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We address the 2D direction-of-arrival (DOA) estimation problem in scenarios with coherent sources. More specifically, we adopt
beamforming solutions based on the iterative adaptive approach (IAA) recently proposed in the literature. The motivation of such
adoption mainly comes from the excellent behavior these beamformers provide in scenarios with coherent sources. Nonetheless,
these strategies suffer from a prohibitive computational complexity, especially in 2D scenarios. In order to alleviate the, we
propose two reduced-complexity (RC) versions of the IAA and IAA based on maximum likelihood (IAA-ML) algorithms. The
proposed beamformers are referred to as IAA-RC and IAA-ML-RC and provide similar results to those obtained with their original
counterparts. Computational complexity, however, is further reduced. Numerical results presented in the paper show that the
computational burden can be decreased by a 52% with our proposed solutions in the considered scenarios.

1. Introduction

Array signal processing is a research area that has been
deeply studied in the last decades. Although a wide set of
results and advances have been attained, there exist some
remaining open problems. Among all of them, the problem
of dealing with coherent sources is still a challenge when
adaptive beamformers are considered. It is worth noting that
this problem is of special interest nowadays. In the context
of the Galileo ground mission segment, high-performance
tracking stations achieving centimeter level tracking accuracy
are required to provide the system with accurate satellite
ephemeris and clock prediction models [1]. Tracking stations
work in static and controlled scenarios, being the ionospheric
perturbations and multipath and interference components
the dominant error sources. One of the most promising
approaches to cope with multipath and interference signals
is the adoption of arrays of antennas at the ground station
receivers [2, 3]. Therefore, the need of deriving beamforming
algorithms robust against multipath (coherent) signals is

crucial for a successful development of incoming Galileo
tracking stations.

In the direction-of-arrival (DOA) estimation problem, in
particular, high-resolution results can be attained with the
well-known MUSIC [4] and unitary ESPRIT [5] solutions
(and their variants). The problem of such subspace-based
strategies is that the presence of coherent (or correlated)
signals induces a rank deficiency of the source covariance
matrix. As a result, the algorithms are not able to properly
differentiate the different sources, and performance is seri-
ously degraded. In order to deal with this problem, some
preprocessing techniques can be applied to decorrelate the
sources such as spatial smoothing [6, 7]. The problem,
however, is that these pre-processing techniques reduce
the effective size of the array. As an alternative to the
methodologies commented above, one can resort to para-
metric maximum likelihood (ML) beamforming strategies,
[8] since their performance is not degraded in the presence
of coherent signals. This is because the parameterization
of the received signal takes into account all the sources’
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Figure 1: Array geometry.
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Figure 2: Performance degradation effects of the IAA solution for
different degrees of scanning region limitation (linear array, θ1 =
20◦, θ2 = 30◦, SNR1 = SNR2 = 15 dB, and fc = 1575 MHz).

signals impinging on the array. As an inconvenience, these
algorithms require a good knowledge of the scenario and
the beamforming derivation results in a complex multi-
dimensional optimization problem, increasing then the com-
putational requirements of the system.

Although a high amount of variants of the strategies
mentioned above have been proposed during the last years,
the problem of addressing coherent sources in an unknown
scenario has not been efficiently solved. Recently, how-
ever, a number of variant beamformers based on sparse
approaches showing satisfactory results have been proposed
[9–11]. These beamformers, referred as iterative adaptive
approaches (IAA), have been tested and compared with other
robust solutions in scenarios with coherent sources, array
perturbations, and finite-sampling effects. As shown in these
works, the authors prove that IAA-based algorithms are quite
efficient to deal with all these kinds of impairments by

providing the most equilibrated strategy in terms of signal-
to-noise-plus-interference ratio (SNIR) estimation accuracy
of DOA, and power of the desired signal. The main drawback
of these strategies, nonetheless, is the high computational
complexity involved in the beamforming computation, as it
is based on the complete scanning of all the visible region of
the array.

In this paper, we also consider the adoption of IAA-based
beamformers, to address the problem of angle estimation in
a 2D environment with coherent sources. Since the computa-
tional complexity of IAA is significantly high, specially in 2D
scenarios, we derive two reduced complexity versions of IAA:
IAA with reduced complexity (IAA-RC) and IAA based on
the maximum likelihood approach with reduced complexity
(IAA-ML-RC). As shown in the paper, results obtained with
our reduced complexity solutions are quite similar to results
provided by the original IAA beamformers but complexity
can be significantly reduced.

The rest of the paper is organized as follows. In Section 2,
we present the signal model considered in this paper. After
that, we review the IAA beamformers in Section 3. In
Section 4, we derive the reduced complexity versions of
the IAA solutions and analyze the resulting computational
complexity. Finally, we analyze the behavior of the proposed
algorithms and conclude the paper in Sections 5 and 6,
respectively.

2. Signal Model

Consider a scenario with K coherent sources and a receiver
consisting in an M antennas uniform rectangular array

(URA). In particular, these sources are located at angles θ̃ =
[θ̃1, . . . , θ̃K] and φ̃ = [φ̃1, . . . , φ̃K] where π/2 − θ̃k and φ̃k
are the elevation and azimuth (expressed in radians) of the
kth source, respectively. By taking into account a linear, non-
dispersive, and isotropic transmission medium along with
the far-field and narrowband assumptions (assumptions
attained in a high variety of scenarios related to commu-
nication and navigation systems), the received signal vector
corresponding to the nth snapshot can be modeled as:

x(n) = A
(
θ̃, φ̃

)
s(n) + e(n), (1)

where A(θ̃, φ̃) ∈ CM×K is the matrix gathering the steering

vectors associated to the K sources, that is, A(θ̃, φ̃) =
[a(θ̃1, φ̃1), . . . , a(θ̃k, φ̃k)], s(n) ∈ CK×1 is the vector collect-
ing the waveform signals transmitted by the different sources
and e(n) ∈ CM×1 is spatially and temporally white noise.

The beamforming vector is denoted by the vector w(n) ∈
CM×1 and the beamforming operation can be written as:

y(n) = wH(n)x(n). (2)

Since in this work we consider the use of adaptive beam-
formers, the covariance matrix must be estimated. In
particular, we consider the maximum likelihood estimate
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Figure 3: Spatial estimates of the different beamforming solutions (rectangular array, θ1 = 45◦, φ1 = 150◦, θ2 = 45◦, φ2 = 188◦, θ3 = 45◦,
φ3 = 250◦, N = 10 snapshots, SNR1 = SNR2 = SNR3 = 10 dB, noise power equal to 0 dB, and fc = 1575 MHz).
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Figure 4: Spatial estimates of the different beamforming solutions (rectangular array, θ1 = 45◦, φ1 = 150◦, θ2 = 45◦, φ2 = 188◦, θ3 = 45◦,
φ3 = 250◦, N =3 snapshots, SNR1 = SNR2 = SNR3 = 10 dB, noise power equal to 0 dB, and fc = 1575 MHz).
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Figure 5: IAA-ML versus IAA-ML-RC comparison (one realization, rectangular array, θ1 = 45◦, φ1 = 150◦, θ2 = 45◦, φ2 = 188◦, θ3 = 45◦,
φ3 = 250◦, N = 3 snapshots, SNR1 = SNR2 = SNR3 = 10 dB, noise power equal to 0 dB, and fc = 1575 MHz).

of the covariance matrix, which is given by the following
expression [12]:

R̂x =
1

N

N−1∑

k=0

x(n− k)xH(n− k) (3)

with N standing for the number of snapshots considered in
the estimation procedure.

Concerning the adoption of a rectangular array, the
motivation of such geometry option comes from the fact that
this is a practical and feasible solution for practical imple-
mentation (reproducibility of antenna conditions, ease of
calibration and manufacturing, etc.). It is worth noting, how-
ever, that the proposed beamforming solution is independent
of the selected geometry, and URA has been considered as
it is a common choice adopted by many applications and
systems for radar, sonar, and communications. In this work
in particular, we consider a

√
M ×

√
M antenna deployment

where antenna separation is equal to d = λ/2, being λ = c/ fc
the wavelength of the incoming signals and fc standing for
the carrier frequency. By taking into account the proposed
deployment (see Figure 1), the steering vector for each of the
sources can be written as [12]

a
(
θ̃k, φ̃k

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

e− j(2πd/λ) cos θ̃k cos φ̃k

· · ·

e− j(2πd/λ)(cos θ̃k cos φ̃k+cos θ̃k sin φ̃k)

· · ·

e− j(2πd/λ)(
√
M−1)(cos θ̃k cos φ̃k+cos θ̃k sin φ̃k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

3. Review of IAA Beamforming

The iterative adaptive approach (IAA) beamforming has
been recently studied in several works presented in the

context of array signal processing [9, 10] and multiple-input
multiple-output (MIMO) radar [11]. Such beamformer falls
into the category of sparse approaches (i.e., a higher number
of sources than the actual one is considered) and results
from a weighted least-squares problem, where the covariance
matrix of the incoming signals is iteratively computed. IAA
shows an excellent behavior especially in scenarios with
coherent sources. More specifically, the authors in [9] com-
pared the IAA beamformer with other robust approaches and
showed that this option is the most equilibrated strategy in
terms of SNIR, estimation accuracy of DOA, and power of
the desired signal. In that paper, it is also considered the ML
version of IAA which provides improved resolution in terms
of DOA estimation.

In this work, we adopt both the IAA and IAA-ML
solutions for 2D DOA estimation. Further details of the
algorithms can be found in the references above, but in this
section, we provide a brief review of the two considered
approaches.

3.1. IAA. The IAA solution consists of defining a scanning
grid of L directions by constructing a set of L steering vectors
A(θ,φ) = [a(θ1,φ1), . . . , a(θL,φL)], where θ = [θ1, . . . , θL]
and φ = [φ1, . . . ,φL] are the vectors containing the angles
considered at the scanning grid. In a 2D angle estimation
problem, the scanning matrix A(θ,φ) must cover the region
(0◦ ≤ θ ≤ 90◦, 0◦ ≤ φ ≤ 360◦). By considering one degree
of resolution, for instance, this fact implies that this matrix
should contain L = 360 × 90 steering vectors related to the
all possible directions in the grid. Once this scanning grid is
defined, the algorithm estimates the powers at each direction

and gathers them in matrix P̂ = diag{P̂1, . . . , P̂L}. After that,
the beamformer for each direction l is computed as

wH
l =

aH
(
θl,φl

)
R
−1

aH
(
θl,φl

)
R
−1

a
(
θl,φl

) , (5)
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Figure 6: Spatial estimates of the different beamforming solutions (rectangular array, θ1 = 45◦, φ1 = 170◦, θ2 = 45◦, φ2 = 188◦, θ3 = 45◦,
φ3 = 250◦, N = 10 snapshots, SNR1 = SNR2 = SNR3 = 10 dB, noise power equal to 0 dB, and fc = 1575 MHz).
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Figure 7: Spatial estimates of the different beamforming solutions (rectangular array, θ1 = 45◦, φ1 = 170◦, θ2 = 45◦, φ2 = 188◦, θ3 = 45◦,
φ3 = 250◦, N = 3 snapshots, SNR1 = SNR2 = SNR3 = 10 dB, noise power equal to 0 dB, and fc = 1575 MHz).
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Figure 8: IAA-RC (low-res) spatial estimate (one realization,
rectangular array, θ1 = 45◦, φ1 = 170◦, θ2 = 45◦, φ2 = 188◦, θ3 =
45◦, φ3 = 250◦, N = 3 snapshots, SNR1 = SNR2 = SNR3 = 10 dB,
noise power equal to 0 dB, and fc = 1575 MHz).

A(θ,φ) = [a(θ1,φ1), . . . , a(θL,φL)]
ŝl(n) = aH(θl,φl)x(n)/M n = 1, . . . ,N ; l = 1, . . . ,L (a)

P̂l = (1/N)
∑N

n=1 |ŝl(n)|2 l = 1, . . . ,L (b)

P̂ = diag{P̂1, . . . , P̂L}
R̂x = (1/N)

∑N−1
k=0 x(n− k)xH(n− k)

repeat

R = A(θ,φ)P̂AH(θ,φ) (c)
for l = 1, . . . ,L

wH
l = aH(θl,φl)R

−1
/aH(θl,φl)R

−1
a(θl,φl)

P̂l = wH
l R̂xwl

end
Until convergence

Algorithm 1: IAA algorithm [9].

where R is an estimate of the covariance matrix iteratively
computed by considering the received signal x(n) for N
snapshots as presented in Algorithm 1.

Notice that the beamforming solution is similar to the
classical Capon approach, and the robustness against array
perturbations and coherent signals comes from two facts:

(1) matrix P̂ is defined by considering that the sources are
uncorrelated, and (2) the covariance matrix is estimated by
taking into account the power arriving from the directions
where the different beamformers are pointing. Note that
power estimates are computed by taking into account the

sample covariance matrix R̂x . Finally, it is worth noting that
12 iterations are usually required for algorithm convergence.
The convergence criterion is based on the evolution of the
estimated powers. By defining p̂s as the vector containing
the power estimates at the sth iteration of the algorithm,
the convergence is considered to be achieved when ‖p̂s −
p̂s−1‖/‖p̂s−1‖ saturates for values lower than 10−3. For the

rest of algorithms presented in the paper, the same conver-
gence criterion is applied.

3.2. IAA-ML. In this case, sources’ powers in matrix P̂ are
obtained by resorting to the ML criterion. By assuming that
the received signal vector x(n) is a complex multivariate
Gaussian vector, this is done by minimizing the negative
log-likelihood function of x(n). As shown in [9, 10], an
iterative procedure is again required, which is summarized
in Algorithm 2.

Once the convergence is attained and matrix P̂ is esti-
mated, the beamforming vector is finally computed. To do
so, the MMSE estimate of the signal waveforms s(n), n =
1, . . . ,N , given the observations x(n), n = 1, . . . ,N , is
employed

ŝ(n) = WHx(n) = P̂AH
(
θ,φ

)(
A
(
θ,φ

)
P̂AH

(
θ,φ

))−1
x(n).

(6)

More specifically, the IAA-ML beamformer for the lth source
is obtained by considering the lth column of matrix W in the
equation above, that is:

wl = [W]l. (7)

It is worth noting, however, that since this paper is focused
on the use of IAA-ML for angle of arrival estimation, the
computation of the beamforming solution is not needed.
This is because the angle is estimated by observing the
power values at the different directions. In the IAA case,
nonetheless, the beamforming computation is required as
the power estimates at each iteration are updated with an
expression depending on the beamforming weights. In this
case, algorithm convergence can also be attained with 12
iterations.

4. Proposed Reduced Complexity Beamformers

The main problem of the IAA-based beamformers is the need
of scanning the whole visible region. As mentioned above,
L = 360 × 90 directions should be taken into account in
the beamforming computation in the case that one degree
of resolution is considered (L = 32400 beamformers must be
computed at each algorithm iteration!).

Although one can restrict the problem to a smaller
region (assuming that some information about the sources’
positions is available), one must compute the powers for the
entire space. This is because the beamforming solution is
based on the powers that are estimated at each direction of
the scanning matrix. If a source is not present in a given posi-
tion, the estimated power there is related to the noise term,
and this information is also valuable for the beamforming
computation. See for instance Figure 2, where we consider
a 1D angle estimation problem with a linear array and two
sources (located at θ1 = 20◦ and θ2 = 30◦). For the sake
of comparison, we also include the conventional delay-and-
sum (DAS) beamformer. As observed, the IAA solution is
able to separate both sources, and angle estimation accuracy
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Figure 9: (a) RMSE of the different beamforming solutions. (b) IAA-ML versus IAA-ML-RC detection probability (rectangular array, θ1 =
45◦, φ1 = 150◦, θ2 = 45◦, φ2 = 188◦, θ3 = 45◦, φ3 = 250◦, N = 10 snapshots, noise power equal to 0 dB, and fc = 1575 MHz).
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Figure 10: (a) RMSE of the different beamforming solutions. (b) IAA-ML versus IAA-ML-RC detection probability (rectangular array,
θ1 = 45◦, φ1 = 150◦, θ2 = 45◦, φ2 = 188◦, θ3 = 45◦, φ3 = 250◦, N = 3 snapshots, noise power equal to 0 dB, and fc = 1575 MHz).

is quite better than that provided by the DAS solution. In
this case, matrix A(θ,φ) covers the range −90◦ ≤ θ ≤ 90◦

(recall that here, we consider a linear array) with one degree
of resolution. By restricting the matrix to the region −30◦ ≤
θ ≤ 90◦ performance is degraded, obtaining a dramatic
performance loss when that region −20◦ ≤ θ ≤ 90◦ is

considered. This is because the beamformer does not take
care of the omitted regions, and high levels of noise are
introduced.

The main objective of this paper is to propose reduced-
complexity versions of the IAA beamforming solutions
presented in the previous section. To do so, we focus on the
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A(θ,φ) = [a(θ1,φ1), . . . , a(θL,φL)]
ŝl(n) = aH(θl ,φl)x(n)/M n = 1, . . . ,N ; l = 1, . . . ,L

P̂l = (1/N)
∑N

n=1 |ŝl(n)|2 l = 1, . . . ,L

P̂ = diag{P̂1, . . . , P̂L}
R
−1 = (A(θ,φ)P̂AH(θ,φ))

−1

R̂x = (1/N)
∑N−1

k=0 x(n− k)xH(n− k)
Repeat

Sort i1, . . . , iL such that P̂i1 ≤ P̂i2 ≤ · · · ≤ P̂iL

for l = 1, . . . ,L

P̂
prev
il

= P̂il

P̂il = max(0, P̂il + aH(θil ,φil )R
−1

(R̂x − R)R
−1

a(θil ,φil )/(aH(θil ,φil )R
−1

a(θil ,φil ))
2
)

R
−1 = R

−1 − (P̂il − P̂
prev
il

)R
−1

a(θil ,φil )aH(θil ,φil )R
−1
/1 + (P̂il − P̂

prev
il

)aH(θil ,φil )R
−1

a(θil ,φil ) (a)
end

Until convergence

Algorithm 2: IAA-ML algorithm [9].

problem presented above and carefully address the power
updating at the different directions of matrix A(θ,φ) with
the aim of reducing the number of required operations. As
a result, we derive two reduced-complexity beamforming
solutions as presented below.

4.1. Solution 1: IAA-RC. First, we propose a reduced com-
plexity version of the IAA beamformer named as IAA-
RC. As mentioned above, the main drawback of IAA-
based schemes is the need of considering the whole visible
region in the scanning matrix A(θ,φ). Our experiments,
however, revealed that the main problem arises in the lack of
knowledge of the powers at the omitted directions. In other
words, the reason why reducing the scanning space implies
a dramatic performance degradation is due to the fact we
are considering null powers in such directions. Indeed, this
problem can be alleviated if we feed the algorithm with
some information about the power in such regions. In that
direction, we propose the first algorithm of this work, which
is divided into two steps.

(i) Initialization: in this step, we provide the algorithm
with information concerning the powers at all direc-
tions. However, a high level of accuracy is required to
assure a proper behavior of the algorithm. For that
reason, we obtain such accuracy by considering the
outputs provided by the IAA approach. As reported
in [9], the IAA solution is the best beamformer
(among the solutions tested there) in terms of power
estimation accuracy (numerical evaluation we have
performed shows that performance can be seriously
degraded if other beamforming solutions are adopted
at the first step). The main point here is that the IAA
beamformer is not iterated until convergence in this
case. Instead, a reduced number of iterations, Nit1, are
performed (satisfactory results are obtained in our
experiments by considering Nit1 = 3).

(ii) IAA Powers and Beamforming Updating: once the

initialization is performed, matrix P̂ is constructed

by considering the set of powers estimated at the
first step. By sorting all these powers in ascending

order, P̂r1 ≤ P̂r2 ≤ · · · ≤ P̂rL, we rewrite matrix

R = A(θ,φ)P̂AH(θ,φ) as

R =
R−1∑
t=1

P̂rta
(
θrt ,φrt

)
aH
(
θrt,φrt

)

+
L∑

t=R
P̂rta

(
θrt,φrt

)
aH
(
θrt,φrt

)

= Q +
L∑

t=R
P̂rta

(
θrt,φrt

)
aH
(
θrt,φrt

)
,

(8)

where matrix Q has been defined as Q =∑R−1
t=1 P̂rt a(θrt,φrt)aH(θrt,φrt) and R is the position of

the first power value assuring that

P̂rR > βP̂r1. (9)

In other words, we divide the total set of powers into
two groups, that is, (Pr1 , . . . ,PrR−1 ) and (PrR , . . . ,PrL).
Then, the powers and beamforming vectors are
updated, but, however, only the elements belonging
to the second group are taken into consideration.
In particular, the recursive algorithm presented in
Algorithm 3 is carried out. In this step, good results
are obtained with Nit2 = 9 iterations and by setting β
equal to 2.

As observed, the second part of the algorithm basically
consists of updating only those positions with valuable
information. By restricting the search to the directions
with initial power 3 dB higher than the minimum one, we
are omitting those directions with only noise contribution.
However, the power estimate of these directions contains
useful information as it has been estimated at the first step
with (a reduced version of) the IAA approach.
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A(θ,φ) = [a(θ1,φ1), . . . , a(θL,φL)]
ŝl(n) = aH(θl,φl)x(n)/M n = 1, . . . ,N ; l = 1, . . . ,L

P̂l = (1/N)
∑N

n=1 |ŝl(n)|2 l = 1, . . . ,L

P̂ = diag{P̂1, . . . , P̂L}
R̂x = (1/N)

∑N−1
k=0 x(n− k)xH(n− k)

for iter = 1, . . . ,Nit1

R = A(θ,φ)P̂AH(θ,φ)
for l = 1, . . . ,L

wH
l = aH (θl,φl)R

−1
/aH (θl,φl)R

−1
a(θl ,φl)

P̂l = wH
l R̂xwl

end
end

Sort the powers in ascending order: P̂r1 ≤ P̂r2 ≤ · · · ≤ P̂rL

Set R as the index of the first power value satisfying P̂rR > βP̂r1

Q =
∑R−1

t=1 P̂rt a(θrt ,φrt )aH(θrt ,φrt )
for iter = 1, . . . ,Nit2 (Powers and beamforming updating)

R = Q +
∑L

t=R P̂rt a(θrt ,φrt )aH(θrt ,φrt )
for t = R, . . . ,L

wH
t = aH (θrt ,φrt )R

−1
/aH(θrt ,φrt )R

−1
a(θrt ,φrt )

P̂t = wH
t R̂xwt

end
end

Algorithm 3: IAA-RC algorithm.

Notice that the proposed algorithm is based on the
adoption of a power threshold (given by (9)) instead of the
direct control of parameter R. Clearly, system performance
depends on the value of R and an appropriate value trading
off complexity versus performance should be selected.
However, obtaining the optimal value of R is a critical task
as it has a high dependency on the kind of scenario. By
adopting a power threshold, we avoid this problem as the
algorithm automatically selects those directions providing
useful information.

Finally, it is worth mentioning that the proposed solution
is totally different from the IAA-Regularized algorithm
presented in [11]. In that paper, the objective was to consider
directions outside the measurement region of the radar
(covering a restricted angular region). To do so, the authors
proposed a regularized version of the covariance matrix R
consisting of the inclusion of the unknown noise powers
omitted by their original scheme. However, these additional
noise powers are computed at each iteration of the algorithm,
and then computational complexity is increased.

4.2. Solution 2: IAA-ML-RC. The second solution is based
on the derivation of a reduced-complexity version of the
IAA-ML solution, referred to here as IAA-ML-RC. As in the
previous case, the algorithm is divided into two steps.

(i) Initialization: this step is common to the first stage
of the IAA-RC approach. Since the IAA beamformer
provides the most accurate power estimates, we
consider this solution as the initialization phase. It
is also worth noting that it is preferable to consider
the IAA scheme in this initial phase (instead of the

IAA-ML one), as the algorithm is devoted to find the
presence of potential sources with a reduced number
of iterations. In summary, the first step of IAA-ML-
RC consists of conducting Nit1 iterations of the IAA
approach in the whole visible region.

(ii) IAA-ML Powers Updating: we also consider in this
case the powers estimated at the first step, and we
rewrite matrix R as (8) by sorting the obtained power
estimates and considering the rule given by (9). Then,
the IAA-ML algorithm is started by only updating
the powers of the group (PrR , . . . ,PrL) as shown in
Algorithm 4. As in the IAA-RC case, satisfactory
results can be obtained with IAA-ML-RC by setting
the number of iterations equal to Nit1 = 3 and Nit2 =
9.

4.2.1. Complexity Analysis. Before analyzing the computa-
tional complexity of the proposed solutions, we start by
studying the complexity of the original IAA and IAA-ML
algorithms (where we assume that L≫ 1 and M≫ 1).

(i) IAA Complexity: the number of required operations
for the initial stage (Algorithm 1(a) and 1(b)) is ML+
(N + 1)L products and ML + (N − 1)L additions.
The computation of the inverse of the matrix given
by Algorithm 1(c) (required at the next steps) needs
M2L + ML + 21M3 products and M2L + 21M3 addi-
tions. Instead of computing the inverse of this matrix
at each iteration, we compute once at the beginning
and update it in the algorithm loop in a similar way
as done in the case of the IAA-ML algorithm (see
Algorithm 2(a)). As a result, the operations required
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Figure 11: (a) RMSE of the different beamforming solutions. (b) IAA-ML versus IAA-ML-RC detection probability (rectangular array,
θ1 = 10◦, φ1 = 150◦, θ2 = 40◦, φ2 = 188◦, θ3 = 20◦, φ3 = 250◦, N = 10 snapshots, noise power equal to 0 dB, and fc = 1575 MHz).

at each iteration of the main core of the algorithm
are 7M2L + 3ML + L products and 6M2L + 2ML + L
additions are required. By considering Nit iterations,
the total complexity amounts to (7Nit + 1)M2L +
(3Nit + 2)ML + (Nit + N + 1)L + 21M3 products and
(6Nit + 1)M2L+ (2Nit + 1)ML+ (Nit +N−1)L+ 21M3

additions.

(ii) IAA-ML Complexity: the number of operations
required for the initial stage and the first matrix
inversion are the same as that presented in the IAA
case. As for the number of operations needed at each
iteration of the main part of the algorithm, this value
is equal to 7M2L + 2ML + 3L products and 6M2L +
3ML + 2L additions. As a result, the total complexity
is (7Nit+1)M2L+(2Nit+2)ML+(3Nit+N+1)L+21M3

products and (6Nit + 1)M2L+ (3Nit + 1)ML+ (2Nit +
N − 1)L + 21M3 additions.

Concerning the complexity of the proposed IAA-RC and
IAA-ML-RC solutions, the following quantities are given.

(iii) IAA-RC Complexity: in the initialization step of
the algorithm, the complexity is the number of
operations required to conduct the IAA algorithm
Nit1 iterations, that is (7Nit1 + 1)M2L + (3Nit1 +
2)ML+ (Nit1 +N + 1)L+ 21M3 products and (6Nit1 +
1)M2L + (2Nit1 + 1)ML + (Nit1 + N − 1)L + 21M3

additions. In the second step, Nit2 iterations of the
main loop of IAA algorithm must be conducted
but only considering LRC = L − R + 1 directions.
This amounts to 7Nit2M2LRC + 3Nit2MLRC + Nit2LRC

products and 6Nit2M2LRC + 2Nit2MLRC + Nit2LRC

additions. For the ease of notation, we define α =

(L − R + 1)/L and express LRC as LRC = αL. Then,
the total number of operations required by IAA-RC
can be expressed as (7Nit1 + 7αNit2 + 1)M2L+ (3Nit1 +
3αNit2+2)ML+(Nit1+αNit2+N+1)L+21M3 products
and (6Nit1 +6αNit2 +1)M2L+(2Nit1 +2αNit2 +1)ML+
(Nit1 + αNit2 + N − 1)L + 21M3 additions.

(iv) IAA-ML-RC Complexity: the complexity of the first
step of the algorithm is the same as in the previous
case. Concerning the power updating phase, the
complexity is given by the number of operations of
the main loop of the IAA-ML algorithm with Nit2

iterations and LRC = αL directions: 7αNit2M2L +
2αNit2ML + 3αNit2L products and 6αNit2M2L +
3αNit2ML + 2αNit2L additions. Then, the total num-
ber of operations is (7Nit1 + 7αNit2 + 1)M2L+ (3Nit1 +
2αNit2+2)ML+(Nit1+3αNit2+N+1)L+21M3 products
and (6Nit1 +6αNit2 +1)M2L+(2Nit1 +3αNit2 +1)ML+
(Nit1 + 2αNit2 + N − 1)L + 21M3 additions.

Finally, we present the computational complexity of the
different algorithms expressed in terms of floating point
operations (FLOPS), where we have considered that one
complex product and one complex addition need 6 and 2
FLOPS, respectively. In the scenarios considered in this work
(presented and discussed in the next section), the parameters
assuring a good performance behavior are Nit = 12, Nit1 =
3, and Nit2 = 9. The reduction of directions resulting
from applying (9) is approximately α = 0.5 in average. As
observed in Table 1, the proposed IAA-RC and IAA-ML-
RC solutions provide a 37% of complexity reduction. As
we show in the next section, this reduction comes with a
residual performance degradation. Besides, we include here
the computational complexity of IAA-RC when the rule to
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A(θ,φ) = [a(θ1,φ1), . . . , a(θL,φL)]
ŝl(n) = aH(θl,φl)x(n)/M n = 1, . . . ,N ; l = 1, . . . ,L

P̂l = (1/N)
∑N

n=1 |ŝl(n)|2 l = 1, . . . ,L

P̂ = diag{P̂1, . . . , P̂L}
R̂x = (1/N)

∑N−1
k=0 x(n− k)xH(n− k)

for iter = 1, . . . ,Nit1

R = A(θ,φ)P̂AH(θ,φ)
for l = 1, . . . ,L

wH
l = aH (θl,φl)R

−1
/aH(θl,φl)R

−1
a(θl,φl)

P̂l = wH
l R̂xwl

end
end

Sort the powers in ascending order: P̂r1 ≤ P̂r2 ≤ · · · ≤ P̂rL

Set R as the index of the first power value satisfying P̂rR > βP̂r1

Q =
∑R−1

t=1 P̂rt a(θrt ,φrt )aH(θrt ,φrt )

R
−1 = (Q +

∑L
t=R P̂rt a(θrt ,φrt )aH(θrt ,φrt ))

−1

for iter = 1, . . . ,Nit2 (Powers and beamforming updating)

Sort rR, . . . , rL such that P̂rR ≤ P̂rR+1 ≤ · · · ≤ P̂rL

for t = R, . . . ,L

P̂
prev
rt = P̂rt

P̂rt = max(0, P̂rt + aH(θrt ,φrt )R
−1

(R̂x − R)R
−1

a(θrt ,φrt )/(aH(θrt ,φrt )R
−1

a(θrt ,φrt ))
2
)

R
−1 = R

−1 − (P̂rt − P̂
prev
rt )R

−1
a(θrt ,φrt )aH(θrt ,φrt )R

−1
/1 + (P̂rt − P̂

prev
rt )aH(θrt ,φrt )R

−1
a(θrt ,φrt )

end
end

Algorithm 4: IAA-ML-RC Algorithm.

Table 1: Computational complexity.

IAA IAA-ML IAA-RC
IAA-RC
(6 dB)

IAA-ML-
RC

GigaFLOPS 27.88 27.83 17.56 13.43 17.54

update power takes into account a minimum of P̂r1 (dBW) +
6 dB (see column labeled as IAA-RC (6 dB) in the table). In
the scenarios considered in this work, we have not observed
any performance degradation and complexity can be reduced
by 52% with respect to the IAA case. However, we focus the
analysis carried out in the next section on the β = 2 case, as
this value assures a good performance behavior for both the
IAA-RC and IAA-ML-RC approaches.

5. Numerical Results

In this section, we analyze the proposed reduced-
complexity beamformers and compare them with the origi-
nal IAA approaches in terms of angle estimation capability.
In [9, 10], the superiority of the IAA approaches with
respect to other beamforming solutions is shown in scenarios
with array perturbations, finite-sample effects, and coherent
and uncorrelated sources. For that reason, we concentrate
our efforts here on proving that our solutions are able to
provide similar results to those offered by the IAA and IAA-
ML beamformers with a lower computational complexity.
Given the recent interest on designing high-performance

tracking stations achieving centimeter level tracking accuracy
for the Galileo ground mission segment, we consider a
scenario with coherent sources as it represents the problem
observed in Galileo to separate the line-of-sight signal from
the multipath components. Also, we consider some of the
parameters of L1 Galileo signal such as the carrier frequency
equal to 1575 MHz and the typical signal-to-noise ratio
(SNR) levels that can be found at the postcorrelation level
(around 10–15 dB). As previously mentioned, we adopt a
URA with M = 8× 8 antennas.

We start the analysis by showing the performance of
the different beamformers in a scenario with three coherent
sources at (θ1 = 45◦, φ1 = 150◦), (θ2 = 45◦, φ2 = 188◦),
and (θ3 = 45◦, φ3 = 250◦). The received signal-to-noise
ratio for these signals is 10 dB. In particular, this value is
equal to the signal power as we consider 0 dB of noise power.
We take into account N = 10 snapshots to compute the
beamforming vectors, and the construction of matrix A(θ,φ)
is carried out with one degree of resolution. Results are
shown in Figure 3, where power estimates for the different
solutions are represented as a function of the φ angle (several
realizations are plotted in the same figure). Notice that
we have considered the same elevation for all the sources
for ease of results representation. The circles and vertical
lines correspond to the actual sources’ powers and angle
locations, respectively. As observed the highest resolution
is obtained with the IAA-ML-based solutions. However, it
is observed that both the IAA and IAA-ML approaches
are able to accurately estimate the location of the sources.
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Figure 12: (a) RMSE of the different beamforming solutions. (b) IAA-ML versus IAA-ML-RC detection probability (rectangular array,
θ1 = 10◦, φ1 = 150◦, θ2 = 40◦, φ2 = 188◦, θ3 = 20◦, φ3 = 250◦, N = 3 snapshots, noise power equal to 0 dB, and fc = 1575 MHz).

Concerning the IAA-RC and IAA-ML-RC approaches, these
provide results quite similar to those attained with IAA
and IAA-ML, respectively. Therefore, our solutions are quite
efficient to estimate coherent sources’ locations with a lower
computational complexity. In addition, we also include
results corresponding to a low-resolution version of IAA-RC
consisting of a first phase with 2 degrees of resolution and
a second phase with 1 degree resolution. The motivation of
this experiment is to evaluate whether a good performance
level can be guaranteed by exploring the area at the first step
with a lower resolution. Although complexity can be further
reduced, IAA-RC (low res) results present some bias with
respect to the other solutions.

In Figure 4, we consider the same scenario, but the
number of snapshots is reduced to N = 3. In this case,
it is observed the robustness of IAA against finite-sampling
effects as IAA and IAA-RC solutions show a similar behavior
to that observed in the N = 10 case. Concerning the IAA-
ML-based solutions, performance is degraded as one of
the problems of IAA-ML is the need of a higher number
of snapshots [10]. Indeed, it is observed that situations
where some of the sources are not detected by IAA-ML
can appear (in the previous case with N = 10 snapshots,
the same problem can appear but with a lower probability).
This effect is not observed in this figure as several realizations
are plotted. For that reason, we present IAA-ML and IAA-
ML-RC results for only one realization in Figure 5. In that
case, IAA-ML is only able to detect two sources. IAA-ML-RC,
on the other hand, detects the three sources. Our solution,
therefore, provides an improvement of the IAA-ML solution
in scenarios with a reduced number of snapshots. This is
because the first step of IAA-ML-RC consists of the use

of IAA for the initial power estimates, which increases the
detection probability of the algorithm.

A different scenario is adopted in Figure 6. In particular,
we consider sources’ locations at (θ1 = 45◦, φ1 = 170◦),
(θ2 = 45◦, φ2 = 188◦), and (θ3 = 45◦, φ3 = 250◦), and the
number of snapshots is equal to N = 10. Again, the reduced-
complexity versions provide similar results to those attained
with the original algorithms. Nevertheless, in this case where
the first and second sources are closer, performance of
the different algorithms are degraded with respect to the
previous scenario. The IAA-ML-based solutions provide the
best results due to their higher resolution. It is worth recalling
that several realizations are plotted and for that reason several
peaks are observed around the actual locations (one peak for
realization). In the case of the IAA and IAA-RC approaches,
the algorithms are not able to properly differentiate the two
first sources. Therefore, this kind of environment is clearly
the most appropriate scenario to use IAA-ML solutions. By
reducing the number of snapshots to N = 3 (see Figure 7),
the performance of the different algorithms remain the same
except for the IAA-ML solutions. In other words, IAA-ML
shows performance degradation at the presence of finite
sampling effects. As commented in the cases represented by
Figures 4 and 5, the IAA-ML-RC approach presents a more
robust option when the number of snapshots is reduced.
Then, this solution is an appropriate choice to cope with
sources at close locations in scenarios with a low number
of snapshots. As computational complexity is also reduced,
this solution can also be efficient in situations with a high
number of snapshots. Notice that IAA-RC (low-res) is able
to separate the two sources but a higher bias is presented and
more sources than the actual number can be detected in some
situations (see Figure 8).
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In Figure 9, we represent the root mean square error
(RMSE) in terms of bearing accuracy (i.e., error in DOA
estimation) attained with the different beamforming solu-
tions in the same scenario adopted by Figure 3 but by
considering different values of SNR. The Cramer-Rao Bound
(CRB) is also included for benchmarking [12, Chapter 8].
As observed, the highest resolution is obtained with the
IAA-ML based solutions. On the other hand, one can see
how results of the proposed reduced complexity solutions
are quite close to those achieved by the original schemes,
especially in the IAA-RC case. Concerning the IAA-RC (low-
res) approach, it is emphasized the bad behavior offered by
reducing the resolution at the first step of the algorithm.
It is worth noting that we have generated these curves
by neglecting the nondetection probability of the IAA-ML
schemes commented above (i.e., RMSE is only accounted
for good detection events). In order to show this last effect,
we present in the right-hand side of the figure the detection
probability for both approaches. By considering the signals
with the three largest powers, the detection probability for
a given source is defined as the probability that a signal
is present inside the area surrounding the exact location
of that source (where the area is defined as the region at
±5◦ of the exact DOA of the source). As observed, a higher
detection probability is observed for the IAA-ML-RC case
when compared with the IAA-ML solution. As previously
commented, this is because IAA-ML-RC adopts IAA for
the initial power estimates. In Figure 10, we consider the
same scenario, but the number of snapshots is reduced to
N = 3. Here, it is observed how performance of IAA-ML-
based schemes are degraded with respect to the previous
case. In particular, performance of IAA-ML-RC is better
than the IAA-ML one in this case. Concerning the detection
probability, the higher robustness against finite-sample effect
of the IAA-ML-RC is emphasized here.

As commented above, results have been presented in
scenarios with sources at the same elevation for ease of results
representation. Although this is still a 2D DOA estimation
problem as the search procedure carried out by the different
algorithms is performed for the whole (θ, φ) space, we
include here results corresponding to a scenario with the
following sources’ locations (θ1 = 10◦, φ1 = 150◦), (θ2 =
40◦, φ2 = 188◦), and (θ3 = 20◦, φ3 = 250◦). More
specifically, results in terms of RMSE curves are presented
in Figures 11 and 12 for the cases of N = 10 and 3
snapshots, respectively. As observed, similar conclusions to
those extracted in the previous scenario can be obtained here.

In summary, the following conclusions can be drawn
from observed results:

(i) IAA-RC provides similar results to those offered by
the original IAA algorithm, while computational
complexity can be significantly reduced,

(ii) IAA-ML-RC suffers from a minor performance
degradation with respect to IAA-ML, but substantial
computational savings can also be obtained. When
the system is restricted to work with a reduced
number of snapshots, however, IAA-ML-RC is able
to provide a more robust solution than IAA-ML. This

is because the first step of the algorithm is based on
IAA,

(iii) IAA-ML-RC offers higher-resolution levels than that
offered by IAA-RC (with a sufficient number of
snapshots),

(iv) IAA-RC could be a more convenient solution when
the system is complexity limited and attaining high-
resolution levels is not the main motivation. It is also
an appropriate solution to cope with finite-sample
effects.

6. Conclusions

In this paper, we have considered the problem of 2D angle
estimation in scenarios with coherent sources. To do so, we
have adopted beamforming designs based on the IAA and
IAA-ML solutions. Since the computational complexity of
these schemes can be prohibitive in real applications, we
have proposed two beamformers with reduced complexity.
On one hand, we have proposed a reduced complexity
version of IAA referred to here as IAA-RC, which offers
similar results to the original algorithm while reducing
complexity by a 52%. It has been shown that this algorithm
is quite appropriate for dealing with scenarios with a few
of snapshots and lower requirements in terms of angle
estimation resolution. On the other hand, a reduced version
of IAA-ML, namely IAA-ML-RC, has also been derived.
In this case, we have shown that high-resolution results
can be attained by reducing the complexity of IAA-ML by
37%. Besides, IAA-ML-RC is also able to alleviate the finite-
sample effects of IAA-ML as the initial step of the proposed
algorithm is based on the IAA approach.

Acknowledgments

This work was supported by the Spanish Government Project
TEC2008-06305/TEC, the Catalan Government under Grant
2009 SGR 298, and the Chair of Knowledge and Technology
Transfer Parc de Recerca UAB—Santander.

References

[1] F. Amarillo, A. Ballereau, M. Crisci, B. Lobert, and S. Lanne-
longue, “Galileo IOV ground mission segment performances,”
in Proceedings of European Navigation Conference (ENC-GNSS
’08), April 2008.

[2] G. Seco-Granados, J. A. Fernández-Rubio, and C. Fernández-
Prades, “ML estimator and hybrid beamformer for multipath
and interference mitigation in GNSS receivers,” IEEE Transac-
tions on Signal Processing, vol. 53, no. 3, pp. 1194–1208, 2005.

[3] J. Lopez Vicario, F. Antreich, M. Barcelo et al., “ADIBEAM:
adaptive digital beamforming for Galileo reference ground
stations,” in Proceedings of the Institute of Navigation (ION-
GNSS ’10), September 2010.

[4] R. O. Schmidt, “Multiple emitter location and signal param-
eter estimation,” IEEE Transactions on Antennas and Propaga-
tion, vol. 34, no. 3, pp. 276–280, 1986.

[5] M. Haardt and J. A. Nossek, “Unitary ESPRIT: how to obtain
increased estimation accuracy with a reduced computational



16 EURASIP Journal on Advances in Signal Processing

burden,” IEEE Transactions on Signal Processing, vol. 43, no. 5,
pp. 1232–1242, 1995.

[6] T. J. Shan and T. Kailath, “Adaptive beamforming for coherent
signals and interference,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 33, no. 3, pp. 527–536, 1985.

[7] H. Krim and M. Viberg, “Two decades of array signal
processing research: the parametric approach,” IEEE Signal
Processing Magazine, vol. 13, no. 4, pp. 67–94, 1996.

[8] K. S. M. Wax and A. Leshem, “Joint estimation of time delays
and directions of arrival of multiple reflections of a,” IEEE
Transactions on Signal Processing, vol. 45, no. 10, pp. 2477–
2484, 1997.

[9] L. Du, T. Yardibi, J. Li, and P. Stoica, “Review of user
parameter-free robust adaptive beamforming algorithms,”
Digital Signal Processing, vol. 19, no. 4, pp. 567–582, 2009.

[10] T. Yardibi, J. Li, P. Stoica, M. Xue, and A. B. Baggeroer, “Source
localization and sensing: a nonparametric iterative adaptive
approach based on weighted least squares,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 46, no. 1, pp. 425–443,
2010.

[11] W. Roberts, P. Stoica, J. Li, T. Yardibi, and F. A. Sadjadi,
“Iterative adaptive approaches to MIMO radar imaging,” IEEE
Journal on Selected Topics in Signal Processing, vol. 4, no. 1, pp.
5–20, 2010.

[12] H. V. Trees, Optimum Array Processing (Detection, Estimation
and Modulation Theory, Part IV), John Wiley & Sons, New
York, NY, USA, 2002.


	1. Introduction
	2. Signal Model
	3. Review of IAA Beamforming
	3.1. IAA.
	3.2. IAA-ML.

	4. Proposed Reduced Complexity Beamformers
	4.1. Solution 1: IAA-RC.
	4.2. Solution 2: IAA-ML-RC.

	5. Numerical Results
	6. Conclusions
	Acknowledgments
	References

