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Abstract. Subsurface flows are influenced by the presence of faults and large fractures which act
as preferential paths or barriers for the flow. In literature models were proposed to handle fractures
in a porous medium as objects of codimension 1. In this work we consider the case of a network of
intersecting fractures, with the aim of deriving physically consistent and effective interface conditions to
impose at the intersection between fractures. This new model accounts for the angle between fractures
at the intersections and allows for jumps of pressure across intersections. This fact permits to describe
the flow when fractures are characterized by different properties more accurately with respect to other
models that impose pressure continuity. The main mathematical properties of the model, derived in
the two-dimensional setting, are analyzed. As concerns the numerical discretization we allow the grids
of the fractures to be independent, thus in general non-matching at the intersection, by means of the
extended finite element method (XFEM). This increases the flexibility of the method in the case of
complex geometries characterized by a high number of fractures.
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1. Introduction

The presence of fractures can largely influence the flow in porous media in geophysical applications. The
literature on flow in fractured media is rather extensive, we give here just some main references [2, 3, 8, 10] and
we mention the applications to reservoir simulations [21, 26, 28].

Fractured rocks are characterized by fractures covering a large range of space scales, from small joints to large
faults. In particular, large fractures and faults can act, according to their different permeability, as barriers or
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preferential paths to the flow. This is due to the fact that fractures may be produced at different geological times
and may undergo infilling and other geochemical processes that may modify their permeability considerably [17].

At a different space scale, micro fractures can alter, according to their density and orientation, the overall
permeability of the porous medium. Numerical simulations of problems related to groundwater flow such as CO2

storage, oil migration and recovery or groundwater contamination should be able to account for the presence of
fractures to yield accurate results.

In the applications we are considering, the porous medium is usually characterized by the presence of several
fractures that can intersect each other. Moreover the characteristic thickness, or aperture, of the fractures is
very small compared to their length and, in particular, compared to the typical size of the domain of interest.
This geometric complexity makes the simulations particularly challenging for standard methods.

In [5, 24, 27] the authors propose a model reduction strategy to overcome part of the aforementioned prob-
lems by using a domain decomposition approach where fractures are represented as one-codimension interfaces
inside the porous domains. The proposed model can successfully reduce the number of unknowns in the sim-
ulation since, instead of refining the grid to capture a thin n-dimensional region we are replacing it with a
n − 1-dimensional interface. This approach, originally developed for single-phase Darcy problems, has been suc-
cessfully extended to passive transport in porous media [20] and to two-phase flow [19,25], with suitable reduced
models to describe the flow in the fracture.

However, the aforementioned works consider just the restricted case of non-intersecting fractures that cut the
domain into two separated sub-domains. In [7] this assumption is relaxed to include fractures that do not cut
entirely the domain, i.e. fractures with tips immersed in the enclosing porous medium, with the constraint of
mesh conformity between fractures and porous medium.

Realistic simulations in a three dimensional domain are presented in [6], where suitable coupling conditions
are imposed at the intersections between fractures. In particular, the continuity of pressure and mass conserva-
tion are enforced. These conditions however, also used in [5], may lead to inaccurate results if two intersecting
fractures have different permeability. In this case one may expect strong variations of pressure near the inter-
section, thus pressure continuity does not seems an appropriate condition to represent this behavior in a model
reduction approach. We mention also the recent works [11, 12] on three dimensional discrete fracture network
flows.

In this work, we focus on the development of a reduced model that generalizes the coupling conditions of [5,6]
to account for different properties of the fractures such as different permeability and thickness and to include
the effect of the intersection angle. The new coupling conditions allow for pressure and velocity jumps at the
intersection, similarly to the conditions derived in [27] for the matrix-fracture system. Hence, we account for the
fact that in a fracture system one fracture can act as a barrier or a preferential path with respect to the other.
We analise the resulting coupled system of equations to derive its well posedness, and assess its conservation
and positivity properties. The analysis is focused on the two dimensional case, where fractures are modeled
as one dimensional manifolds. Although fractures are clearly 3D features, the study of 2D networks is still
significant, particularly when the normal to the fracture mid-surface lays on a plane [23,30]. Moreover they are
less computationally expensive than a three dimensional counterpart and thus useful for preliminary studies.

We propose a discretization method that allows for non matching grids at the intersection points with the
intent of providing the maximal flexibility when dealing with complex networks. More precisely, we employ an
extended finite element (XFEM) strategy to treat intersecting fractures.

We focus just on the fracture network neglecting flow in the surrounding medium. This choice can be regarded
as an intermediate step for the development of a fully coupled model with intersecting fractures immersed in
a permeable medium, but also as a reasonable approximation of realistic situations where the rock has low
permeability and flow occurs mainly through the fracture network.

The paper is structured as follows. In Section 2 we introduce the governing equations and provide the
setting for the derivation of the reduced model. In Section 3 the reduced model for the intersecting fractures
is derived. The corresponding weak formulation in mixed form and these analyzes are presented in Section 4,
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Figure 1. Example of a network of fractures and its subdivision (2.2).

while in Section 5 we address the numerical discretization and its main properties. In Section 6 we present some
numerical test cases to assess the theoretical results. Finally, Section 7 is devoted to conclusions.

2. The governing equations

In this work we consider the case of fractures in a domain of R
2. For the sake of simplicity, let us consider

two crossing fractures Ω1, Ω2 ∈ R
2, included in a region D ⊂ R

2 intersecting the fracture boundary. The results
illustrated in this section may be extended rather easily to the case of several fractures, as the examples in
Section 6 show.

Following [27] we suppose that, for each Ωi, there exists a non auto-intersecting one dimensional manifold γi

of class C2 such that Ωi may be defined as

Ωi =
{
x ∈ R

n : x = s+ rni, s ∈ γi, r ∈
(
−di (s)

2
,
di (s)

2

)}
, (2.1)

where di ∈ C2(γi) is the thickness of Ωi and ni the unit normal of γi. We assume that |γi| � di, for i = 1, 2.
Furthermore, we assume that there exist c1, c2 ∈ R

+, with c2 “small”, such that

di (s) > c1, |d′i (s)| < c2 ∀s ∈ γi for i = 1, 2.

In other words, we assume that the thickness of the fracture varies slowly and is small compared to the other
dimensions of the fracture.

Remark 2.1. The requirement that γi be of class C2 may be partially dispensed with. Indeed, it is sufficient
that γi be a piecewise C2 curve.

We set I := Ω1 ∩ Ω2 and we assume that each Ωi can be subdivided into three disjoint and non-empty sub-
regions Ωi1, Ωi2 and I, i.e. a T shaped intersection is not allowed (see Fig. 1). For convenience let us introduce
the following sets, for i, j = 1, 2

Ω := Ω1 ∪ Ω2, γ := γ1 ∪ γ2, ip := γ1 ∩ γ2 and ∂Iij := ∂I ∩ ∂Ωij . (2.2)

It is implicit in these definitions that we assume that γ1 and γ2 intersect each other at a single point, indicated
with ip. The extension to multiple intersection is straightforward.

We assume a Lipschitz-continuous boundary for both D and Ω. We indicate with nij ,nΩ and nD the outward
unit normals to ∂Iij , ∂Ω and ∂D, respectively. Here and in the sequel we indicate with the lower case subscripts
i and ij the restriction of data and unknowns to Ωi or Ωij , respectively, and with the subscript I the restriction
to I. For instance, for ui in Ωi, uij indicates the function in Ωij such that uij = ui|Ωij

and so on.
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We are interested in computing the steady pressure field p and the velocity field u in the whole network Ω,
governed by the following Darcy problems formulated in Ωi and I,{

∇·ui = fi

K−1
i ui + ∇pi = 0

in Ωi \ I for i = 1, 2 and

{
∇·uI = fI

K−1
I uI + ∇pI = 0

in I. (2.3a)

Here Ki ∈ [L∞ (Ω)]2×2 and KI ∈ [L∞ (Ω)]2×2 denote the permeability tensors, which are symmetric and
positive definite, and f ∈ L2 (Ω) is a source term which represents a possible volume source.

We consider the following physical coupling conditions between I and Ω \ I{
pij = pI

uij · nij = uI · nij
on ∂Iij for i, j = 1, 2, (2.3b)

and boundary conditions ⎧⎪⎨⎪⎩
u · nΩ = 0 on ∂Ω \ ∂D,

p = g on Γ p,

u · nD = b on Γ u.

(2.3c)

The first condition of (2.3c) means that we are considering the fractures as immersed in an impermeable medium
D \ Ω. In the remaining part of ∂Ω we impose boundary condition for the pressure on Γ p with g ∈ H1/2 (Γ p),
or for the flux on Γ u with b ∈ H−1/2 (Γ u). We have Γ p ∪ Γ u := ∂D ∩ ∂Ω with Γ p ∩ Γ u = ∅, moreover we
require that Γ p 
= ∅ and that ∂Ωij ∩ ∂D belongs to Γ p or to Γ u for i, j = 1, 2. We consider a subdivision of Γ p

and Γ u for each fracture, indicated as Γ p
i and Γ u

i , respectively. Finally, according to the latter sub-division, we
set ∂γp

i := ∂γi ∩ Γ p
i and ∂γu

i := ∂γi ∩ Γ u
i . Introducing the vector functional space

Hdiv (Ω) :=
{
v ∈Hdiv (Ω) : 〈v · nD − b, w〉 = 0, ∀w ∈ H1

0,Γ u (Ω)
}

,

with H1
0,Γ u (Ω) :=

{
w ∈ H1 (Ω) : w = 0 in Γ u

}
, we have the following standard result for the Darcy problem,

see [14, 16, 29].

Theorem 2.2. Under the given hypothesis on the data, problem (2.3) is well posed. In particular, we have
(u, p) ∈ Hdiv (Ω) × L2 (Ω).

3. Derivation of a reduced model

The derivation of the reduced model follows the approach presented, in a different framework, in [27].
We indicate the projection operators in the normal and tangential direction of γi as N i := ni ⊗ ni and

T i := I −N i respectively, I being the identity tensor. Given two regular functions g and q, we define the
tangential gradient and divergence for each γi as

∇τ i
g := T i∇g and ∇τ i

· q := T i : ∇q, (3.1)

respectively. We require that the permeability tensor Ki in Ωi \ I, i = 1, 2, can be written as Ki = Ki, nN i +
Ki, τT i, with Ki, n, Ki, τ ∈ L∞ (Ωij) and strictly positive. This is a reasonable request since we are assuming,
in the two-dimensional case, that the permeability tensor is diagonal in a frame of reference that is aligned
with the fracture. In the three dimensional case this assumption also implies that the permeability should be
isotropic in the tangent plane of the fracture.
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Figure 2. Example of an intersection.

We indicate with the symbol ·̂ the reduced variables defined on γi. In particular, for any si ∈ γi, we introduce
the reduced pressure p̂ and flux û as

ûi(si) :=
∫ di

2

− di
2

T iui (si + rni) dr and p̂i(si) :=
1
di

∫ di
2

− di
2

pi (si + rni) dr. (3.2)

Note that we have preferred to use the flux and not the average velocity in the reduced model since it simplifies
the model in the case of fractures with variable thickness.

Moreover, a reduced source term and the inverse of the scaled permeabilities are defined as

f̂i(si) :=
∫ di

2

− di
2

fi (si + rni) dr, ηγi :=
di

Ki, n
and η̂i :=

1
diKi, τ

,

respectively.
Using (3.2) and approximating Γ u

i with ∂γu
i and Γ p

i with ∂γp
i , so that ∂γu

i ∩ ∂γp
i = ∅, we obtain the

corresponding reduced boundary data from the last two expressions of (2.3c),

b̂ij :=
∫

∂Ωij∩∂D

bij (σ) dσ and ĝij :=
1

|∂Ωij ∩ ∂D|
∫

∂Ωij∩∂D

gij (σ) dσ.

Indeed, by the definition in (3.2) we have that ûi · ni = 0 on γi, i.e. ûi is aligned to the tangent of γi.
The reduced model on each Ωij is obtained by integrating (2.3a) along the fracture thickness and can then

be written as {
∇τ i

· ûi = f̂i

η̂iûi + ∇τ i
p̂i = 0

in γi \ ip and

{
ûi · nD = b̂i on ∂γu

i

p̂i = ĝi on ∂γp
i

for i = 1, 2.

We derive now a reduced model for the flow in the intersecting region I in order to find proper coupling
conditions. To this aim, we assume that I can be modeled as a quadrilateral with parallel sides, i.e. the
thicknesses di can be considered constant in I. Furthermore, we have assumed that the permeability tensor KI

can be taken constant in I. Let us indicate with τ i the tangential unit vector to γi, and with τ i,ip its value

at ip, and define d∗i := di/ sin θ, with sin θ =
√

1 − (τ 1,ip · τ 2,ip

)2. Then |I| = d∗1d
∗
2 |sin θ|. Note that θ is the

angle between fractures at the intersection, as shown in Figure 2. We can write the intersecting region as

I =
{
x ∈ Ω : x = ip + x1τ 1,ip + x2τ 2,ip , xi ∈

(
−d∗j

2
,

d∗j
2

)
for i 
= j = 1, 2

}
.
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The reduction process approximates I with ip and assumes that the fluxes ûi and the pressures p̂i can be
discontinuous at ip. Thus, we denote with p̂I ∈ R the reduced value of the pressure at the intersection, defined as

p̂I :=
1
|I|
∫

I

pI (x) dx. (3.3)

The intersection point divides each line γi into two parts, γi1 and γi2 respectively, where the indexes 1 and 2
refer to the orientation induced by the tangent vectors. Again, a double subscript ij, with i, j = 1, 2, will be used
to indicate quantities on γij . Furthermore, since ûi is by definition aligned along γi we may write ûi = uiτ i.

We can then define the jump and mean operator across ip as

�ai�ip
:= ai1 − ai2 and {{ai}}ip

:=
ai1 + ai2

2
, for i = 1, 2.

It is reasonable to make the following approximation, (2.3b)(∫
∂Iij

uI · n
)
τ i ≈ ûij (ip) and

1
d∗i

∫
∂Iij

pI ≈ p̂ij (ip) , for i, j = 1, 2.

Mass conservation implies that

2∑
k=1

�ûk · τ k�ip
= f̂I with f̂I :=

∫
I

fI (x) dx.

We integrate the first of (2.3a) on I, approximating the integral involving the velocity uI by the trapezoidal
rule on each fracture, to find∫

I

K−1
I uI ≈K−1

I

|I|
2

2∑
k=1

1
d∗k

(ûk1 + ûk2) = K−1
I |I|

2∑
k=1

1
d∗k

{{ûk}}ip
.

Furthermore, the integral of the gradient of the pressure pI in the intersection can be written as∫
I

∇pI =
2∑

i,j=1

nij

∫
∂Iij

pI ≈ (p̂12 − p̂11)n2d
∗
1 + (p̂22 − p̂21)n1d

∗
2 = −�p̂1�ip

n2d
∗
1 − �p̂2�ip

n1d
∗
2.

Then, we obtain

K−1
I |I|

2∑
k=1

1
d∗k

{{ûk}}ip
= �p̂1�ip

n2d
∗
1 + �p̂2�ip

n1d
∗
2.

Multiplying the above relation by τ 1, or similarly by τ 2, using the identity d1 = d∗1n2 · τ 1 and the fact that
ûi = (ûi · τ i)τ i we obtain,

|I|
di

2∑
k=1

ηI
ik

d∗k
{{ûk · τ k}}ip

= �p̂i�ip
in ip, i = 1, 2, (3.4)

where

ηI
ij := τ�

i,ip
·K−1

I τ j,ip . (3.5)
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If γ1 and γ2 are orthogonal and the permeability tensor KI is such that

K−1
I = ηγ1τ 1,ip ⊗ τ 1,ip + ηγ2τ 2,ip ⊗ τ 2,ip , (3.6)

coupling conditions (3.4) can be simplified into

ηγi

dj

di
{{ûi · τ i}}ip

= �p̂i�ip
in ip, for i, j = 1, 2, j 
= i.

To close the system we derive a model for the pressure at the intersection. For each fracture in the first
half of the transverse section we approximate the value of the pressure in ip by the following truncated Taylor
expansion,

pj (ip) = pI (x1) +
d∗j
2
∇pI (θ1) · τ i i, j = 1, 2 with i 
= j, (3.7)

where θ1 = ip − τ iξ1d
∗
j/2 with ξ1 ∈ [0, 1], see Figure 3. In the second transverse section we use an analogous

approximation, namely

pj (ip) = pI (x2) −
d∗j
2
∇pI (θ2) · τ i i, j = 1, 2 with i 
= j, (3.8)

where θ2 = ip + τ iξ2d
∗
j/2 with ξ2 ∈ [0, 1]. Using (2.3a) and (2.3b) we find

pj (ip) = pi,k + (−1)k
d∗j
2
τ�

i ·K−1
I uI(θk) for k = 1, 2. (3.9)

The values of uI in both θ1 and θ2 are unknown, therefore we express them by the following convex combination
for each fracture

uI (θ1) = ξ1u1,1 + (1 − ξ1)u1,2 +
1
2

(u2,1 + u2,2) for ξ1 ∈ [0, 1],

uI (θ2) = ξ2u1,2 + (1 − ξ2)u1,1 +
1
2

(u2,2 + u2,1) for ξ2 ∈ [0, 1].

Using the previous expression for uI and integrating in I, equation (3.9) becomes

p̂I = p̂i,1 − τ�
i ·K−1

I

[
1
2

(
dj

di
{{ûi}}ip

+ {{ûj}}ip

)
+ ξ̂0,1

dj

di
�ûi�ip

]
,

p̂I = p̂i,2 + τ�
i ·K−1

I

[
1
2

(
dj

di
{{ûi}}ip

+ {{ûj}}ip

)
− ξ̂0,2

dj

di
�ûi�ip

]
,
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where ξ̂0,k := (2ξk − 1)/4 for k = 1, 2. Finally using (3.4) and the fact that pressure p̂I is single valued, thus
ξ̂0,k = ξ̂0 for k = 1, 2, we obtain the last coupling condition of our reduced model

ξ̂0
dj

di
ηI

ii�ûi · τ i�ip
= {{p̂i}}ip

− p̂I in ip. (3.10)

To sum up, the complete reduced model that describes the evolution of ûi, p̂i and p̂I consists of the following
system of partial differential equations{

∇τ i
· ûi = f̂i

η̂iûi + ∇τ i
p̂i = 0

in γi \ ip and

{
ûi · nD = b̂i on ∂γu

i

p̂i = ĝi on ∂γp
i

for i = 1, 2. (3.11a)

and the coupling conditions for the fracture-fracture system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2∑
k=1

�ûk · τ k�ip
= f̂I

|I|
di

2∑
k=1

ηI
ik

d∗k
{{ûk · τ k}}ip

= �p̂i�ip

ξ̂0
dj

di
ηI

ii�ûi · τ i�ip
= {{p̂i}}ip

− p̂I

in ip, i, j = 1, 2, i 
= j. (3.11b)

If the intersection region has a high permeability then ηI
ij ≈ 0 and conditions (3.11b) reduce to those in [4,6],

i.e. continuity of pressure and mass conservation. However, our model is more general as it allows for different
choices of KI , and it is useful in practical situations where fractures have rather different permeability and may
even act as barrier to the flow. This fact will be illustrated in the section dedicated to numerical experimentation.

4. Weak formulation and functional setting

We describe here the functional setting for homogeneous essential boundary conditions, i.e. all possible b̂i

are set to zero, since the non-homogeneous case may be recovered by standard lifting techniques. For a given
regular curve γ : (0, L) → R

2 with tangent τ defined almost everywhere on γ we define the vector space

Hdiv(γ) :=
{
w ∈ [L2(γ)

]2
: ∇τ ·w ∈ L2(γ), w · n = 0 and w · nD = 0 on ∂γ

}
,

with norm

‖w‖2
Hdiv(γ) := ‖w‖2

L2(γ) + ‖∇τ ·w‖2
L2(γ).

Furthermore, we assume that elements of w ∈ Hdiv(γ) are aligned with γ, i.e. for a w ∈ Hdiv(γ) we have
w = wτ with w ∈ H1(γ). We set W ij :=Hdiv (γij) and W i :=W i1 ×W i2 with norm

‖wi‖2
W i

:= ‖wi1‖2
W i1

+ ‖wi2‖2
W i2

+ �wi · τ i�
2
ip

where wi = (wi1, wi2) ∈W i.

Let us define Qij := L2 (γij) and Qi := Qi1 × Qi2. Qi may be identified with L2 (γi). We set W := W 1 ×W 2

with norm

‖w‖2
W := ‖w1‖2

W 1
+ ‖w2‖2

W 2
, where w = (w1, w2) ∈W ,

and Q := Q1 × Q2 × R with norm

‖q‖2
Q := ‖q1‖2

Q1
+ ‖q2‖2

Q2
+ q2

3 , where q = (q1, q2, q3) ∈ Q.

All those spaces are in fact Hilbert spaces equipped with scalar products associated with the chosen norms.
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To obtain the weak formulation of (3.11) we take a test function qi ∈ Qi and integrate on each branch γij

the first equation in (3.11a) to obtain, summing over j

(∇τi · ûi, qi)γi
=
(
f̂i, qi

)
γi

∀qi ∈ Qi, i = 1, 2.

Taking then a test function wi ∈W i and integrating on each γij the second equation in (3.11a), we obtain

(η̂iûi, wi)γi
− (p̂i, ∇τi ·wi)γi

+ �p̂iwi · τ i�ip
+

∑
ij: ∂γp

ij �=∅
ĝi (wi · nD) |∂γp

ij
= 0 ∀wi ∈W i, i = 1, 2.

Note that we have integrated by parts the pressure term and used the natural boundary conditions. Thanks to
the identity �ab� = �a� {{b}}+{{a}} �b� we can include the coupling conditions (3.11b) substituting the expression
of the pressure jump and average as

�p̂iwi · τ i�ip
= �p̂i�ip

{{wi · τ i}}ip
+ {{p̂i}}ip

�wi · τ i�ip
.

Introducing û := (û1, û2) ∈W and p̂ := (p̂1, p̂2, p̂I) ∈ Q and summing over i, the weak formulation of the
coupled problem (3.11) can be now written as: find (û, p̂) ∈W × Q such that{

A(û, w) + B(p̂, w) = F (w) ∀w ∈W
B(q, û) = Q (q) ∀q ∈ Q.

(4.1)

The functionals and bilinear forms in (4.1) are defined as

A(u, w) :=
2∑

i=1

ai(ui, wi) +
2∑

i,j=1
i�=j

ηI
ij {{uj · τ j}}ip

{{wj · τ j}}ip
, (4.2a)

B(q, w) :=
2∑

i=1

−(qi, ∇τ i
·wi)L2(γi)

+ q3�wi · τ i�ip
, (4.2b)

F (w) :=
∑

ij: ∂γp
ij �=∅

−ĝi (wi · nD) |∂γp
ij

(4.2c)

Q (q) :=
2∑

i=1

−
(
f̂i, qi

)
L2(γi)

+ f̂Iq3. (4.2d)

The bilinear forms ai in A are given, for i, j = 1, 2 and i 
= j, by

ai(u, w) := (η̂iu, w)L2(γi)
+ ηI

ii

dj

di

(
ξ̂0�u · τ i�ip

�w · τ i�ip
+ {{u · τ i}}ip

{{w · τ i}}ip

)
. (4.3)

We have the following

Lemma 4.1 (Boundedness of A). There exist a constant C ∈ R
+ such that

|A(u, w)| ≤ C‖u‖W ‖w‖W ∀u,w ∈W .

Proof. A is clearly a bilinear form on W . Since each uij and wij are aligned along γij , that is uij = uijτ i,
the request that uij ∈Hdiv(γij) implies that uij ∈ H1(γij). Then the boundedness of A can be obtained from
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the application Cauchy–Schwarz inequality together with Sobolev embeddings and trace inequalities [1, 13], by
which we can finally state that ∃C ∈ R

+ such that

|A(u, w)| ≤ C‖u‖W ‖w‖W where C = C
(
‖η̂‖L∞(γ1∪γ2)

, λmax, d, cγ

)
with d := max

i�=j=1,2
di/dj and cγ depends on the trace inequality constants for each γij . �

Lemma 4.2 (Coercivity of A). There exist a constant α ∈ R
+ such that

A(u, u) ≥ α‖u‖2
W ∀u ∈W 0

where W 0 := {w ∈W : B(q, w) = 0, ∀q ∈ Q}.

Proof. By definition of B we have that a w ∈W 0 is characterized by ∇τ i
·wij = 0 almost everywhere on γij

and �wi · τ i�ip
= 0, for i, j = 1, 2. Therefore, for a w ∈ W 0 we have ‖w‖2

W =
∑2

i=1 ‖wi‖2
L2(γi)

. Moreover, if
w ∈W 0 we have

A(w, w) =
2∑

i=1

∥∥∥η1/2
i wi

∥∥∥2
L2(γi)

+
2∑

i,j=1
i�=j

(
ηI

ii

dj

di
{{wi · τ i}}2

ip
+ ηI

ij {{wi · τ i}}ip
{{wj · τ j}}ip

)
.

Let us introduce the vectors ai =
√

dj/di {{wi · τ i}}ip
τ i, for i, j = 1, 2 and j 
= i and the scalar product

(a1,a2)K = aT
1K

−1
I a2. We recall the definition of ηI

ij in (3.5) to note that the last sum in the previous equality
may be written as

(a1,a1)K + (a2,a2)K + 2(a1,a2)K = (a1 + a2,a1 + a2)K ≥ 0.

Therefore, the wanted inequality is proved with α = infess
x∈γ1∪γ2

η̂(x). �

We indicate with M the set of indexes ij corresponding to portions of fracture where we impose pressure
boundary conditions, that is

M :=
{
(i, j) : i, j = 1, 2 and ∂γij ∩ ∂γp

ij 
= ∅} and nd := �M.

Theorem 4.1 (Inf-sup condition). If nd > 0, then for all p ∈ Q there exist a w ∈W with w 
= 0 such that

B(p, w) ≥ β‖p‖Q‖w‖W ,

for β ∈ R
+ independent on p and w.

Proof. Given p = (p̂1, p̂2, p̂I) ∈ Q we construct the following auxiliary problems. For (i, j) ∈ M we look for a
function φij ∈ H2(γij) such that ⎧⎪⎪⎨⎪⎪⎩

−∇τ i
· (∇τ i

φij) = p̂ij in γij ,
∂φij

∂τ i
=

p̂I

nd
(−1)j+1 |γ| on ip,

φij = 0 on ∂γij ∩ ∂γp
ij ,

(4.4)
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with |γ| =
∑

i |γi|. While, for all other values of the indexes i and j we look for the φij solution of⎧⎪⎪⎨⎪⎪⎩
−∇τ i

· (∇τ i
φij) = p̂ij in γij ,

∂φij

∂τ i
= 0 on ∂γij ∩ ∂γu

ij ,

φij = 0 on ip.

(4.5)

Both problems are well posed and enjoy elliptic regularity.
We consider wij = ∇τ i

φij . We have, by construction, that the solution of (4.4) provides at the intersection
point ip

wij · τ i =
p̂I

nd
(−1)j+1 |γ| . (4.6)

As for the solution of (4.5), by simple computations we derive that at ip

wij · τ i = −
∫

γij

(−1)j+1p̂ijdγ. (4.7)

Furthermore,

B(p, w) =
2∑

i,j=1

‖p̂ij‖2
L2(γij)

+ |γ| p̂2
I +

∑
(i, j)∈M

∫
γij

p̂ij p̂I .

Thanks to Young’s inequality applied to the third term, we have that

B(p, w) ≥ 1
2

⎛⎝ 2∑
i,j=1

‖p̂ij‖2
L2(γij)

+ |γ| p̂2
I

⎞⎠ ≥ c‖p‖2
Q,

with c = 1
2 min {1, |γ|}. Exploiting standard stability results for the solution of (4.4) and (4.5), we infer that

2∑
i=1

‖wij‖2
L2(γij)

=
2∑

i=1

‖∇τ i
φij‖2

L2(γij)
≤ C

(
p̂2

I +
2∑

i=1

‖p̂ij‖2
L2(γij)

)
.

Moreover, we have

2∑
i=1

‖∇τ i ·wij‖2
L2(γij)

=
2∑

i=1

‖∇τ i · (∇τ iφij)‖2
L2(γij)

=

=
2∑

i=1

‖φij‖2
H2(γij)

≤ C

(
p̂2

I +
2∑

i=1

‖p̂ij‖2
L2(γij)

)
.

Thus,
∑

ij ‖wij‖2
W ij

� ‖p‖2
Q. Furthermore, �wi�

2
ip

� ‖pi‖2
Qi

+ p̂2
I because of (4.7) and (4.6). In conclusion there

exist a constant C ∈ R
+ such that ‖w‖W ≤ C‖p‖Q. This result allows us to complete the proof. �

Remark 4.2. The condition nd ≥ 1 in the previous proof is needed, otherwise we are not able to control the
pressure p̂I . However, if all boundary conditions are imposed on the velocity we are still able to find a solution
provided that the boundary velocity satisfies a global mass conservation. In this case, however, p̂ij ∈ L2(γ) \ R

and p̂I may take any arbitrary value.
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θ

û1,2

γ1

τ1

û1,1

ip

τ2

û1,2

û2,2

γ2

Figure 4. Example of an intersection with the convention of the directions for Theorem 4.3.

Lemma 4.3 (Boundedness of F and Q). There exists C1, C2 ∈ R
+ such that

|F (w)| ≤ C1‖w‖W and |Q (q)| ≤ C2‖q‖Q ∀(w, q) ∈W × Q.

Proof. Let (i, j) ∈ M , then (wij · nD) |∂γp
ij

satisfies

|wij · nD| ≤ |wij | |τ i · nD| ≤ |wij | ≤ Cγij‖wij‖H1(γij)
≤ Cγij‖wij‖W ij

≤ Cγij‖w‖W .

We have used the trace inequality for functions in H1. By summing over all (i, j) ∈ M we have

|F (w)| ≤ max
ij: ∂γp

ij �=∅

(|ĝij |Cγij

) ‖w‖W .

Furthermore

|Q (q)| ≤
2∑

i=1

∥∥∥f̂i

∥∥∥
L2(γi)

‖qi‖L2(γi)
+
∣∣∣f̂I

∣∣∣ |q3| ≤
(

2∑
i=1

∥∥∥f̂i

∥∥∥
L2(γi)

+
∣∣∣f̂I

∣∣∣) ‖q‖Q. �

Thanks to the previous results problem (4.1) is well posed [14].
We state now a maximum principle for the continuous problem (4.1). It is well know that the original problem

in Ω1 ∪ Ω2 expressed by (2.3a) satisfies a maximum principle for the pressure. Namely, in the absence of the
source terms fi and fI a smooth pressure solution is always within the maximal and minimal value taken at
the boundary. We verify the conditions under which a similar property is enjoyed by the solution of the reduced
model.

Theorem 4.3 (Maximum principle). In the case f̂i = 0 and f̂I = 0, if the permeability tensor KI is isotropic
and if the parameter ξ̂0 is such that

sin2(θ)
4(d2

1,2 + 1)
≤ ξ̂0 ≤ d1,2

4(d2
1,2 + 1)

sin2(θ)
cos(θ)

,

where d1,2 = d1/d2 ≤ 1, then a maximum principle is satisfied by problem (3.11). In particular, given a smooth
solution p̂ we have that all pressures p̂ij in γij , as well as p̂I are within the values taken by the pressure at
boundaries ∂γij ∩ ∂D.

Proof. Let û and p̂ be a solution of the reduced model (3.11) with f̂i = 0 and f̂I = 0. Each pij enjoys the
maximum principle on γij . To prove that this is the case also for the global problem it is sufficient to prove
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that: (a) the reduced pressures in the fractures at the intersection point can be expressed as convex combinations
of the pressures at the external boundaries; (b) the pressure p̂I is a convex combination of the pressures in the
fractures at the intersection.

The tangent vectors τ i are continuous at ip. Without loss of generality we choose a frame of reference such
that τ 1,2 = (1 + m2)−1[1, ∓m]�, with m = tan θ/2 and 0 < |m| ≤ 1, where θ is the angle between fractures as
in Figure 4. Moreover, as the numbering of the fractures is arbitrary we suppose that 0 < d1,2 ≤ 1. Since we
have assumed that the permeability tensor at the intersection KI is isotropic we set KI = ηiI.

Let us indicate with pij the value of pij at ip and with gij the value at the corresponding external boundary
point of γij . Then, by integrating (3.11a), we get, referring to Figure 2,

pij − gij = p̂i (Lij) − p̂ij(0) = −
∫ Lij

0

η̂iûijds = −ûij

∫ Lij

0

η̂ids, (4.8)

where we have denoted with Lij the length of the j-th branch of γi, and set ûij = ±ûi · τ i with the convention
that ûij is directed towards the intersection. Note that ûij is constant because of the continuity equation and
the absence of source term.

We introduce the following vectors p = [p11, p12, p21, p22]
�, g = [g11, g12, g21, g22]

�, u = [û11, û12, û21, û22]
�

and matrix

D = diag {D11, D12, D21, D22} with Dij = −
∫ Lij

0

η̂ids.

Relation (4.8) may be rewritten as

u = D−1 (g − p) . (4.9)

Moreover, by using the interface conditions (3.11b), which express a relationship between u and p, we are able
to write

Ap = u. (4.10)

Now we show that A is such that ker (A) = span
(
[1, 1, 1, 1]�

)
, and that −A is a Z-matrix for some values of

the parameter ξ̂0. The entries of the matrix can be written as Aij = ANij

[
4 ξ̂0 ηI m2

(
d2
1 + d2

2

)]−1

, where the
ANij read:

AN11 = AN22 = −d1d2

(
ξ̂0(d2

1 + d2
2)(1 + m2)2 + d2

2m
2
)

AN33 = AN44 = −d3
2d

−1
1

(
ξ̂0

(
d2
1 + d2

2

) (
1 + m2

)2
+ d2

1m
2
)

AN12 = AN21 = d1d2

(
ξ̂0

(
d2
1 + d2

2

) (
1 + m2

)2 − d2
2m

2
)

AN13 = AN31 = AN24 = AN24 = d2
2

(
ξ̂0

(
d2
1 + d2

2

) (
1 − m4

)
+ d1d2m

2
)

AN14 = AN41 = AN23 = AN32 = d2
2

(
−ξ̂0

(
d2
1 + d2

2

) (
1 − m4

)
+ d1d2m

2
)

AN34 = AN43 = d3
2d

−1
1

(
ξ̂0

(
d2
1 + d2

2

) (
1 + m2

)2 − d2
1m

2
)

It can be verified directly that each row of the matrix sums to zero, which proves that the kernel of the matrix
contains the constant vector.
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The diagonal elements ofA are negative for any ξ̂0 ≥ 0 therefore −A is a Z-matrix if the off-diagonal elements
of A are positive. It follows that the parameter ξ̂0 must satisfy the following system of inequalities

ξ̂0 ≥ 1
d2
1,2 + 1

m2

(1 + m2)2
ξ̂0 ≥ d2

1,2

d2
1,2 + 1

m2

(1 + m2)2

(1 − m2)ξ̂0 ≥ − d1,2

d2
1,2 + 1

m2

(1 + m2)
(1 − m2)ξ̂0 ≤ d1,2

d2
1,2 + 1

m2

(1 + m2)

For |m| < 1 the third inequality is satisfied for all ξ̂0 and, since 0 < d1,2 ≤ 1, the first constraint is at least as
restrictive as the second. Using the definition of m, the system can thus be rewritten as

sin2(θ)
4(d2

1,2 + 1)
≤ ξ̂0 ≤ d1,2

4(d2
1,2 + 1)

sin2(θ)
cos(θ)

·

We have left out the case m = 1, i.e. θ = π/2, but by inspecting the previous relation we see that it can be

extended to this case by continuity, providing the bound ξ̂0 ≥ 1
4(d2

1,2 + 1)
.

We highlight that the bounds depends both on the angle θ and on the ratio of the thicknesses, but not on
the permeability. Combining (4.10) and (4.9) we can write(

I +D−1A
)
p = g

Since D is negative and A has the aforementioned properties I +D−1A is an M-matrix whose rows sum to
one, therefore the pressures pij are convex combinations of the boundary values g.

We need now to verify that p̂I is a convex combination of the pij . Summing the two interface conditions (3.11b)

we get p̂I = 1
4

∑2
i,j=1 pij − ξ0d

−1
1,2η

I
ii

∑2
i,j=1 ûij , which becomes by using (4.10), p̂I = eT

(
1
4
I − ξ0d

−1
1,2η

I
iiA

)
p,

where eT = [1, 1, 1, 1]. Because of the stated properties of A, the vector eT (1/4I − ξ0d
−1
1,2η

I
iiA) has all positive

entries which sum to one, then p̂I is a convex combination of the pressures p, which completes the proof. �

5. Numerical discretization

We still consider two fractures with a single intersection, the extension to more general cases being straightfor-
ward. We discretize each curve γi, i = 1, 2 with a polygonal line γh,i with vertexes xi,k ∈ γi, for k = 1, · · · , Nh,i,
and xi,k 
= ip. Clearly, xi,1 and xi,Nh,i

correspond the ends of the curve. For the sake of notation, we indi-
cate with the same symbol γh,i the polygonal line and the mesh formed by the union of the line elements
li,k = [xi,k−1,xi,k]. Moreover, we set hi,k = |li,k| and hi = maxk hi,k, while h = max(h1, h2).

Let lci,k be the curved element on γi with the same end points of li,k ∈ γh,i. If the mesh is fine enough there
exists a unique mapping Fi : γi → γh,i defined on each lci,k ∈ γi by

x = Fi (y) = y − Di(y)nh,i for x ∈ li,k and y ∈ lci,k.

Here, nh is the normal vector to γh,i, which is piecewise constant in each li,k, and Di(y) := dist(y, γh,i). The
collection of the curved elements lci,k will be denoted by γc

h,i, which geometrically coincides with γi. Because of
the assumptions made on the regularity of γi, and in particular the boundedness on the curvature, we have that
|D(y)| = O (h2

)
for all y ∈ γi. If we indicate with Ḋi the rate of variation of Di(y) along γh,i, we may note

that the arc length measures on γi and γh,i satisfy

dγi = (1 + Ḋ2
i )

1/2 dγh,i.
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We assume that the mesh is fine enough so that Ḋi = O (h) and, in particular, we have Ḋi ∈ L∞(γh,i). By
properly selecting the orientation of the curves we have the useful relations

nh,i · τ i = Ḋi(1 + Ḋ2
i )

−1/2 and τ i · τh,i = (1 + Ḋ2
i )

−1/2, (5.1)

where τh,i is the (piecewise constant) tangent vector of γh,i. Furthermore, we have that (1+Ḋ2
i )

−1/2 = 1+O (h).
Let now f : γh,i → R, we consider the transformations Pi given by

f c = Pif = f ◦ Fi. (5.2)

Clearly, f c : γi → R.
For a vector function v : γh,i → R

2 aligned with γh,i, i.e. v = vτ h,i, we consider instead the transformation
P i given by

vc = Piv = (v ◦ Fi) · τh,iτ i = (v ◦ Fi)τ h,i ⊗ τ i.

Lemma 5.1. Transformation Pi is an isomorphism between H1(γh,i) and H1(γi), while transformation P i is
an isomorphism between Hdiv(γh,i) and Hdiv(γi). Furthermore,∫

γi

∇τ i
· vcqcdγ =

∫
γh,i

∇τh,i
· vqdγ (5.3)

for all q ∈ L2(γh,i), v ∈ Hdiv(γh,i) with qc = Piq and vc = Piv, respectively. Moreover, for each element lh,i

of γh,i ∣∣∇τh,i
· v∣∣

H1(lh,i)
=
∥∥∇τh,i

∇τh,i
· v∥∥

L2(lh,i)
� |∇τ i

· vc|H1(lch,i)
+ h‖∇τ i

· vc‖L2(lch,i)
. (5.4)

Proof. By standard integration rules

‖f c‖2
L2(γi)

=
∫

γi

(f c)2dγ =
∫

γh,i

(1 + Ḋ2
i )

1/2f2dγ.

Thus,

‖f‖2
L2(γh,i)

≤ ‖f c‖2
L2(γi)

≤ Ch‖f‖2
L2(γh,i)

, (5.5)

with Ch = 1 + O (h) ≥ 1. By the same technique we prove that

‖v‖2
L2(γh,i)

≤ ‖vc‖2
L2(γi)

≤ Ch‖v‖2
L2(γh,i)

. (5.6)

We now note that if s and t denote the arc length coordinates along γi and γh,i, respectively, for a vector
function v = vτ h,i aligned along γh,i we have the identities

∇τ h,i
· v =

dv

dt
and ∇τ i

· vc =
dvc

ds
· (5.7)

Thus,

∇τ i
· vc =

dv ◦ Fi

ds
=

dv

dt

dt

ds
= (1 + Ḋ2

i )
−1/2∇τh,i

· v, (5.8)

since ds/dt = (1 + Ḋ2
i )1/2. Consequently,

ch

∥∥∇τh,i
· v∥∥

L2(γh,i)
≤ ‖∇τ i

· vc‖L2(γi)
≤ ∥∥∇τh,i

· v∥∥
L2(γh,i)

,
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where ch is a positive constant that behaves as ch = 1 −O (h). Combining this last result with (5.5) we get

ch‖v‖Hdiv(γh,i)
≤ ‖vc‖Hdiv(γi)

≤ Ch‖v‖Hdiv(γh,i)
. (5.9)

Analogously,

∇τ if
c =

df c

ds
τ i and ∇τh,i

f =
df

dt
τh,i.

Thus,

∇τ i
f c =

df ◦ Fi

dt

dt

ds
τ i = (1 + Ḋ2

i )
−1/2∇τh,i

f · τ h,iτ i.

Taking the L2 norm and applying the definition of the H1(γh,i) semi-norm we obtain

ch |f |H1(γh,i)
≤ |f c|H1(γi)

≤ Ch |f |H1(γh,i)
. (5.10)

As for (5.4) we use again the parametric representation to note that on each element lh,i

∇τ i
∇τ i

· vc
h,i =

d
ds

(∇τ i
· vc

h,i)τ i =
d
dt

[
(1 + Ḋ2)−1/2∇τ h,i

· vh,i

]
τ i

= (1 + Ḋ2)−1/2 d2

dt2
vh,iτ i − ḊD̈

(1 + Ḋ2)2
d
dt

vh,iτ i

= (1 + Ḋ2)−1/2τ i ⊗ τh,i∇τh,i
∇τh,i

· vh,i − ḊD̈

(1 + Ḋ2)
∇τ i

· vc
h,iτ i,

where it is understood that quantities are computed on corresponding points on lh,i and lch,i, and we have
used (5.7) and (5.8). By taking the L2 norm and using the fact that Ḋ = O (h) we obtain the wanted result.
Finally, relation (5.3) is readily proved using (5.8) and applying the usual integration rules. �

We are now in the position of setting up our discrete spaces. We start by defining, for i = 1, 2,

RT0(γh,i) =
{
w ∈Hdiv(γh,i) : w ∈ P1(l), ∀l ∈ γh,i,w = wτ h,i, w ∈ C0(γh,i)

}
.

Note that despite the fact that τh,i is only piecewise continuous the tangential component of elements of
RT0(γh,i) is continuous. We also remind that, since we are treating problems on a one dimensional manifold,
elements of Hdiv(γh,i) have tangential component in H1 and thus admit a continuous representative. The
degrees of freedom on RT0(γh,i) are indeed the values of w = w · τ h,i at the mesh nodes. Correspondingly we
have a set of basis function which we indicate as {ψi,k, k = 1, . . . , Nh,i}.

To account for the discontinuity at the intersection we consider the points îp = Fi(ip) projection of ip on
γh,i and we enrich the space using the XFEM [22] methodology.

More precisely, let Ch,i = [xi,k−1,xi,k] be the element crossed by the projected intersection point (see Fig. 5)
and χi,1 and χi,2 the characteristic functions of the sub-elements lXi,1 = [xi,k−1, îp] and lXi,2 = [̂ip,xi,k], respec-
tively. We consider the space

Eu(γh,i) := {vh,i : vh,i = v∗i,1ψi,kχi,1 + v∗i,2ψi,k−1χi,2}.
The spaces RT0 and Eu have been defined on γh,i, we can then project them on the curve and account for
essential boundary conditions by defining

W c
h,i := Pi(RT0(γh,i) ⊕Ep(γh,i)) ∩W i. (5.11)

Correspondingly, W h,i = P−1
i (W c

h,i). By construction, W h,i ⊂ RT0(γh,i) ⊕Ep(γh,i).
We can define γh,ij = (γ̂ij \ Ch,i) ∪ lXi,j , where γ̂ij = {l ∈ γh,i : F−1(l) ∩ γij 
= ∅}.
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Ch,1

Bh,2

Bh,1

Ch,2

ip

γh,2

γh,1

Figure 5. Subdivision of γh,i = Ch,i ∪ Bh,i.

Remark 5.1. The points Fi(ip) are in general different, unless fractures γi are straight lines, and
‖F1(ip) −F2(ip)‖ = O (h2

)
as h → 0. However, in most practical situations fractures are almost straight

and for a sufficiently fine mesh the distance of the two projections is rather small. For this reason, and for the
sake of notation, we have used a unique symbol, îp for both projected intersection points.

For the pressure we proceed by setting

Qh,i :=
{
q ∈ L2(γh,i) : q|l = qil, ∀l ∈ γh,i \ Ch,i, q|Ch,i

= q∗i1χi,1 + q∗i2χi,2

}
,

which is the extended space of piecewise constant functions on γh,i, and we lift it to γi, by defining Qc
h,i :=

Pi(Qh,i). The space Qc
h,i is in fact made by piecewise constant functions on the curved mesh γc

h,i. By construction,
both W h,i and Qh,i are broken spaces, i.e.

W h,i =W h,i1 ×W h,i2 and Qh,i = Qh,i1 × Qh,i2,

where W h,ij is the restriction ofW h,i on γh,ij , and we have that W h,ij ⊂Hdiv(γh,ij). Consequently, also W c
h,i

and Qc
h,i can be written as

W c
h,i =W c

h,i1 ×W c
h,i2 and Qc

h,i = Qc
h,i1 × Qc

h,i2,

with W c
h,ij ⊂ W ij and Qc

h,ij ⊂ Qij . Thus W c
h,i ⊂ W i and Qc

h,i ⊂ Qi. We define W c
h := W c

h,1 ×W c
h,2 and

Qc
h = Qc

h,1 × Qc
h,2 × R, and analogously W h and Qh.

We can now write the discrete weak formulation of the problem (3.11) as: find (ûc
h, p̂c

h) ∈W c
h×Qc

h such that{A(ûc
h, wc

h) + B(p̂c
h, wc

h) = F (wc
h) ∀wc

h ∈W c
h

B(qc
h, ûc

h) = Q (qc
h) ∀qc

h ∈ Qc
h.

(5.12)

We introduce the following weighted L2 norm on functions of L2(γh,i)

‖w‖2
L2

h(γh,i)
=
∫

γh,i

(1 + Ḋ2)−1/2w2 dγ, (5.13)

which is equivalent to the natural L2 norm thanks to Lemma 5.1.
We define now the following problem on the polygonal lines approximating the fractures: find (ûh, p̂h) ∈

W h × Qh such that {
Ah(ûh, wh) + Bh(p̂h, wh) = Fh (wh) ∀wh ∈W h

Bh(qh, ûh) = Qh (qh) ∀qh ∈ Qh,
(5.14)
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where

Ah(uh, wh) :=
2∑

i=1

ah,i(uh,i, wh,i) +
2∑

i,j=1
i�=j

ηI
ij {{uh,j · τ h,j}}îp

{{wh,i · τ h,i}}îp
, (5.15a)

Bh(qh, wh) := −
2∑

i=1

(
qh,i, ∇τh,i

·wh,i

)
L2(γh,i)

+ q3�wh,i · τh,i�̂ip
, (5.15b)

Fh (w) :=
∑

ij: ∂γp
ij �=∅

−ĝiwh,i · P−1
i nD, (5.15c)

Qh (q) :=
2∑

i=1

−
(
f̂i ◦ F−1

i , qh,i

)
L2

h(γi)
+ f̂Iq3. (5.15d)

Here, the bilinear forms ah,i are defined as

ah,i(u, w) := (η̂iu, w)L2
h(γi)

+
2∑

i=1

ηI dj

di

(
ξ̂0�uh,i · τh,i�̂ip

�wh,i · τh,i�̂ip

+ {{uh,i · τ h,i}}îp
{{wh,i · τh,i}}îp

)
with j 
= i.

Lemma 5.2. Problem (5.12) is equivalent to (5.14) in the sense that if ûh = (uh,1,uh,2) ∈ W h and p̂h =
(q1, q2, qI) ∈ Qh is a solution of (5.14) then the projections (P1uh,1, P2uh,2) ∈W c

h and (P1q1,P2q2, qI) ∈ Qc
h

are a solution of (5.12). Vice versa, if ûc
h = (uc

h,1,u
c
h,2) ∈W c

h and p̂c
h = (qc

1, q
c
2, qI) ∈ Qc

h is a solution of (5.14)
then (P−1

1 uc
h,1, P−1

2 uc
h,2) ∈W h and (P−1

1 q1,P−1
2 q2, qI) ∈ Qh are a solution of (5.12).

Proof. It is sufficient to apply the definition of the discrete spaces and of the transformations Pi and Pi, together
with (5.3), (5.13) and apply Lemma 5.1. �

Theorem 5.2 (Well posedness of the discrete problem). Under the same conditions of Theorem 4.1, prob-
lem (5.12) is well posed.

Proof. We tackle problem (5.12) by considering the equivalent problem (5.14) instead. First of all we note
that thanks to Lemma 5.1 all bilinear forms and functionals in (5.14) are bounded, since we have already
demonstrated the boundedness of the ones used in (5.12). We now note that W h,ij and Qh,ij do in fact define
a one dimensional RT0 and a piecewise constant finite element space, respectively. Therefore we can define a
standard interpolation Πij : Hdiv(γh,ij) →W h,ij and projection operators πij : L2(γh,ij) → Qh,ij. It is known
that in one dimension the two operator commute with the tangential divergence, i.e. ∇τh,i

· Πijv = πij∇τh,i
v,

for all v ∈Hdiv(γh,ij).
We can then repeat the same steps of Theorem 4.1 on problem (5.14), where now we take as velocity field

associated to a given qh,ij ∈ Qh,ij the quantity vh,ij = Πij∇τh,i
φij to prove the inf-sup stability of Bh. �

Theorem 5.3 (Maximum principle). The maximum principle is satisfied by problem (5.12) under the same
conditions of Theorem 4.3.

Proof. Again we refer first to the equivalent problem (5.14). In the absence of source term the second equation
implies that ∇τh,i

uh,i = 0 on each element of γh,ij . Therefore uh,ij = uh,ijτ h,i is constant. For any couple i, j
we take as test function wh the function such that wh,ij · τ h,ij = 1 on all vertexes xk internal to γ̂h,ij and zero
at all other nodes and on the intersection point îp. Then, by simple computations, the first equation of (5.14)
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gives the following relation for the pressures p̂h,ij,1 and p̂h,ij,Nij at the first and last element lh,ij,1 and lh,ij,Nij

of γh,ij ,

p̂h,ij,Nh
− p̂h,ij,1 = −uh,ij

∫
γ̂h,ij

η̂iwh,ij · τh,ijdx.

Since wh,ij · τh,ij is not negative, p̂h,ij is varying monotonically at the interior nodes of γ̂h,ij . Thus, also
in this case we are left to prove the same conditions (a) and (b) stated in Theorem 4.3, where now g =
[p̂h,11,1, p̂h,12,1, p̂h,21,1, p̂h,2,1]

� and p = [p̂h,11,Nh
, p̂h,12,Nh

, p̂h,21,Nh
, p̂h,22,Nh

]�. Since the interface conditions at
the intersection are unchanged from the continuous case we can repeat the same argument of the cited theorem
to conclude the proof for what concerns the solution of (5.14).

As for the solution of (5.12), it is sufficient to recall Lemma 5.2 and note that the elemental values of the
pressure are unchanged in the two problems and that the transformation Pi maintains monotonicity. �

Theorem 5.4 (Convergence). Let (û, p̂) be solution of (4.1) with ûi ∈ H2(γi1 ∪ γi2) and p̂i ∈ H1(γi1 ∪ γi2)
and (ûc

h, p̂c
h) be solution of (5.12), then

‖û− ûc
h‖W + ‖p̂ − p̂c

h‖Q ≤ Ch (‖û‖W + |p̂|Q) ,

where

‖û‖2
W =

2∑
i,j=1

‖û‖2
H2(γij)

and |p̂|2Q =
2∑

i,j=1

|p̂|2H1(γij)
.

Proof. By standard results of saddle point problems [14,16] we have that there exist a constant C independent
from h such that

‖û− ûc
h‖W + ‖p̂ − p̂c

h‖Q �
(

inf
wc

h∈W c
h

‖û−wc
h‖W + inf

qc
h∈Qc

h

‖p̂ − qc
h‖Q

)
.

We set P to be the composition of the operators Pi operating on each portion γij of the fractures. That is,
for a wc

h ∈W we have that P−1wc
h =

∏2
i,j=1 P−1

i wc
ij ∈W h. Because of Lemma 5.1 we have

‖û−wc
h‖W �

∥∥P−1û−wh

∥∥
W h

,

where wh = P−1wc
h ∈W h.

To carry on with the proof, we cannot use the properties of Raviart-Thomas interpolation directly because
of the extended finite elements. We may however operate in the way indicated in [15], Theorem 4.8, which is
in turn based on what introduced in [9], Theorem 3. It is a standard technique in the analysis of the XFEM
method and it consists in using a continuous extension E2

ij : H2(γij) → H2(γi) in order to be able to bound
the terms resulting from the integration in the cut elements.

A minor technical difficulty in our case is that even if (by the hypothesis of the Theorem) ûij belongs to
H2(γij), P−1ûij in general does not. Therefore, we cannot apply a H2 extension to P−1ûij but only to ûij .
We thus define an extended RT0 interpolant Π∗

i acting on each ûij as Π∗
i ûij = ΠiP−1E2

ijûij , Πi being the
standard RT0 interpolant on γh,i. Clearly, Π∗

i ûij |γij ∈ W h,ij , and is in fact extended to the whole γh,i. We
exploit now the fact that if the curves γi are sufficiently regular, P−1ûij |l ∈ H2(l) for each l ∈ γh,ij and
therefore we can apply standard interpolation estimates element-wise. We choose then wh,i = Π∗

i ûi1 × Π∗
i ûi2
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and to obtain the desired result we note that∥∥P−1û−wh

∥∥2
Hdiv(γh,ij)

=
∑

l∈γh,ij

∥∥P−1ûij − Π∗
i ûij

∥∥2
Hdiv(l)

=
∑

l∈γh,ij

∥∥P−1E2
ijûij − Π∗

i ûij

∥∥2
Hdiv(l)

≤
∑

l∈γh,i

∥∥P−1E2
ij ûij − Π∗

i ûij

∥∥2
Hdiv(l)

≤ C
∑

l∈γh,i

|l|2 ∣∣∇τ h,i
· P−1E2

ij ûij

∣∣2
H1(l)

≤ Ch2
∑

lc∈γc
h,i

∣∣∇τ h,i
· E2

ijûij

∣∣2
H1(lc)

≤ Ch2‖ûij‖2
H2(γi)

≤ Ch2‖ûij‖2
H2(γij)

.

We have exploited (5.4), standard interpolation error estimate for RT0 elements, as well as the properties of
the extension operator E2

ij , namely E2
ijûij |γij = ûij and

∥∥E2
ijûij

∥∥
H2(γi)

≤ C‖ûij‖H2(γij)
(see [9]). We only

need to control the jump term, where it is sufficient to exploit the trace inequality.
We finally obtain

inf
wc

h∈W c
h

‖û−wc
h‖W � h |û|W .

We proceed analogously for the pressure term. We consider the transformation P which maps
(q11, q12, q21, q22, qI) ∈ Qh to (P1q11,P1q12,P2q21,P2q22, qI) ∈ Qc

h. We have thanks to Lemma 5.1

‖p̂ − qc
h‖Q �

∥∥P−1p̂ − qh

∥∥
Qh

.

We choose qh = (qh,11, qh,12, qh,21, qh,22, qh,I) by applying the extended L2 interpolant π∗
i defined in [15] on

(P−1
i qi1,P−1

i qi2), for i = 1, 2, while we set qh,I = qI . Using the result of the interpolation error for this extended
interpolant we have

∥∥P−1p̂ − qh

∥∥
Qh

�
2∑

i=1

∑
lh,i∈γh,i

|lh,i|
∣∣P−1

i p̂
∣∣
H1(γh,i)

.

We then apply (5.10) on each γh,ij to map back on the curve γij and obtain the wanted result. �

Remark 5.5. In the numerical setting we will solve the problem in the form given by (5.14). Note that, since
we use RT0 finite elements we may replace the norm L2

h(γh,i) with the (simpler to compute) norm L2(γh,i).
Indeed, since Ḋ = O (h) by the application of the Strang Lemma to our problem we obtain a solution converging
with the same order of convergence.

6. Applicative examples

We present some numerical experiments to validate the proposed reduced model and verify the theoretical
results.

6.1. Model error

We start with an analysis to validate the reduced model presented in Section 3. We consider two rectilinear
fractures γ1 and γ2 of thickness di = 0.005 intersecting orthogonally. The fracture permeability are K1, τ = 1
and K2, τ = 10−2 respectively and in the intersection we have KI = 10−2I. Thus, γ2 acts as a barrier for the
other fracture. The scalar source term is set to zero in both fractures and we take ξ̂0 = 0.25. We impose only
essential boundary conditions, namely g1,1 = 0, g1,2 = 1, g2,1 = −1 and g2,2 = 1.
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Figure 6. In the top-left figure p given by problem (2.3). In the top-right figure the solution
of the reduced model (3.11a) with the interface conditions of [4,6]. At the bottom the solution
of the reduced model (3.11). In the 1D simulations γ1 is colored in blue and γ2 in red.

We want to compare the results obtained with the reduced model with a reference solution obtained solving the
complete two-dimensional problem with a very fine two-dimensional grid of approximately 120× 103 triangular
elements.

We compare our reduced model with that proposed in [4, 6], where continuity of pressure is assumed at the
interface. The results are represented in Figure 6. The solution of the two-dimensional problem is smooth in
the intersection region but nevertheless exhibits a steep pressure gradient due to the low permeability imposed
in Ω2 and in the intersection region. If we consider the reduced model with the coupling conditions presented
in [4, 6] the solution cannot reproduce this behavior, while with the proposed conditions (3.11b) we are able
to replace the pressure gradient of the 2D solution with a correct pressure jump at the intersection and thus
obtain the correct pressure gradient and flux in each branch of the fractures.

We now consider the behavior of our reduced model for different values of the parameters. To this purpose
we compare the pressure of the fractures at the intersection point and the pressure in the intersection obtained
solving the original problems (2.3a) and (2.3b) with the reduced pressures given by (3.2), (3.3). The solution of
the two-dimensional problem is computed again with a fine grid and the computed pressure is averaged in the
intersection region and on each edge of I to obtain the values to compare with those produced by the reduced
model.

We first consider the effect of the intersection angle. Let the two fractures have slope ±m, respectively in
the xy plane. We set K1, τ = 1, K2, τ = 10−2, KI = 10−2I and di = 10−2. Table 1 shows the comparison of
the pressures for different values of m. The relative error errrel is computed as the ratio between the difference
of the corresponding pressures and the maximum value of the pressure boundary conditions. We can see that
the errors are rather small and independent on m. This indicates that reduced model is sound and capable of
treating reasonably well intersections at different angle.
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Table 1. Comparison of the model error for different values of the slope m. The two-
dimensional mesh is formed by ∼120 k triangles, while both the mono-dimensional meshes
have ∼50 segments.

|m| = 1 |m| = 10 |m| = 0.1

2D 1D errrel 2D 1D errrel 2D 1D errrel

pI 0.494 0.493 0.1% 0.495 0.493 0.2% 0.495 0.493 0.2%
p̂1,1 0.366 0.327 3.9% 0.324 0.331 0.7% 0.314 0.324 1%
p̂1,2 0.624 0.663 3.9% 0.666 0.660 0.6% 0.676 0.666 1%
p̂2,1 0.492 0.478 1.4% 0.639 0.642 0.3% 0.337 0.317 2%
p̂2,2 0.496 0.498 0.2% 0.351 0.334 1.7% 0.652 0.658 0.6%

Table 2. Comparison of the model error for decreasing values of the thickness di. The spacing
of the meshes are the same as in Table 1.

di = 0.01 di = 0.005 di = 0.0025

2D 1D errrel 2D 1D errrel 2D 1D errrel

pI 0.495 0.494 0.1% 0.495 0.494 0.1% 0.495 0.495 –
p̂1,1 0.410 0.393 1.7% 0.449 0.437 1.2% 0.471 0.463 0.8%
p̂1,2 0.580 0.597 1.7% 0.541 0.553 1.2% 0.519 0.527 0.8%
p̂2,1 0.493 0.484 0.9% 0.494 0.485 0.9% 0.495 0.486 0.9%
p̂2,2 0.496 0.499 0.3% 0.495 0.498 0.3% 0.495 0.498 0.3%

Table 3. Comparison of the model error for different values of KI . The spacing of the meshes
are the same as in Table 1.

KI = K1, τ I KI = K2, τ I KI = KH KI = KT

2D 1D errrel 2D 1D errrel 2D 1D errrel 2D 1D errrel

pI 0.500 0.500 − 0.499 0.497 0.2% 0.499 0.499 − 0.500 0.500 −
p̂1,1 0.497 0.493 0.4% 0.019 0.010 0.9% 0.028 0.019 0.9% 0.497 0.505 0.8%
p̂1,2 0.502 0.507 0.5% 0.981 0.990 0.9% 0.972 0.981 0.9% 0.502 0.485 1.7%
p̂2,1 0.500 0.485 1.5% 0.497 0.483 1.4% 0.498 0.488 1% 0.500 0.505 0.5%
p̂2,2 0.500 0.505 0.5% 0.500 0.502 0.2% 0.500 0.502 0.2% 0.500 0.505 0.5%

Table 2 shows instead the relative errors when the thickness of the fractures decreases. In this case we have
taken KI = 50.5−1I, i.e. the harmonic mean of the Ki, τ , and |m| = 1. Also in this case the errors are rather
small and, as we expected, they decrease when the thicknesses decrease. Even if this is not a rigorous analysis
of the model error, it gives numerical evidence of its asymptotic behavior with respect to the fracture thickness.

Finally we address some different choices to prescribe the permeability in the intersection region. The choice
should of course be driven by physical arguments. For instance, if we assume that γ1 is “younger” then γ2, i.e. it
was generated after γ2, than KI should be equal to the K1, τ . Conversely, if we assume that γ2 is “younger”
then γ1, we should set KI = K2, τ . Alternatively we can impose a tensor KH = KHI that is the harmonic
mean of Ki, τ , if we suppose that the material of each γi has been mixed in the intersection region I. Finally
we can impose to KI , in the direction aligned to each γi, the value Ki, τ obtaining a non-isotropic tensor KT .

In Table 3 we compare the four choices for a system of two orthogonal fractures of thickness di = 0.01 and
permeability K1,τ = 1, K2,τ = 10−4. We can observe that, for KI = K2, τ and KI = KH the solution exhibits
a pressure jump along γ2 while in the other cases the solution is almost continuous. In all cases the relative error
is of the order of 1% or less proving the effectiveness of the reduced model with the new coupling conditions.
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Figure 7. In the left image ξ̂0 is such that the maximum principle is not fulfilled, while in the
right is fulfilled.

Table 4. Top values of maxi p̂i for different ξ̂0 in the orthogonal case, bottom for the non-
orthogonal case. In bold the values of ξ̂0 and of the maximum pressure that fulfill the maximum
principle.

ξ̂0 0 0.05 0.1 0.15 0.2
maxi p̂i 1.228 1.003 0.992 0.988 0.986

ξ̂0 0 0.0025 0.005 0.0075 0.01
maxi p̂i 1.116 1.033 0.993 1.018 1.035

6.2. Maximum principle

We want to verify, with numerical experiments, the bounds derived in Theorem 5.3 for the parameter ξ̂0 that
ensure the fulfillment of the maximum principle.

Let us consider two fractures of the same length L = 1 and thickness di = 0.01 that intersect orthogonally. We
set η̂i = 1 while in the intersection point we consider an isotropic permeability tensor KI = 10−4I. We impose
pressure as a boundary condition on all four end points, in particular we set gi,1 = 0 and gi,2 = 1 for i = 1, 2.
For this configuration, according to Theorem 5.3, the maximum principle is satisfied if ξ̂0 ≥ 1/8. Figure 7 shows
the solution we obtained with ξ̂0 = 0, a value that does not satisfy the hypotheses: it is clear that the maximum
principle is violated, indeed the pressure inside the domain exceeds 1 which is the maximum at the boundary.
In the same figure we represent the solution obtained with ξ̂0 = 1/8, which satisfies the maximum principle, as
indicated by the theory.

In the first part of Table 4 we report the maximum value of pressure in the domain for different ξ̂0 to prove
that the maximum principle is violated for some values of the parameter outside the theoretical bounds.

We then consider two fractures that intersect forming a small angle of 0.2 rad. In this case the bounds on
ξ̂0 are 4.934 × 10−3 ≤ ξ̂0 ≤ 5.034 × 10−3. We report in the second part of Table 4 the maximum pressure in
the domain for different ξ̂0: it can be observed that 0.005 is indeed the only value for which the solution fulfills
the maximum principle. This numerical experiment points out that for small intersection angles the bounds are
non only stricter but also sharper than in the case of orthogonal fractures. We recall that the bounds represent
only a sufficient condition.

6.3. Convergence rates

Let us consider two intersecting fractures described by equations

γ1 = {(x, y) : y = x} and γ2 = {(x, y) : y = 1 − x} , x ∈
[
−
√

2
2

,

√
2

2

]
·
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)

‖

Figure 8. Convergence rates for each pieces of the norm W and Q. In the legend we have
indicated by ‖·‖ the L2 norm.

The permeability of the fractures is Ki, τ = 1 while KI = 0.01I. Both fractures have thickness di = 0.01, the
boundary conditions are g = [0, 1, 0, 1] and the source term is set to f1 = 0.01 only in γ1 for x < 0. Finally
choosing ξ0 = 1/4, the exact solution is

p̂1(s) =

⎧⎪⎪⎨⎪⎪⎩
−s2

2
+

13
12

s s ∈ [0, 1)

1
4
s + 1 s ∈ (1, 2]

, p̂2(s) =

⎧⎪⎨⎪⎩
5
12

s s ∈ [0, 1)

1
4
s + 1 s ∈ (1, 2]

û1(s) =

⎧⎪⎨⎪⎩
s − 13

12
s ∈ [0, 1)

−1
4

s ∈ (1, 2]
, û2(s) =

⎧⎪⎨⎪⎩
5
12

s ∈ [0, 1)

−1
4

s ∈ (1, 2]

and p̂I = 5/8. Figure 8 shows the errors computed with decreasing grid spacings. The numerical results are
in good agreement with Theorem 5.4. Moreover there are a numerical evidences that in all the examples
analyzed, like the ones presented, the pressure error decay better then O (h). A possible motivation is the
regularity of the pressure, separately, in each sub-division of the computational domain. In both example we
have ‖p̂h − p̂‖ � O (h1.5

)
. However a deeper explanation of this fact is out of the scope of the present work.

Let us now consider the case of curved fractures to evaluate the error associated with the approximation of
geometry as piecewise linear. The two fractures are now described by the following equations

γ1 = {(x, y) : x = 0, y = 1 + 2θ} and γ2 = {(x, y) : x = sin(πθ), y = 1 + cos(πθ)} , θ ∈ [−1, 0] .

We impose the same permeability, thicknesses, source term and boundary conditions as in the previous case:
since the arc length of the four branches is the same we obtain the same exact solution. The errors obtained for
different grid spacings are reported in Figure 9. It can be observed that the error decreases linearly as in the
case of straight fractures and the absolute values are comparable, thus, if the grid size is small enough compared
to the fracture curvature, the approximation of geometry does not affect the quality of the numerical solution.

6.4. Networks of fractures

As already mentioned the method proposed in this paper can be applied to networks composed by an arbitrary
number of fractures. Let us consider a set of three fractures γ1,2,3 characterized by the same permeability.
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Figure 9. Convergence rates for the curve case.

-0.4
-0.2

0
0.2

0.4

x-1
-0.5

0
0.5

1
1.5

y

0

0.2

0.4

0.6

0.8

1

p̂

-0.4
-0.2

0
0.2

0.4

x-1
-0.5

0
0.5

1
1.5

y

0

0.2

0.4

0.6

0.8

1

p̂

-0.4
-0.2

0
0.2

0.4

x-1
-0.5

0
0.5

1
1.5

y

0

0.2

0.4

0.6

0.8

1

p̂

Figure 10. Top-left: p̂i without γ4. Top-right and bottom: p̂i with the classical conditions and
our model, respectively.

Imposing gi,1 = 0 and gi,2 = 1 for all i we obtain the pressure distribution reported in Figure 10. We now insert
a new fracture γ4 with lower permeability, and, following the considerations of Section 6.1, we impose in all
the intersection with γ4 the permeability of this latter. As shown in Figure 10 the solution obtained with the
classical model [4,6] is everywhere continuous while the new coupling conditions allow us to mimic the blocking
nature of γ4.

In realistic applications fractured porous media are often characterized by the density and orientation of the
fractures rather than by detailed information on the geometry and properties of the single fracture. In this
second test case we consider a grid of NH horizontal fractures and NV fractures that form a variable angle θ
with the horizontal ones. We impose homogeneous boundary conditions for the pressure on all tips except for
one where we set g1,2 = 1 as shown in Figure 11 left. Figure 11 right shows the resulting pressure field for
NH = NV = 5 and θ = 80◦. Thanks to the efficiency of the reduced one-dimensional model we are able to
analyze different configuration with a low computational cost. Figure 12 shows the value of the pressure in the
center of the network for different orientations of the fractures, i.e. different angles θ, and for increasing density
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of the vertical fractures in the orthogonal case. We can observe that as we increase the number of fractures,
thus the transmissibility of the network, the pressure in the central point tends to an asymptotic value.

Finally, we consider a more realistic test case where the fracture distribution is generated randomly starting
from a grid of horizontal and vertical fractures of various length and perturbing the angles. We consider 40 frac-
tures of width d = 1 mm and permeability of 1 mD (10−12 Pa s). The resulting network is approximately 100 m
wide. We point out that since the fracture position and orientation is random some may not be connected with
the rest of the network. No flux boundary conditions are prescribed at the tips and a source term f̂ = 10−8 m/s
is imposed in the circular region of radius R = 5 m represented in Figure 13, such that only a few fractures are
affected. The resulting pressure field is represented in Figure 13 and reflects the connectivity of the network.

7. Conclusions

In this paper we derived and analyzed a reduced model for flow in a network of fractures. The derivation
is similar to that given in [15, 27], yet here we propose new coupling conditions to handle in a more realistic
way the intersecting fractures. These conditions take into account the intersection angle and, by allowing a
discontinuous pressure at the interface they are capable of giving accurate results also in the case where the
permeability of the fractures are very different. This is not the case for the coupling conditions in [5, 6]. This
can be relevant to applications since a fracture may sometimes act as a barrier or a preferential path.

Well posedness analysis has been given for both the continuous and discrete problem and numerical exper-
iments have been performed to validate the theoretical results of convergence and positivity. The comparison
with two dimensional simulations on refined grids proved that the new coupling conditions give reasonably
accurate results, and they perform better than the classical one in the case of impermeable fractures. We have
also shown how the model can be used to simulate more realistic configurations with the presence of several
intersecting fractures.

Further developments will consist in extending the analysis to the coupling between the network and the
surrounding porous medium introduced in [18], to obtain a complete framework for the simulation of mono-
phase flow in presence of an arbitrary set of fractures.

We have dealt only with two dimensional problems. However the derivation here presented forms the basis for
a similar reduced model in a three dimensional setting. The main difficulty in the extension to three dimensional
problems is that the interface condition is not anymore an algebraic one, but it involves the interaction with
a one-dimensional model that describes the flow along the intersection. This matter is the subject of ongoing
work. Two dimensional simulations have however, already an applicative relevance. They may be used to better
understand the behavior of the flow in the presence of fractures and drive, for instance, upscaling techniques.
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milieu poreux fracturé, in Proc. of JANO 8, 8th Conf. Numer. Anal. Optim. (2005).

[7] P. Angot, F. Boyer and F. Hubert, Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN
43 (2009) 239–275.

[8] J. Bear, C.-F. Tsang and G. de Marsily, Flow and contaminant transport in fractured rock. Academic Press, San Diego (1993).



1116 L. FORMAGGIA ET AL.

[9] R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous
modulus of elasticity. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3352–3360.

[10] B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resources 25 (2002)
861–884.
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