186e-16

Table 3. Results for one blade and example 3.

The tables 1-4 show exponential decreasing errors. This is also shown in Figure 4,
which shows the decay of all four error quantities for example 4. We also see that,
as expected, the convergence is slower for the quantities on the boundary.
Another aspect of the reduced basis method is that once the snapshots are computed
and the matrices are assembled, the reduced basis approximation can be obtained
very fast. Though it is perfectly suited whenever rapid, repeated and reliable
solutions of parameterized pde’s are needed. To underline this, Figure 5 shows
computing timings to obtain Nsol solutions (i.e., the solution for Nsol different
parameter values µ). On the one hand, they are computed directly, on the other
hand reduced basis method using N = 10 snapshots is applied. The left part of
Figure 5 shows computing times for a linear problem (corresponding to example 2)
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∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)
,

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 2 2.8339e-02 1.5279e-03 1.7724e-02 2.2992e-04

N = 4 4.7547e-04 5.5136e-07 3.8283e-04 9.3087e-08

N = 6 6.6904e-06 2.0499e-10 7.4213e-06 4.3219e-11

N = 8 1.2306e-07 8.5338e-14 2.2431e-07 3.4243e-14

N = 10 7.3634e-09 2.7582e-16 1.0780e-08 1.4195e-16

Table 4. Results for one blade and example 4.
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Figure 4. Example of one blade: Decay of the errors.

and the right part shows computing timings for the nonlinear problem in example
4.
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Figure 5. Comparison of computing times for one blade and for
the linear example 2 (left) and the nonlinear problem example 4
(right).

Here, we have not taken into account that for smaller mesh sizes hmax the time for
obtaining the solution directly increases, while the time for obtaining the reduced
basis approximation is constant, since the online-stages are independent of the used
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mesh. On the other hand, timings for obtaining the snapshots and assembling the
needed matrices will increase too, but this only has to be done once.

6.2. Five Blades. The geometry is again shown Figure 1. The mesh size is fixed
for all computations to hmax = 0.2. Again, we obtain snapshots by uniformly
subdividing the parameter space D. We compare the same error quantities as
above for M = 5 parameters.

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 20 1.1964e-02 3.6420e-04 5.2278e-03 9.8293e-05

N = 40 9.1587e-04 2.0902e-06 4.2153e-04 2.9216e-07

N = 60 1.4821e-04 4.8827e-08 6.0365e-05 5.1978e-09

N = 80 4.0223e-05 4.1482e-09 1.4194e-05 3.7492e-10

N = 100 1.5575e-05 6.9286e-10 4.9104e-06 4.5514e-11

N = 120 6.8332e-06 1.2272e-10 2.3183e-06 1.0518e-11

N = 140 3.0928e-06 2.4590e-11 1.1610e-06 2.6126e-12

N = 160 1.1671e-06 3.5936e-12 4.2677e-07 3.8431e-13

N = 180 7.8726e-07 1.6177e-12 2.3441e-07 1.5186e-13

Table 5. Results for four blades, example 1.

Again, all tables show exponential decreasing errors, also graphically shown in
Figure 6 for example 2. Due to the more complex space of parameters, one observes
an increased number of snapshots needed to obtain a certain accuracy.
To compare computing timings we proceed as above. Figure 7 (left) shows com-
puting timings needed for a linear problem (example 2) and the right part shows
computing timings for a nonlinear problem (example 4, taking N = 50 snapshots).
Compared to the case of one blade, the ‘overhead’ is slightly larger, once again
because of the more complex parameter space and the more complex mapping, re-
spectively. On the other hand, once the snapshots are computed and the empirical

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 10 5.0502e-04 6.8106e-07 6.3083e-05 3.1175e-09

N = 20 7.2797e-05 1.2904e-08 9.8053e-06 1.0385e-10

N = 30 1.6501e-05 7.7402e-10 1.6965e-06 2.3149e-12

N = 40 6.0813e-06 9.5160e-11 5.1187e-07 2.7740e-13

N = 50 2.3656e-06 1.4870e-11 2.0042e-07 6.2629e-14

N = 60 8.0245e-07 2.0297e-12 8.4087e-08 1.0942e-14

N = 70 3.6383e-07 3.3420e-13 3.0846e-08 2.0882e-15

Table 6. Results for four blades, example 2.
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∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 20 1.7994e-03 6.6581e-06 1.0316e-03 1.7604e-06

N = 40 1.3098e-04 3.6979e-08 7.9048e-05 8.2982e-09

N = 60 1.3817e-05 3.4869e-10 9.3197e-06 1.0002e-10

N = 80 5.1865e-06 5.5496e-11 3.2915e-06 1.6076e-11

N = 100 2.3986e-06 1.0469e-11 1.3001e-06 2.5292e-12

N = 120 8.1416e-07 1.3232e-12 4.5038e-07 2.8584e-13

N = 140 3.9471e-07 2.8873e-13 2.0356e-07 7.6517e-14

N = 160 2.0887e-07 8.1595e-14 1.0668e-07 1.9364e-14

N = 180 1.3694e-07 3.7260e-14 6.3443e-08 1.0606e-14

Table 7. Results for four blades, example 3.

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L1(∂B̂)

∥

∥

∥

∂eN (µ)
∂n

∥

∥

∥

L2(∂B̂)

∥

∥eN (µ)
∥

∥

L∞(Ω̂)

∥

∥eN (µ)
∥

∥

L2(Ω̂)

N = 10 8.5161e-04 1.4593e-06 5.8696e-04 3.6237e-07

N = 20 8.2204e-05 1.6552e-08 7.5417e-05 6.0244e-09

N = 30 1.8548e-05 6.9106e-10 1.2778e-05 1.3441e-10

N = 40 9.1968e-06 1.6472e-10 7.1211e-06 3.1829e-11

N = 50 1.8992e-06 7.8555e-12 1.7168e-06 2.3689e-12

N = 60 8.0668e-07 1.3775e-12 7.3932e-07 4.9827e-13

N = 70 3.6563e-07 2.3958e-13 3.5814e-07 9.1114e-14

N = 80 1.9058e-07 7.7435e-14 1.6374e-07 2.9236e-14

N = 90 9.2633e-08 1.6731e-14 9.2139e-08 8.2077e-15

N = 100 5.4029e-08 5.5711e-15 5.0178e-08 3.1985e-15

N = 110 2.8019e-08 1.5905e-15 2.4575e-08 1.0008e-15

Table 8. Results for four blades, example 4.

interpolation is done, we are able to obtain a reliable reduced basis approximation
very fast.
Finally, note that for a large number of snapshots N and a nonlinear problem the
offline stage may require a huge amount of memory. The timings for saving and
loading these matrices is not taken into account in Figure 7. Furthermore, this is
the reason for taking only N = 50 snapshots, as we obtain adequate accuracy, while
keeping the complexity of the initial computation (offline-stage) and the complexity
of the online-stage low.
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Figure 6. Five blades: decay of the errors.
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Figure 7. Five blades: Comparison of computing times for the
linear example 2 (left) and the nonlinear problems 4 (right). We
use N = 50 snapshots.

7. Summary, Conclusion and Outlook

We have presented a reduced basis method for convection-diffusion problems around
rigid bodies whose position and orientation is subject to the choice of a parameter.
We have used a domain decomposition and mapping approach to reduce the prob-
lem to a reference situation. By the Empirical Interpolation Method we obtain a
separation of the parameter from the differential operator. Then, we define basis
functions for the reduced model by taking snapshots with respect to the parame-
ter. We show numerical results that indicate exponential rate of convergence with
respect to the number of snapshots.
As already indicated above, the error analysis of the above method will be described
in [2]. The numerical results presented in this paper are very promising and make
us confident that reduced basis methods can be used efficiently for such problems.
Several directions for further research are obvious. The time-dependent case is
currently under investigation and also systems of pde’s (like e.g. in [5, 14, 16])
are considered. Finally, we did not yet investigate how the snapshot basis can
be optimized e.g. by a Proper Orthogonal Decomposition (POD) or by using a-
posteriori error estimates. The ultimate goal of this project is to use this method
also for optimization problems.
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