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Abstract. Previously we developed a “minimal” mathematical model of the tubu-
loglomerular feedback (TGF) system in a short-looped nephron of the mammalian kid-
ney. In that model, a hyperbolic partial differential equation (PDE) represented the
advection and transepithelial transport of chloride in the thick ascending limb (TAL).
The feedback response was represented by an empirical relationship that determined
the glomerular filtration rate as a function of time-delayed TAL luminal chloride con-
centration alongside the macula densa. This PDE model system with feedback and a
time delay presents analytical and computational challenges. In this report, we derive
a reduced model that is based on the minimal model. The reduced model, which is
formulated as an integral equation in time, is easier to study than the PDE model. As
in the case of the minimal model, analysis of the reduced model suggests that sustained
oscillations in nephron fluid flow arise from a Hopf bifurcation, with delay time and
system gain as bifurcation parameters. Both analysis and numerical calculations indi-
cate that the principal bifurcation locus predicted by the reduced model coincides with
the analogous locus obtained from the minimal model. Near the principal bifurcation
locus, numerical solutions of the two models nearly coincide. For bifurcation parameters
that differ sufficiently from the principal bifurcation locus, the numerical solutions to
the two models differ somewhat. The reduced TGF model has the potential to facilitate
simulation and analysis of interactions among TGF systems in multiple nephrons.
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1. Introduction. Tubuloglomerular feedback (TGF) is an important
controller of kidney function. A distinct TGF system operates in each of
the nephrons, which are the primary functional units of the kidney. TGF
regulates the flow of fluid leaving the proximal parts of a nephron (the
proximal tubule and Henle’s loop) by monitoring the NaCl concentration
of the tubular fluid as it passes the macula densa (MD), a plaque of spe-
cialized cells in the wall of the thick ascending limb (TAL) of Henle’s loop
(see Fig. 1, below). When the MD is stimulated by an increase in the
NaCl concentration of the tubular fluid (an increase that normally occurs
when TAL fluid flow increases) a signal is directed to the afferent arteri-
ole (AA) that supplies blood to that same nephron. In response, the AA
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constricts, which reduces the blood flow to, and the hydrostatic pressure
within, the glomerular capillaries, resulting in a reduced rate of filtration
into the nephron. By this means, TGF balances the load of fluid presented
to the nephron with the capacity of tubular epithelial cells to absorb and
process the filtered fluid. TGF also participates in the stabilization of re-
nal blood flow and glomerular filtration rate in response to fluctuations in
systemic arterial blood pressure, a phenomenon called renal autoregulation
[21].

Fluid flow in the nephrons of normotensive rats either approximates
a time-independent steady state or exhibits sustained limit-cycle oscilla-
tions (LCO) with frequency of about 25-50 mHz [9, 11]. Fluid flow in
the nephrons of hypertensive rats often exhibits irregular oscillations that
are suggestive of deterministic chaos [22]. Experiments have established
that the flow oscillations, whether LCO or irregular oscillations, involve
the TGF system [11].

Several mathematical models have been formulated to elucidate the
origins of these flow oscillations [1, 8, 10, 13, 18]. In previous work, we
formulated a “minimal” dynamic model of fluid flow and solute advection
in a nephron [13]. In that model, a hyperbolic partial differential equation
(PDE) represents the advection and transepithelial transport of chloride
in the TAL. Feedback is represented by an empirical relationship that de-
termines glomerular filtration, and hence TAL flow speed, as a function
of the intratubular chloride concentration sensed by the MD at an earlier
time. This results in a time-delay PDE. Analysis and numerical computa-
tions show that model behavior depends critically on at least two param-
eters, the delay τ at the MD and the feedback loop gain γ; indeed, the
analysis suggests that a Hopf bifurcation occurs along a locus in the τ -γ
parameter space [13]. The bifurcation locus marks the loss of stability of
time-independent steady-state model solutions and the appearance of sta-
ble LCO. The range of physiological parameters measured in the kidneys
of normotensive rats is approximately bisected by the bifurcation locus,
which may help explain why some nephrons exhibit LCO while others do
not. The minimal model is summarized below in Section 2.

The minimal TGF model has been robust in its agreement with ex-
perimental data [13, 14, 15, 16, 17]. However, its use of a PDE to describe
transport in the TAL limits the possibilities for analysis and presents a
significant computational burden in simulation studies involving the in-
teractions of TGF systems in multiple nephrons, a case of considerable
physiological importance. Studies in rats show that 50–60% of the superfi-
cial nephrons occur in pairs (and some triples), where the afferent arterioles
feeding these nephrons branch from a common location, either on a cortical
radial artery (CRA) or on a short connecting artery that branches from a
CRA [3]. Such nephron pairs (or triplets) are said to have a close vascular
connection.

Renal micropuncture experiments have shown that nephron pairs with
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close vascular connection, or which branch from discrete sites on the same
CRA, usually exhibit synchronous flow oscillations, whereas flow oscilla-
tions tend to be uncoordinated in nephron pairs perfused by different CRAs
[7]. Yip et al. confirmed that a close vascular coupling of nephron pairs
on the CRA is strongly correlated with synchronous oscillations [23]. They
also found evidence suggesting that the magnitude of nephron-nephron
interaction is greater in hypertensive rats, relative to normotensive ani-
mals. Chen et al. verified these findings and found that the strength of
the nephron-nephron interaction varies inversely with the length of the
vascular structures interposed between the nephrons [5]. Together, these
experimental studies provide strong evidence for interaction, or coupling, of
nephrons via vascular pathways. The mechanism of vascular coupling most
likely involves electrotonic conduction of signals through the gap junctions
that connect the smooth muscle and endothelial cells in the AA and CRA
[5].

In Ref. [19], we formulated a model for two coupled nephrons as a gen-
eralization of our minimal single-nephron model. The two-nephron model
contains two hyperbolic PDEs that are coupled via the tubular flows that
are determined by the feedback responses. Our investigation shows that
an analytical bifurcation analysis is possible for special cases. The results
suggest that, by displacing the bifurcation locus, close vascular coupling fa-
cilitates the emergence of oscillations, relative to uncoupled nephrons [19].
Numerical simulations further suggest that dynamic behaviors more com-
plex than LCO can be elicited in this model of two coupled nephrons [24].
However, analysis of our TGF models involves the study of bifurcations of
a hyperbolic PDE with a time delay—a difficult, non-standard problem in
applied mathematics.

In Section 3, we derive from our minimal model a new, “reduced”
model of TGF. The reduced model is an integral equation that arises from a
linearization of the characteristic form of the original PDE model. Analysis
of this reduced model yields the same principal bifurcation locus as the
PDE model, and numerical calculations show that the dynamic behaviors
of the two models are similar. The reduced model eliminates some of the
computational difficulties of the minimal model and thus may be well-suited
for studies of inter-nephron interaction.

In Section 4, we derive a functional1 ordinary differential equation
(ODE) that is equivalent to our minimal model, provided that the TAL
is assumed to be impermeable to NaCl. This formulation of the minimal
model, which has a state-dependent time delay, is helpful for explaining the
difficulties inherent in solving the minimal model, relative to the reduced
model.

1In this context, “functional” means that the differential equation contains a delay
in the time variable [6]; such a differential equation is also called a delay differential
equation or a differential-difference equation [2].
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2. The Minimal Model. In this section, we summarize the minimal
model as originally developed in Ref. [13].

2.1. Model formulation. The model represents TGF in a short-
looped nephron like that found in the rat. Such nephrons have a loop of
Henle that reaches nearly to the boundary of the inner and outer medulla
(see Fig. 1). The model is formulated as a system of two coupled equations:

∂

∂t
C(x, t) = −F (C(1, t− τ))

∂

∂x
C(x, t)(2.1)

−
VmaxC(x, t)

KM + C(x, t)
− P

(

C(x, t)− Ce(x)
)

and

F (C(1, t− τ)) = 1 +K1 tanh

(

K2

(

Cop − C(1, t− τ)
)

)

.(2.2)

Both equations are expressed in nondimensional form (see Normalization
of equations, below). The space variable x is oriented so that it extends
from the entrance of the TAL (x = 0), through the outer medulla, and into
the cortex to the MD (x = 1).

Equation 2.1, which is based on mass conservation of chloride in a
rigid tube, is a PDE for the chloride concentration C(x, t), at position x
and time t, in the intratubular fluid of the TAL. At x = 0, we assume that
C(0, t) = 1, meaning that fluid entering the TAL has constant chloride con-
centration. The rate of change of that concentration for x ∈ (0, 1] depends
on processes represented by the three right-hand terms in Eq. 2.1. The first
term is axial chloride advection at intratubular flow speed F . The second is
transepithelial efflux of chloride driven by active metabolic pumps situated
in the tubular walls; that efflux is approximated by Michaelis-Menten kinet-
ics, with maximum transport rate Vmax and Michaelis constant KM . The
third term is transepithelial chloride backleak, which depends on a speci-
fied fixed extratubular chloride concentration profile Ce(x) and on chloride
permeability P .

Equation 2.2, which represents the feedback response, gives the TAL
intratubular fluid speed as a function of C(1, ·), the intratubular TAL chlo-
ride concentration alongside the MD (the dot in C(1, ·) indicates an ar-
bitrary time). This equation, which was obtained empirically by physiol-
ogists, is well-established by steady-state experiments [20]. The constant
Cop is the steady-state chloride concentration obtained at the MD when
F ≡ 1. The positive constants K1 and K2 describe, respectively, the range
of the feedback response and its sensitivity to deviations from the steady
state.

Dynamic experiments [4] show that a change in MD concentration
does not significantly affect AA muscle tension until after a positive delay
time τ . Thus the flow in Eq. 2.1 depends on the MD concentration at the
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Fig. 1. Schematic drawing of a short-looped nephron. Relationship to cortex and
outer medulla is indicated at left. Important structures are labeled according to Key
at right. The glomerulus is contained within Bowman’s capsule (BC). The macula
densa (MD), contrary to the appearance in this drawing, is on the back side of the thick
ascending limb (TAL) and adjacent to the region where the glomerulus, afferent arteriole
(AA), and efferent arteriole (EA) come together. Water and NaCl are absorbed from the
proximal tubule (PT) and returned to the blood by means of the peritubular capillaries;
water is absorbed from the water-permeable descending limb (DL), and NaCl is actively
transported from the essentially water-impermeable thick ascending limb (TAL).

previous time t − τ , i.e., on C(1, t − τ). At time t = 0, the initial TAL
concentration profile (C(x, 0) for x ∈ (0, 1]) and a concentration history at
the MD (C(1, t) for t ∈ [−τ, 0)) must be specified.

In this study, which aims at analytical simplification, we will assume
that solute backleak, which is perhaps the most important second-order
transepithelial transport effect, is zero. Thus, we set P = 0 and Ce(x)
need not be specified. For subsequent convenience, we write the remain-
ing transepithelial transport term (the one described by Michaelis Menten
kinetics) as a function J defined by

J(C) =
VmaxC

KM + C
.(2.3)

A steady-state solution to Eqs. 2.1 and 2.2 may be obtained by setting
F = 1 for t ∈ [0, 1+ τ). The TAL concentration profile will attain a steady
state at t = 1, since the TAL transit time is 1 at flow speed 1; moreover,
C(1, t) = Cop in the interval t ∈ [1, 1 + τ). If the feedback loop is closed
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at t = 1 + τ , then F will equal 1 for all time such that t ≥ 1 + τ , and
the steady-state TAL concentration profile will persist, provided that the
system remains unperturbed.

Under the assumption of no solute backleak, the steady-state TAL
concentration profile of C, denoted by S(x), is given by the solution of the
ODE

S′(x) = −J(S(x)), S(0) = 1,(2.4)

where we have used F (S(1)) = F (Cop) = 1 and S(0) = C(0, t) = 1, and
where the prime indicates differentiation with respect to x.

Normalization of equations. The dimensional forms of Eqs. 2.1 and
2.2 are given by

∂

∂t
C(x, t) = −

F (C(1, t− τ))

πr2

∂

∂x
C(x, t)(2.5)

−(2/r)

(

VmaxC(x, t)

KM + C(x, t)
+ P

(

C(x, t)− Ce(x)
)

)

,

and

F (C(L, t− τ)) = α

(

Qop +
∆Q

2
tanh

(

k

2

(

Cop − C(L, t− τ)
)

))

,(2.6)

where r is the tubular radius, α is the (dimensionless) fraction of sin-
gle nephron glomerular filtration rate (SNGFR) reaching the TAL, Qop is
the steady-state (operating) SNGFR, ∆Q is the TGF-mediated range of
SNGFR, and k is the sensitivity of the TGF response [13]. To express
these equations in nondimensional form, let x̃ = x/L, t̃ = t/to, τ̃ = τ/to,
r̃ = r/

√

Ao/π, C̃(x̃, t̃) = C(x, t)/Co, C̃e(x̃) = Ce(x)/Co, F̃ (C̃(1, t̃ − τ̃)) =

F (C(L, t − τ))/Fo, Ṽmax = Vmax/(Vmax)o, K̃M = KM/Co, P̃ = P/Po,
K1 = ∆Q/2Qo, K2 = kCo/2, and C̃op = Cop/Co, where L is TAL length,
and where the quantities subscripted with an “o” are conveniently chosen
reference values: Ao = πr2, to = AoL/Fo, Co = C(0, t) (assumed con-
stant), Fo = Fop = αQop, (Vmax)o = FoCo/(2πrL), Po = Fo/(2πrL), and
Qo = Qop. With these conventions, to is the filling time (and thus the
transit time) of the TAL at flow rate Fo, and (Vmax)o is the rate of solute
advection into the inlet of the TAL at flow rate Fo, divided by the area of
the sides of the TAL. When Eqs. 2.5 and 2.6 are rewritten in dimensionless
terms and the tilde symbols are dropped, Eqs. 2.1 and 2.2 follow directly.

Model parameters. The values of model base-case parameters, assum-
ing no chloride backleak, are given in Table 1; the criteria for their selection
and supporting references were given in Ref. [13]. The steady-state operat-
ing concentration Cop was calculated numerically using the TAL dimensions
and transport parameters, with steady flow F = 1 in Eq. 2.1.
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Table 1: Parameter set for no chloride backleak (P = 0)

Parameter Value
α 0.200 (dimensionless)
Co 275 mM
L 0.500 cm
Qop 30.0 nl/min
∆Q 18.0 nl/min
r 10.0 µm
to 15.708 s
τ 3.5 s
KM 140 mM
Vmax 17.3 nmole · cm−2 · s−1

Cop 32.12 mM

2.2. Bifurcation analysis. Under normal conditions, renal blood
flow is subject to disturbances from a number of physiological sources,
such as heartbeat, respiration, stress, activity, and other factors that cause
fluctuations in blood pressure. Such disturbances will result in deviations
from time-independent steady-state intratubular nephron flow. Thus, an
important question is, What is the behavior of a nephron subsequent to a
transient perturbation of that steady state? In the context of the minimal
nephron model, an answer to this question was provided in Ref. [13]: if
the system is perturbed, the stable solution depends on the time delay τ
and on the gain of the feedback loop (the gain will be determined below).2

In one region of the delay–gain parameter plane, the perturbed solution
tends back to the steady-state. In another region, the steady state is no
longer stable and the perturbed solution tends to a regular oscillation, i.e.,
to an LCO. The two regions in the delay–gain parameter space are sep-
arated by a curve, and that curve is the locus of a bifurcation where the
time-independent steady-state solution loses stability and the steady state
is replaced by a stable LCO (see Fig. 2, below).

In this subsection, we summarize the analysis that predicts the bifur-
cation from a stable time-independent steady-state to a stable LCO. We
first combine Eqs. 2.1 and 2.2 into a single equation, which we linearize by
assuming a solution of the form

C(x, t) = S(x) + εD(x, t),(2.7)

where, recall, S(x), the solution of Eq. 2.4, is the steady-state TAL con-
centration profile, and where D represents the deviation from that steady
state. To obtain the linearization, expand (by means of a Taylor series in

2A physiological perturbation can be simulated by a transient augmentation of flow,
an augmentation which may be achieved by adding a small quantity to the right-hand
side of Eq. 2.2.
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ε) those terms that are nonlinear in ε, retaining only the terms that are
first order in ε. This yields a PDE for the deviation, given by

∂

∂t
D(x, t) = −

∂

∂x
D(x, t)(2.8)

−J ′(S(x))D(x, t)− F ′(Cop)S
′(x)D(1, t− τ),

where the primes indicate differentiation with respect to the arguments of
the functions. (The terms that are order zero in ε drop out because they
are equivalent to the time-independent steady-state ODE for S(x), i.e., to
Eq. 2.4.) Because C(0, t) = S(0) = 1, the boundary condition for D(x, t)
is

D(0, t) = 0.(2.9)

If the deviation arising from a perturbation of the steady-state dimin-
ishes in time, i.e., if the deviation tends to zero in the sense that

lim
t→∞

(

max
x∈[0,1]

|D(x, t)|

)

= 0,(2.10)

then the time-independent steady-state solution S(x) is the stable solution.
On the other hand, ifD does not tend to zero, then S is an unstable solution
and the stable solution has a TAL concentration profile that varies in time.

We assume that the deviation D can be written as a product of a func-
tion f(x) that depends only on the spatial variable x and an exponential
function eλt that depends only on the temporal variable t. Thus we use
the method of separation of variables, and we write

D(x, t) = f(x)eλt,(2.11)

where f(0) = 0 to conform to the boundary condition given by Eq. 2.9.
Because the parameter λ can have both a real part (Re λ) and an imaginary
part (Im λ), eλt can both modify the amplitude of D and allow oscillations
in D.

If Re λ < 0, then D tends to zero in the sense of Eq. 2.10, and the
steady-state solution S(x) is the stable TAL concentration profile. How-
ever, if Re λ > 0, then a perturbation of the steady state may lead to an
oscillatory solution of Eq. 2.8, and, indeed, to oscillations that grow with-
out bound. However, in the full model, nonlinearities in Eqs. 2.1 and 2.2
(specifically, nonlinearities in the bounded range of F and in the Michaelis
Menten kinetics) prevent unbounded oscillations.

If one assumes that the form for D given in Eq. 2.11 is a solution of
the linear PDE given by Eq. 2.8, then that PDE imposes a relationship
between λ and the parameters arising in the PDE. That relationship is
the characteristic equation, which we now derive. If one substitutes the
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assumed form for D into into Eq. 2.8 and cancels the common factor of
eλt, the result is a first-order linear ODE for f(x) given by

f ′(x) = −
(

λ+ J ′(S(x))
)

f(x) +K1K2S
′(x)f(1)e−λτ ,(2.12)

where the primes indicate differentiation with respect to the arguments
of the functions, and where F ′(Cop) has been replaced by −K1K2. The
solution to this ODE can be written as

f(x) = K1K2f(1)e
−λτe−h(x)

∫ x

0

S′(y)eh(y) dy(2.13)

where

h(x) =

∫ x

0

(

λ+ J ′(S(u))
)

du.(2.14)

By differentiating equation Eq. 2.4 with respect to x, one obtains
J ′(S(x)) = −S′′(x)/S′(x), and therefore h(x) = λx − ln |S ′(x)|. Thus,
after simplification, Eq. 2.13 can be written as

f(x) = −K1K2f(1)e
−λτS′(x)

(

e−λx − 1

λ

)

.(2.15)

If one evaluates this equation at x = 1, cancels f(1) from both sides, and
defines a new, positive parameter γ by

γ = −K1K2S
′(1),(2.16)

then one obtains the characteristic equation for λ,

1 = γe−λτ

(

e−λ − 1

λ

)

.(2.17)

This equation contains two dimensionless parameters: τ , the normalized
time delay, and γ, the feedback loop gain. The gain is a measure of the
signal amplification by the feedback loop. (An in-depth treatment of gain
is given in Ref. [14]; technically speaking, −γ is the gain whereas γ is the
gain magnitude, because gain in a negative feedback system is negative.)

The complex-valued parameter λ can be written λ = ζ + iω, where
ζ and ω are real numbers with Re λ = ζ and Im λ = ω. The sign of ζ
determines whether the amplitude of the oscillatory solution is decreasing
or increasing. To determine a bifurcation locus separating increasing solu-
tion amplitudes from decreasing ones, set ζ = 0 (i.e., let λ = iω). After
algebraic transformations, the characteristic equation can then be written
as

ω/2 = −γ sin(ω/2)
(

cos(ω(τ + 1/2))− i sin(ω(τ + 1/2))
)

.(2.18)
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Fig. 2. Bifurcation curves γn given by Eq. 2.21, for n = 1, 2, 3, and 4. In the
region indicated by “SS” a solution obtained by a transient perturbation of the time-
independent steady-state solution will converge back to the steady-state solution. How-
ever, above the curve labeled by “n = 1” a transient perturbation of the time-independent
steady-state will result in a solution that oscillates in time. The gray disk indicates the
approximate region that corresponds to parameters for normotensive rats.

The imaginary part of Eq. 2.18,

0 = γ sin(ω/2) sin(ω(τ + 1/2)),(2.19)

implies that either ω
2 = nπ or ω(τ + 1

2 ) = nπ, where n is an integer.
The first alternative, when substituted into Eq. 2.18, implies that ω = 0
and n = 0, which corresponds to the steady-state solution. The second
alternative,

ω =
nπ

τ + 1/2
, n = 1, 2, 3, . . .(2.20)

corresponds to time-dependent oscillatory solutions. Substituting Eq. 2.20
into the real part of the Eq. 2.18 yields

γn = (−1)
n+1 nπ/(2τ + 1)

sin(nπ/(2τ + 1))
, n = 1, 2, 3, . . .(2.21)

This equation defines the bifurcation curves on the τ -γ plane; portions of
some of those curves are shown in Fig. 2.

For each parameter pair (τ , γ) on any of these curves, the linearized
model equation (Eq. 2.8) has a periodic, standing-wave solution with the
frequency given by Eq. 2.20. For a fixed τ , the frequency of the periodic
solution corresponding to the nth bifurcation curve is n times the lowest
possible frequency.
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We now restrict attention to the curve labeled n = 1, which we call
the primary bifurcation curve (or primary bifurcation locus). In Ref. [13],
analysis demonstrated that ∂ζ/∂γ > 0 on this curve, and, by construction,
ζ = 0 on this curve. Thus, as the parameter pair (τ , γ) crosses the curve
from the lower to the upper region, the sign of ζ changes from negative to
positive. Below and to the left of the n = 1 curve, all solutions of Eq. 2.8 of
the form Eq. 2.11 have Re λ < 0, and the perturbation D(x, t) diminishes
to zero over time, in the sense of Eq. 2.10. However, above the primary
bifurcation curve, the deviation D arising from a perturbation will tend to
increase in amplitude. The change in solution behavior across the curve
n = 1 suggests that a Hopf bifurcation occurs at this locus (see additional
detail on this point in Ref. [13]).

When one applies the results of this linear analysis to the nonlinear
system given by Eqs. 2.1 and 2.2, one expects that in the region under the
primary bifurcation curve (n = 1), the time-independent steady-state will
be the only stable solution; but in the region above that curve, an LCO
will be the only stable solution. Numerical simulations have confirmed this
expectation; for details, see Ref. [13].

3. The Reduced Model. In this section we derive the reduced model
from the minimal model summarized above in subsection 2.1. The reduced
model eliminates the PDE that appears in the minimal model and thus the
space dependence inherent in that PDE, but it retains the time dependence
and the effects of the delay. This reduced model, which is a linearization of
the characteristic form of the hyperbolic PDE given by Eq. 2.1, provides an
explicit formula for the TAL flow rate in terms of the history of that flow
rate. Although the reduced model depends on the elimination of solute
backleak and on two linearizations, the reduced model may nonetheless
provide an adequate approximation to the minimal model in some contexts.

3.1. Model derivation. Along the characteristic curves determined
by

d

dt
x(t) = F (C(1, t− τ)),(3.1)

the equation for chloride conservation (Eq. 2.1) takes the form

d

dt
C(x(t), t) = −J(C(x(t), t)),(3.2)

provided that solute backleak is taken to be zero i.e., provided that P = 0.
(The relationship of Eqs. 3.1 and 3.2 to Eq. 2.1 can be seen by computing
the total derivative on the left side of Eq. 3.2 and comparing the result
with Eq. 2.1, while recalling J in Eq. 2.3. The requirement that P = 0 is
explained below in Section 3.2.)

In Eqs. 3.1 and 3.2, which are said to be in characteristic form, the
dependent variables can be parameterized by the time variable. To see this,
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and to simplify notation, define functions F and C by

F(t) ≡ F (C(1, t− τ))(3.3)

and

C(t) ≡ C(x(t), t).(3.4)

Also, define Tx(t) be the TAL transit transit time from x = 0 to position
x ∈ [0, 1] at time t. This transit time is the time required for a particle
that is moving with the flow to traverse the portion of the model TAL that
extends from 0 to x.

By integrating Eq. 3.1, one obtains an implicit equation for Tx,

x(t) =

∫ t

t−Tx(t)

F(s) ds,(3.5)

where t − Tx(t) is the time at which a particle of fluid currently located
at x(t) entered the TAL. By evaluating Eq. 3.5 at x = 1 and defining the
transit time up the TAL from x = 0 to the MD by TMD(t) ≡ Tx(t) with
x = 1, one obtains

1 =

∫ t

t−TMD(t)

F(s) ds.(3.6)

By replacing C(x(t), t) in Eq. 3.2 with C(t) and solving Eq. 3.2 along
the characteristic curves in the x − t plane specified by Eq. 3.1, subject
to the boundary condition at the TAL entrance, C(0) = C(0, t) = 1, one
obtains the concentration C(Tx(t)). By comparing Eq. 3.2 with Eq. 2.4, one
sees that C(Tx) is exactly S(Tx), where S is the solution of the steady-state
ODE given in Eq. 2.4.

To obtain a tractable equation for the flow rate, linearize C (by means
of the first two terms of a Taylor series) about the steady-state TAL transit
time TMD = 1 to find

C(TMD(t)) ≈ C(1) + (TMD(t)− 1)C
′(1).(3.7)

Note that C(1) = S(1) = Cop and C
′(1) = S′(1). By using the linearization

Eq. 3.7 and the gain as expressed in Eq. 2.16, one can substitute into
Eqs. 2.2 and 3.3 to obtain

F(t) ≈ 1 +K1 tanh

(

γ

K1

(

TMD(t− τ)− 1
)

)

.(3.8)

An additional linearization is required to complete the derivation.
Consider Eq. 3.5 as an implicit equation for transit time Tx, i.e., let x =
g(Tx), where

g(Tx) =

∫ t

t−Tx(t)

F(s) ds.(3.9)
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Now set x = 1 so that Tx = TMD, and linearize g(TMD) (with respect to
its argument TMD), by expanding in a Taylor series to first order about
TMD = 1 (with t considered fixed), to obtain

1 = g(TMD) ≈ g(1) + (TMD(t)− 1)g
′(1)(3.10)

≈

∫ t

t−1

F(s) ds+ (TMD(t)− 1)F(t− 1).

By solving this equation for TMD, one obtains

TMD(t) ≈ 1 +
1−

∫ t

t−1
F(s) ds

F(t− 1)
= 1 +

∫ t

t−1
(1−F(s)) ds

F(t− 1)
.(3.11)

To obtain the reduced model, consider the linearizations in Eqs. 3.8 and
3.11 to be exact. By substituting Eq. 3.11 for TMD(t) in Eq. 3.8, one
obtains

F(t) = 1 +K1 tanh

(

γ
∫ t−τ

t−τ−1
(1−F(s)) ds

K1F(t− τ − 1)

)

.(3.12)

This equation, which constitutes the reduced TGF model, expresses the
TAL flow rate F at time t as a function of average flow over a fixed interval
of past time. Fixing this interval of integration greatly simplifies numerical
computations.

3.2. Bifurcation analysis and numerical results. The reduced
TGF model given by Eq. 3.12 expresses the TAL fluid flow rate in terms of
the flow rate history. This model formulation avoids explicit consideration
of the spatially varying TAL chloride concentration C(x, t). Instead, the
information provided in the minimal model by the concentration at the MD
(i.e., C(1, t)) is approximated in the reduced model by information about
the flow rate F in the interval [t − τ − 1, t − τ ], viz., the average of that
flow divided by the value of that flow at time t− τ − 1.

We now ask, As an approximation of the minimal model, how accurate
is the reduced model? More specifically, is the principal bifurcation locus
changed? Although the reduced model avoids an explicit model represen-
tation of the TAL, it contains the same two bifurcation parameters, τ and
γ, as the minimal model. In the reduced model, these parameters retain
the same meaning as in the minimal model, and their normalizations are
unchanged. Because the characteristic equation for the minimal model is
based on a linearization procedure, and because the derivation of the re-
duced model is based on two linearizations, one might reasonably expect
that a bifurcation analysis of the reduced model would result in the same
bifurcation loci as found in the minimal model. We confirm this expecta-
tion by assuming a solution F(t) of Eq. 3.12 in the form of a small deviation
from steady-state flow 1, i.e., we set

F(t) = 1 + εD(t),(3.13)
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where ε is a small parameter. By substituting this form of F(t) into Eq. 3.12
and linearizing in ε, one obtains

D(t) = −γ

∫ t−τ

t−τ−1

D(s) ds.(3.14)

If, in analogy with Eq. 2.11, we let D(t) take the form of a complex ex-
ponential D(t) = eλt and evaluate the resulting integral in Eq. 3.14, the
characteristic equation is found to be

1 = −γe−λτ

(

1− e−λ

λ

)

.(3.15)

This characteristic equation is identical to the characteristic equation de-
rived in Section 2.2 for the minimal model, i.e., Eq. 3.15 is the same equa-
tion as Eq. 2.17.

For flow rates sufficiently close to the steady-state flow rate, and for pa-
rameter values sufficiently close to the usual operating point (corresponding
to the parameters of Table 1), numerical studies confirm that the behavior
of the reduced model is very similar to that of the minimal model. Fig-
ure 3 contains representative results for values of gain γ ranging from 2
to 6, and for a dimensional time delay τ of about 3.5 s. For this delay,
the dimensionless value of τ (found by dividing by the steady-state TAL
transit time 15.708 s), to three significant digits, is 0.223, which was the
value used in the calculations. Equation 2.21 gives a corresponding critical
gain value of γc = 2.6357. In each panel of Fig. 3, the same numerical
experiment was conducted for both the reduced and the minimal model.
In each experiment, the time-independent steady-state was perturbed at
t = 0 by a transient step in fluid flow, of amplitude 0.06 nl/min (1% of
steady-state TAL flow) and of duration 15.708 seconds (the steady-state
TAL transit time to).

Panels A and B of Fig. 3, for γ equals 2 and 3, respectively, show close
agreement between the two models and, in addition, exhibit representative
model behavior for gains that bound the critical gain (γc = 2.6357). Addi-
tional numerical calculations (not shown) indicate that when γ = 2.6300,
which is slightly less than γc, the qualitative behavior of both models closely
resembles the behavior shown in panel A, except that the amplitude of the
oscillations decreases much more slowly for γ = 2.6300 than for γ = 2.
For γ = 2.6400, which slightly exceeds γc, the qualitative behavior of both
models closely resembles the behavior shown in panel B, except that the
amplitude increases much more slowly for γ = 2.6400 than for γ = 3.

Panels C and D, for the larger gains of 4 and 6, respectively, show
good qualitative agreement between the two models. For these gain values,
the phase shift between the two models’ results is established in the early
seconds and then persists. The shapes of the waveforms are similar, and
the amplitudes are also similar. In panel C (γ = 4), the amplitude for
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Fig. 3. Numerical results of flow F as a function of time t for both the reduced
model and the minimal model. The results, for gain values γ = 2, 3, 4, and 6, were
computed with the parameters in Table 1. Results from the reduced model are indicated
by the thin black line; results from the minimal model are indicated by the thick gray
line. This figure provides numerical evidence that the reduced model provides a good
approximation to the minimal model.

the reduced model exceeds that for the minimal model by less than 6.2%;
in panel D (γ = 6), the amplitudes are more nearly the same, since the
extrema of the oscillations in both cases are approaching the extrema im-
posed by the choice of ∆Q given in Table 1 (i.e., approaching 4.2 and 7.8
nl/min).

The error incurred by using the reduced model, when considered as an
approximation for the minimal model, arises in part from the fixed inter-
val of integration in Eq. 3.12, which is a consequence of the linearization
given by Eq. 3.10. That equation calculates the average flow over a (dimen-
sionless) unit of time corresponding to one steady-state TAL transit time,
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whereas the flow should be averaged over the actual transit time of fluid to
the MD, as specified implicitly in Eq. 3.6. Thus, the fixing of the interval of
integration in the reduced model provides a substantial simplification, but
it diminishes the fidelity of the model to the physics of the physiological
process that is being represented.

The other source of error in the reduced model, as compared to the
minimal model, arises from the linearization in Eq. 3.7: using only the
steady-state concentration at the MD (i.e., S(1)) and the derivative of
that concentration at the MD (i.e., S ′(1)), the concentration at the MD is
expressed in Eq. 3.7 as a linear function of transit time. Thus the reduced
model does not depend on the details of the transport kinetics, but only
on local steady-state information at the MD.

In obtaining the reduced model, we have assumed that the TAL
transepithelial transport is homogeneous in space, and this assumption
is required in the derivation of the reduced model. If one instead assumes
that there is a solute backleak, formulated to depend on a spatially-varying
external concentration (as in Eq. 2.1), then the TAL concentration at the
MD is no longer a function of transit time only but also of the trajectory
in space: the MD concentration depends on how long the fluid at the MD
is near particular sites along the TAL, i.e., on where the fluid “spends its
time” along the TAL.3

Numerical solutions to the reduced model are easily computed. Given
a history of the flow F in the interval [t− τ − 1, t), the flow for t ∈ [t, t+ τ)
can be approximated by repeated application of the trapezoidal rule to
solve the integral in Eq. 3.12. It is unnecessary to numerically recompute
the sum that represents the integral at each new time step ∆t. Instead,
one can add to that sum the information for the new step at time t (i.e.,
the term containing the approximation for F(t − τ + ∆t)), and subtract
the most time-retarded step (i.e., the term containing the approximation
for F(t− τ − 1)).

This method of solution, which can be applied even as τ tends to
zero, involves a bootstrapping of information, inasmuch as the information
that is computed for each new interval of duration τ is then used (along

3If the backleak permeability P does not equal zero, then the equations analo-
gous to Eq 3.2 and Eq. 2.4, have the forms d

dt
C(x(t), t) = −J(C(x(t), t), Ce(x(t))) and

d

dx
S(x) = −J(S(x), Ce(x)), respectively, where the backleak term has been notationally

incorporated into J . From these equations one sees that transepithelial transport is no
longer homogeneous in space through dependence on C (or S), but, instead, has a spatial
dependence through Ce(x). Therefore, the TAL luminal concentration C(x, t) depends
not only on the transit time (the integral of the particle trajectory F(t)), but also on the
particle trajectory F(t) along the TAL as a function of time; thus, in general, C is not a
function of the transit time Tx only, and one cannot, in general, write an expression of
the form C(Tx(t)) = C(x, t). Moreover, if P 6= 0, then S(Tx) will be a correct expression
for concentration only in special cases, e.g, constant flow speed F = 1. Thus, one cannot
generally assert the equality C(Tx) = S(Tx), an equality that is essential to obtaining
Eq. 3.8.
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with already existing information in the previous nondimensional interval
of duration 1) to compute the solution in the next interval of duration τ .
The numerical solutions exhibited in Fig. 3 were obtained by means of this
method.

It is especially noteworthy that numerical solutions to the reduced
model can be obtained much more rapidly than can comparable solutions
to the minimal model. Obtaining solutions to the minimal model by solving
the delay PDE directly (i.e., Eq. 2.1, with P = 0), involves computing a
new TAL profile on the interval [0, 1] at each new time step. High spatial
and temporal resolution is required in such calculations to obtain acceptable
accuracy [16]. An alternative method for the minimal model, using Eqs. 2.2,
3.2, and 3.6, is more efficient, but nonetheless involves solving numerically
the implicit condition for TMD given by Eq. 3.6, and, if Michaelis-Menten
kinetics is employed, solving an implicit equation arising from Eq. 3.2 (viz.,
Eq. 7, for x = 1, in Ref. [15]).

4. Functional ordinary differential equation formulation. In
this section we derive a formulation of the minimal model that eliminates
the space dependence and represents model behavior as a functional ODE
for TMD, the TAL transit time to the MD. The functional ODE formulation
can be regarded as a conceptual bridge between the minimal model and
reduced model, and thus this formulation can assist in understanding why
the reduced model allows for significant computational simplification.

To obtain the functional ODE formulation, differentiate Eq. 3.6 to
obtain

0 = F(t)−F(t− TMD(t))

(

1−
d

dt
TMD(t)

)

.(4.1)

Then solve for dTMD/dt to obtain

d

dt
TMD(t) = 1−

F(t)

F(t− TMD(t))
,(4.2)

and recall the definitions for F and C (Eqs. 3.3 and 3.4), and the material
following Eq. 3.6, to obtain the dependence of F on TMD,

F(t) = F (C(1, t− τ)) = F (C(TMD(t− τ))).(4.3)

To write the ODE in terms of TMD(t), substitute equation Eq. 4.3 into
Eq. 4.2, and let S = C to obtain

d

dt
TMD(t) = 1−

F (S(TMD(t− τ)))

F (S(TMD(t− τ − TMD(t))))
.(4.4)

Because the nondimensional steady-state value for TMD is 1, and the
functional ODE is space-independent, we may let TMD(t) = 1 + εD(t),
where D, the deviation analogous to that first used in Eq. 2.7, is given
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by D(t) = eλt. If one linearizes in ε, one obtains the same characteristic
equation as obtained twice previously, viz., Eqs. 2.17 and 3.15. Therefore,
the stable solution of this problem is determined by exactly the same con-
ditions for τ and γ that were previously determined in Sections 2.2 and
3.2. This is the expected result since the functional ODE represents the
same behavior as the minimal model. Indeed, from the solution to the
ODE, the flow F and concentration C(1, t) at time t can be recovered as
F (S(TMD(t− τ))) and S(TMD(t)), respectively.

The initial condition that provides a time-independent steady-state
for this ODE, a condition that is analogous to the steady-state initial
conditions for the minimal problem, is the condition that TMD ≡ 1 for
t ∈ [−τ − 1, 0]. If the ODE remains unperturbed, the steady-state solution
will persist for t > 0.

The significance of the functional ODE formulation given by Eq. 4.4,
in the context of the reduced model, is that it provides additional insight
into the advantages of using the reduced model for computation. Although
the functional ODE is space independent like the reduced model, it is an
alternative formulation of the minimal model, a formulation that shows
that the rate of change of the transit time depends on the transit time
at the previous time t − τ and also at the previous time t − τ − TMD(t),
which, of course, depends on the current transit time TMD(t). An accurate
numerical solution of the functional ODE formulation would require a very
precise estimation of two previous transit times at each time step; these
delay times must be determined by interpolation since they will generally
fall at times that do not coincide with the time increments of the numer-
ical calculation. A comparison of this ODE formulation with the reduced
model gives emphasis to the conceptual and computational simplicity of
the reduced model, relative to the minimal model. The ODE formulation
of the minimal model may be helpful, however, for theoretical investigation
of the minimal model.

5. Summary and Conclusion. We have derived a model—the re-
duced model—that approximates the “minimal” model that we previously
developed for the tubuloglomerular feedback loop [13]. The reduced model
has the same characteristic equation as the minimal model, which means
that, with regard to its stable behavior (time-independent steady-state
versus limit-cycle oscillations), the reduced model has the same principal
bifurcation boundary in parameter space as does the minimal model. More-
over, numerical simulations show that the reduced model has quantitative
behavior that closely approximates that of the minimal model, a finding
that is of especial significance because the computational time required to
compute numerical results for the reduced model is much less than that
required for analogous results from the minimal model.

An important potential application of the reduced model is the study
of the effects of nephron-nephron coupling on renal dynamics in large pop-
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ulations of nephrons. Indeed, the simplicity of the reduced model offers the
possibility of more easily applying analytical methods to the study of large
systems of coupled nephrons [19]. Such coupling, found in physiological ex-
periments [7, 12], may contribute to the complex flow dynamics observed
by Yip and colleagues [5, 22]. A more complete understanding of single
nephron and coupled nephron dynamics, by means of the minimal model,
the reduced model presented here, or other pertinent model formulations,
is a principal objective of our work.
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