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Abstract. A central task of physical oceanography is the prediction of ocean circulation at various
time scales. Mathematical techniques are used in this domain not only for the modeling
of ocean circulation but also for the enhancement of simulation through data assimilation.
The ocean circulation model of concern here, namely, HYCOM, is briefly presented through
its variables, equations, and specific vertical coordinate system. The main part of this pa-
per focuses on the Kalman filter as a data assimilation method, and especially on how this
mathematical technique, usually associated with a prohibitively high computing cost for
operational sciences, is simplified in order to make it applicable to the simulation of realistic
ocean circulation models. Some practical issues are presented, such as a brief explanation
about ocean observation systems, together with examples of data assimilation results.
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1. Introduction. Physical oceanography is a rapidly growing field. The increas-
ing pressure for work on climate systems (global climate warming, El Niño oscillation,
etc.) is one important reason. Also, the recent progress in oceanography has triggered
more demands from various fields of application aside from climate studies, such as
weather forecasting, marine transport, the offshore petrol industry, management of
marine environment and fish resources, as well as military marine activities.
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The operational branch of physical oceanography became progressively viable
thanks to the progress made in observing and measuring the oceans, in numerical
modeling, and in data assimilation (see [2] for an overview of current operational
oceanography). Indeed numerical models have reached a level of complexity that
enables them to reproduce the spatiotemporal variability of ocean circulation with
increased realism, for both global and coastal applications. Despite this progress,
simulations still need to be enhanced in order to improve their coherence with the
accurate measurements provided by satellite-borne observation systems.

A better fit between simulations and observations can be achieved through data
assimilation, which is a mathematical technique combining the information provided
by measured data with the information provided by a model’s forecast to obtain the
best possible estimate of the ocean state. This paper is concerned with data assimi-
lation systems, and more particularly with a particular technique, namely, a reduced-
order Kalman filter called the SEEK filter (singular evolutive extended Kalman fil-
ter), applied to an ocean model called HYCOM, standing for hybrid coordinates ocean

model. The success of this assimilation system has led to the SEEK filter being uti-
lized by the MERCATOR group (see [1], [9]) and the HYCOM consortium, two of
the main international operational oceanography projects.

This paper does not describe new advances in the field. It aims to present the
SEEK filter, the technique itself together with its context of use and its achievements,
to the community of applied mathematicians. Indeed, although they are central to
operational oceanography, oceanographic data assimilation and the SEEK filter are
little known by the wider community of applied mathematicians.

After a presentation of the typical equations used in ocean circulation models, the
model HYCOM is presented in section 2 focusing on its original vertical coordinates
system. Central to this paper, section 3 focuses on the SEEK filter data assimila-
tion system. The principles of sequential data assimilation are presented, first on a
general level followed by the specifics of Kalman filters. The problems raised by the
application of Kalman filtering to geophysical fluid models are exposed. The SEEK
filter, specifically designed to tackle these problems, is then described in detail. The
last section illustrates the SEEK filter’s practical functioning, including general data
acquisition issues, examples of assimilation experiments, and the description of an
ongoing real-time experiment. In conclusion, we identify some current trends of oper-
ational oceanography where the use and development of mathematical techniques are
key points to future success, thereby proving the long-term necessity of interactions
between mathematicians and oceanographers.

2. OGCMs and the HYCOM Model. The development of data assimilation
schemes makes use of a configuration built around a model. The work described
in this paper was conducted with the model HYCOM [3], developed at RSMAS, Uni-
versity of Miami. It was built upon the model MICOM (Miami isopycnal coordinate
ocean model) from the same university, by adopting an alternative vertical coordinate
system, as developed in section 2.2. HYCOM belongs to the most widely used class of
numerical ocean models, called ocean global circulation models or OGCMs (see [13]
and [28] for an extensive presentation of OGCMs).

2.1. The Primitive Equations. OGCMs are built on primitive equations describ-
ing the fundamental laws of geophysical fluids, i.e., stratified fluids on the rotating
earth. The general formalism aims to ensure conservation of mass, momentum, heat,
and salt. The different existing ocean models are therefore distinguished by specific
selection of the grid definition and parameterization of subgrid-scale motions, and
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of the vertical coordinate system. The primitive equations are given below as they
are written in HYCOM, using (x, y, s) coordinates where s is a generalized vertical
coordinate. They consist of

• a momentum equation (2.1a) for the horizontal velocity vector v = (u, v);
• a mass continuity equation (2.1b) for the pressure p;
• one conservation equation (2.1c) for each thermodynamic variable represented

by θ (temperature and salinity):
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where α is the potential specific volume, inverse of the potential density, ζ ≡ ∂v/∂xs−
∂u/∂ys is the relative vorticity, M ≡ gz + pα is the Montgomery potential, f is
the Coriolis parameter, k is the vertical unit vector, ν is a variable eddy viscos-
ity/diffusivity coefficient, τ is the wind-drag and/or bottom-drag induced shear stress
vector, and Hθ represents the sum of diabatic source terms acting on θ. Subscripts
indicate which variable is held constant during partial differentiation.

2.2. The Different Vertical Coordinate Systems and the Hybrid System in

HYCOM. In order to represent fully the ocean’s complex vertical structure, a model
must have an appropriate vertical coordinate system. Within the set of OGCMs, the
most important distinction therefore lies in the choice of vertical coordinate system.
The three common vertical coordinates are as follows:

• The z-level coordinate, which represents the vertical distance relative to a
geopotential reference level. This is a simple and intuitive coordinate match-
ing the natural concept of depth. The surface mixed layer and unstratified
regions are well represented by this coordinate. z-models have been used for
decades and are still nowadays at the forefront, represented, among others, by
the modular ocean model (MOM) or the océan parallélisé (OPA) model [28].

• The σ-coordinate is a terrain-following coordinate, equal to zero at the surface
and −1 at the ocean bottom. This coordinate provides a smooth represen-
tation of the topography of the ocean’s bed, called the bottom topography.
This type of model, however, does not give a good account of the surface
layer or of some physical phenomena in the ocean interior. The use of this
σ-coordinate, such as in the Princeton ocean model (POM) [6], has therefore
been restricted to regional studies or smaller basin-wide studies.

• The ρ-coordinate is equal to the potential density ρ. The density is appro-
priate as a vertical coordinate because most diffusion processes in the ocean
happen along isopycnal surfaces, i.e., surfaces of same density. Since in most
OGCMs the hydrostatic equilibrium is assumed, the density increases mono-
tonically from the surface to the ocean bottom. ρ-coordinate models are
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therefore most appropriate in the stably stratified regions of the ocean’s inte-
rior. Bottom topography is also adequately represented. However, for areas
where the ocean is not strongly stratified, such a coordinate system will not
perform well. Models using this coordinate include MICOM [4], HIM (Hall-
berg isopycnal model) [29], and POSUM (parallel Oregon State University
model).

Evolving from the ρ-coordinate model MICOM, the originality of HYCOM lies
in its specific hybrid coordinates system, aimed at preserving the advantages of ρ-
coordinate models while acquiring the advantages of the other coordinate systems in
regions where the ρ-coordinate is not the most appropriate. Along the same lines, the
model POSEIDON also uses a hybrid but different vertical coordinate system [31].

HYCOM switches between different vertical coordinate systems in different three-
dimensional regions of the ocean [3], [14]. The reason for this choice is the inability of
any vertical grid to perform well everywhere. For example, the σ-coordinate (terrain
following) performs well on the shelf (the shallow part of the ocean, close to the coast)
where increased vertical resolution is desired in shallow water, but it introduces errors
in the calculation of horizontal gradients near steeply sloping bottom topography. The
z-level (geopotential) coordinate eliminates this problem near steep slopes but is not
appropriate for both shallow and deep water areas, and represents the topography by
steps.

Due to its hybrid coordinate system, HYCOM uses an appropriate coordinate
system within any three-dimensional region in the domain. It switches between

• the σ-coordinate in unstratified shallow coastal regions,
• the z-level coordinate in the mixed layer and in other unstratified regions,
• and the ρ-coordinate everywhere the ocean is stratified.

The choice of coordinate type varies in time and space, and the optimal choice is
updated every time step. The layered continuity equation (2.1b) assures a smooth
transition between the different coordinate types.

This hybrid coordinate system is a definite advantage as soon as the studied
ocean region includes shallow or unstratified regions as well as open ocean areas,
for example, the North Atlantic ocean including the Gulf of Mexico [14]. Fur-
ther details concerning all characteristics of HYCOM can be found in [3] and at
http://hycom.rsmas.miami.edu. Because of its original vertical coordinate system,
HYCOM is a state-of-the-art ocean circulation model that is widely used by oceanog-
raphers worldwide, including our team, for developing configurations allowing the
study of advanced data assimilation schemes.

3. Sequential Data Assimilation and the Kalman Filter. Ocean circulation sim-
ulations suffer mainly from three types of drawbacks:

• Model deficiencies: problems due to the resolution, the numerical scheme, the
physical misrepresentation of some process, etc.

• Erroneous forcing: false information can be given to the model through in-
correct forcing data such as wind, heat flux, or fresh water flux forcing.

• Incorrect initial conditions: this is an obvious and unavoidable difficulty in
such a complex system.

The adequacy of a model’s reproduction of reality with independent measurements is
therefore limited, to a different extent depending on the model. Consequently, data
assimilation techniques are widely used in order to enhance the quality of simulations.

In a generic way, data assimilation can be defined as the synthesis of various
sources of information available about one system in order to get the best possible
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estimates of this system. In oceanography, the two sources of information are the
knowledge of the physics governing the system, transcribed in the model, and the
observations (measurements) made of this system. Thus data assimilation can be
summarized here as a dynamical interpolation of observations using a nonlinear model
of the ocean’s dynamics. Data assimilation problems belong to the category of inverse
problems, since they are concerned with the reconstitution of a system from some data
produced by this system.

3.1. Sequential Data Assimilation. Data assimilation consists practically of
modifying the state vector of a numerical model (in primitive equation models such as
HYCOM, this typically includes the temperature, salinity, velocities, and sea-surface
height two-dimensional field) to account for information contained in observations of
the real system.

Various stochastic and nonstochastic data assimilation methods exist (see [26],
[25] for reviews). Nonstochastic methods in use for oceanography include in par-
ticular the four-dimensional variational (4D-Var) scheme. Here, we are concerned
with a subset of stochastic methods called the sequential methods. Sequential data
assimilation filters operate in three steps:

• An initial probability distribution of state variables at the initial time is
provided.

• The statistics of the state variables evolve over time with the system dynam-
ics.

• The observations modify the probability distribution of state variables. In
Kalman filtering techniques, the mean of this distribution is updated by a
linear combination of the innovations (innovations are the misfits between
the observations and the system’s variables), and it is assumed that the mea-
surement and model errors are unbiased and Gaussian.

Sequential data assimilation techniques include the Kalman filters, on which we will
now focus.

3.2. The Kalman Filter. The Kalman filter (see [32], [27], [15] for reviews) is a
sequential method, composed of two steps: a forecast step followed by an analysis
step.

• The forecast step uses the dynamical model to provide the system’s current
forecast, i.e., the state of the system obtained by integrating the model’s
equations from the previously estimated state of the system,

• The analysis step provides a new estimate of the system’s state. This esti-
mate is obtained by correcting the forecasted state of the system using the
innovation, while taking into account the errors in both the model’s state and
the observations.

For the general case, the equations for these two steps are given below:
• Forecast step: The current forecast state is given by the integration of the

model, assumed linear here, from the previously estimated state:

x
f
k = Mk−1,k xa

k−1.(3.1)

The current forecast of the error covariance matrix P is given by the transfor-
mation of the previously estimated error covariance matrix using the model
M and the model error matrix Qk:

P
f
k = Mk−1,k Pa

k−1 MT
k−1,k + Qk.(3.2)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

454 D. ROZIER, F. BIROL, E. COSME, P. BRASSEUR, J. M. BRANKART, AND J. VERRON

• Analysis step: The current estimated state xa
k is given by the current forecast

state x
f
k corrected by the Kalman gain Kk applied to the innovation vector

(yk − Hk x
f
k):

xa
k = x

f
k + Kk [ yk − Hk x

f
k ],(3.3)

using the Kalman gain Kk given by

Kk = P
f
k HT

k [ Hk P
f
k HT

k + Rk ]−1,(3.4)

where it can be demonstrated that Kk corresponds to the minimization of
the trace of the error covariance on xa

k, given at the minimum by

Pa
k = [ I − Kk Hk ] P

f
k ,(3.5)

where x
f
k is the forecasted model state vector at step k, xa

k is the model state vector
resulting from the analysis at step k, Mk−1,k is the model operator between step k−1

and k, P
f
k is the background error covariance matrix after the forecast step k, Pa

k is
the background error covariance matrix after the analysis step k, Qk is the model
error covariance matrix at step k, Kk is the Kalman gain matrix at step k, Hk is the
observation operator at step k, Rk is the observation error covariance matrix at step
k, and I is the identity matrix.

At the end of each forecast step, the covariance matrix for the forecast error is
calculated, and at the end of each analysis step, a new covariance matrix for the
analysis error is specified.

3.3. Kalman Filters for Geophysical Applications. The canonical form of the
Kalman filter is difficult to implement with realistic geophysical fluid models because
of (i) nonlinearities in the models and observation operators; (ii) poorly known er-
ror statistics; and (iii) a prohibitive computational cost. Points (i) and (ii) affect
the behavior or the quality of the data assimilation system. Point (iii) is numeri-
cally limiting, so that making the Kalman filter applicable to realistic geophysical
problems requires simplifications and approximations. Such attempts have led to the
development of suboptimal Kalman filter schemes [25], [17].

The problem of nonlinearities is partially solved by extending the Kalman filter
algorithm to nonlinear systems, to what is called the extended Kalman filter (EKF).
In the EKF, M and H are no longer linear applications, and have to be replaced by M

′

and H
′

, the tangent linear models, in the equations related to the model’s error, i.e.,
equations (3.2)–(3.5). In most applications, however, the linearized models M

′

and H
′

are not used and calculations are performed with a finite difference approximation: If x
and δx denote the state and a state perturbation or error, M

′

δx ≈ M(x+δx)−M(x).
The prescription of error covariance matrices R, Q, and P

f
0 (Pf at the first inte-

gration step) is required by the Kalman filter. However, little is known about these
matrices for they cannot be inferred from their theoretical definition. The observation
error statistics are generally deduced from consideration of instrumental errors, rep-
resentativeness errors (due to the mismatch between the scales of spatial variability
in the observations and the model grid), and errors in the observation operator. The
model error statistics are often represented by simplified parameterizations, possibly
adjusted online [21]. The background error statistics are often, though not always,
determined from an ensemble of model simulations, supposedly representative of the
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model’s uncertainty. Section 3.5 illustrates this by presenting such an approach to
initialize the SEEK filter.

The prohibitive computational cost essentially comes from the propagation of the
error covariance matrix P (see (3.2)). Equation (3.2) implies a number of model in-
tegrations equal to the size of the state vector, i.e., larger than 106 in many oceanic
applications. This is unfeasible with present-day ocean models and computation capa-
bilities. Moreover, given the uncertainties in the prescribed error statistics, it appears
inappropriate to spend a huge amount of computational time to propagate probably
erroneous information. Several directions have been followed in the past to simplify
the forecast step, often referred to as “suboptimal Kalman filter” schemes. They
include the following ideas: considering error statistics constant in time (this cor-
responds to the optimal interpolation approach) [34], [18]; propagating only error
variances and covariances for neighboring grid points [37], [42]; using a simplified
model [19], [20] or a reduced-order model [17], [23] to propagate the error statistics;
reducing the order of the state space [10], [24]; and reducing the order of the error
space [22], [17], [44], [39], [33].

In the next section, we focus on how these three difficulties are tackled with the
SEEK filter.

3.4. The SEEK Filter: A Reduced-Order Kalman Filter. The SEEK filter is
a Kalman filter in which the dimension of the state error space is reduced. It was
founded by Pham, Verron, and Roubaud [39], based on earlier ideas of Cohn and
Todling [16], [17], and Verlaan and Heemink [43]. The integration of the matrix P is
made possible by the order reduction. This matrix is real and symmetric (thus Her-
mitian), and is therefore diagonalizable, with real eigenvalues and orthogonal eigen-
vectors. It can be written as

P = N B NT ,(3.6)

where B is a diagonal matrix of order n (n being the dimension of the dynamical
system) containing the eigenvalues of P and N is a matrix containing its eigenvectors.
The reduction of order consists of using only a small number r of eigenvectors for
expressing P, i.e., using a matrix N of order n × r rather than n × n. How this
subset of eigenvectors is determined in practice, i.e., what size it should have (what
value does r take) and which of the eigenvectors should be included, is the subject
of section 3.5. Traditionally, by introducing S = N B1/2 in (3.6), the matrix P is
usually written as

P = SST ,(3.7)

where S is a matrix of order n × r.
The equations of the EKF must now be rewritten using the matrix S instead of

P. In order to reach an algorithm for the forecast/analysis cycle, we need to obtain
equations for xf , xa, the gain K on which it depends, and the matrices Sf and Sa.

The gain K, defined by (3.4), can be expressed in the following manner by tak-
ing (3.7) into account:

K = Sf (HSf )
T

[ (HSf )(HSf )
T

+ R ]−1.(3.8)

The equality of the matrices,

[ X1 + X12X
−1

2 X21 ]−1

= X−1

1 − X−1

1 X12 [ X2 + X21X
−1

1 X12 ]−1 X21X
−1

1
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allows us to develop (3.8) into the following expression of the Kalman gain K, using
X1 = R, X12 = HS, X−1

2 = I, and X21 = (HS)T:

K = Sf [ I + (HSf )
T
R−1(HSf ) ]−1 (HSf )

T
R−1.(3.9)

We also need to represent the analysis error covariance matrix Sa. By introducing
(3.9) (and (3.7)) into (3.5), we can develop Pa as

Pa = [ I − Sf [ I + (HSf )
T
R−1(HSf ) ]−1 (HSf )

T
R−1H ] SfSf T

= Sf [ I + (HSf )
T
R−1(HSf ) ]−1 Sf T

.

Since Pa = SaSaT , we obtain

Sa
k = S

f
k [ I + (HkS

f
k)

T
R−1

k (HkS
f
k) ]−1/2.(3.10)

Then we perform the dynamical propagation of Sa
k, i.e., calculate the vectors

{Sf
k}l for each column l of Sf , with the finite difference approximation

{Sf
k+1

}
l
= M [ xa

k + {Sa
k}l ] − M[x

a
k], l = 1, . . . , r,(3.11)

and add the model error covariances (see (3.2))

P
f
k+1

= S
f
kS

f
k

T
+ Qk.(3.12)

As mentioned in section 3.3, Qk is often represented by simple parameterizations. A
natural constraint here is to conserve the rank of the Pf from step k to k + 1, then

to define Qk in the same subspace as S
f
kS

f
k

T
. A common recipe is to consider Qk to

be proportional to S
f
kS

f
k

T
[7], [9]. We have now obtained all of the equations forming

the general SEEK filter algorithm.
Initialization (instant t0):

xk=0 = x0,

Pk=0 = S0S0T
(cf. (3.7)).

Analysis step:

Kk = S
f
k [ I + (HkS

f
k)

T
R−1

k (HkS
f
k) ]−1 (HkS

f
k)

T
R−1

k (cf. (3.9)),

xa
k = x

f
k + Kk [ yk − Hk x

f
k ] (cf. (3.3)),

Sa
k = S

f
k [ I + (HkS

f
k)

T
R−1

k (HkS
f
k) ]−1/2 (cf. (3.10)).

Forecast step:

x
f
k+1

= Mk,k+1 xa
k (cf. (3.1)),

{Sf
k+1

}
r
= M [ xa

k + {Sa
k}l ] − M[x

a
k], l = 1, . . . , r (cf. (3.11)),

P
f
k+1

= S
f
kS

f
k

T
+ Qk (cf. (3.12)).

In oceanographic applications of reduced-order Kalman filters, the major amount
of computing time is spent in the model evolution. Hence, the computational complex-
ity of the SEEK algorithm is mainly due to the forecast step: it is equal to (r +1)N ,
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where N is the number of operations required to integrate the model equations be-
tween times tk and tk+1. This explains why the reduction of rank (i.e., using a rank
r much smaller than n) is the decisive factor that enables a Kalman filter to be used
for data assimilation in physical oceanography.

However, in some applications [38], [41] it appears to be not essential to dynam-
ically propagate the error matrix, either because the effect is weak or because the
model errors are large and make it useless. In these cases, the error matrix is kept
fixed and equation (3.2) of the EKF is replaced by

P
f
k = Pa

k−1 + Qk−1.

In such cases, the computational complexity of the forecast step is reduced to N
(one single model integration) so that the computational cost of the analysis step
may become nonnegligible. The leading terms of the computational complexity of
the SEEK analysis described in this paper (see (3.3), (3.9), and (3.10)) are m(r2 +
r + 2) + r3 + n(r2 + r), where n is the size of the state vector and m is the size of
the observation vector. It is worth noting that for a large observation vector, the
computation of the Kalman gain using the SEEK formula (3.9) is much cheaper than
the original formula (3.8), for which the computational complexity is proportional to
m3. This is a key originality of the SEEK algorithm with respect to other reduced-
rank Kalman filters, which most often use formulas like (3.8) to evaluate the Kalman
gain (see [35] for more details).

3.5. Reduction of Order in Practice through the Use of Empirical Orthogonal

Functions (EOFs). As explained in the previous section, (3.6) results in a reduction of
order if we use a number r of eigenvectors that is small compared with n. Practically,
we have to identify an appropriate number r and choose which r eigenvectors should
be used.

In order to initialize the P matrix, the first step is usually to find a suitable random
or deterministic process to simulate the background error statistics. According to the
kind of error present in the system, this process can be, for instance, a simulation of the
time variability of the system or the generation of an ensemble of model simulations
from random perturbations in the model parameters, the model forcing function, or
the model dynamics. If the error in the system is due to an incorrect time phasing
of a turbulent flow, the system’s variability is certainly appropriate to describe the
covariance of the errors. On the contrary, if the error is due to inaccurate model
parameters or forcing functions, it is certainly more suitable to parameterize the error
covariance using the covariance of an ensemble of model simulations obtained from an
ensemble of perturbations in the parameters or in the forcing function, since they can
be assumed to be the real source of error. Usually, that kind of proxy for the error
statistics (system’s variability, ensemble of perturbed simulations) lead to a low-rank
parameterization of the background error covariance matrix.

However, in the SEEK filter parameterization, a second step is needed, consisting
of keeping only the first r EOFs from the ensemble of model state vectors that have
been produced by one of the techniques described above. This truncation leads to a
covariance matrix taking the form (3.6), where the columns of N are the normalized
EOFs and where B is diagonal, with the corresponding eigenvalues [39]. This is
justified by the following result [40]: “If x is a random vector of zero mean and
covariance P, then among all its projections onto a linear subspace of dimension r,
the one for which the error vector has smallest expected squared norm is the projection
onto the linear space spanned by the first r eigenvectors of P.”
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The accuracy of the above approximation for the background error covariance
matrix mainly depends on three factors: (i) the suitability of the process that is used
to simulate the error statistics, (ii) the size of the sample of independent states that
have been produced using that process, and (iii) the number r of EOFs that are
retained in the parameterization. It is difficult to provide general statements on the
first factor, since this closely depends on the knowledge of the sources of errors in the
system. Conversely, the second factor leads to the well-known confidence interval on
the error statistics, so that it is easy to determine the size of the ensemble to obtain
a desired accuracy on the background error covariance structure. The effect of the
third factor is also easy to evaluate because, if λj are the eigenvalues of P sorted
in decreasing order, the relative error in the representation of a random vector x of
covariance P in the reduced space spanned by the first r eigenvectors of P is given
by the ratio

∑

j>r λj/trP [39].
However, in many practical applications the rank r of the matrix (factor 3) or

even the size of the initial ensemble (factor 2) that would be needed to represent the
error correlation structure with a sufficient accuracy is often too large to be numer-
ically tractable. In order to overcome this difficulty, several authors have proposed
a subsequent approximation to the reduced-rank Kalman filters (the local approxi-
mation [30], [41], [7]), consisting of an artificial increase of the rank of the P matrix
by nullifying (in a consistent manner) the long-range correlation coefficients. Such
approximations complexify in several ways the structure of the analysis algorithm,
which is beyond the scope of this paper to describe.

EOF decomposition techniques can also be used to reduce the dimension of the
work space of the model itself, rather than the error state space. Such an approach
has been recently introduced for oceanographic problems [11], [12] and belongs to the
family of reduced-order models mentioned in section 3.3.

4. Applying the SEEK Filter: Examples of Assimilation Experiments. The
reduced-order Kalman filter described in the previous section and implemented in
the SEEK filter has been applied to various simulation tasks; see, for example, [8],
[7]. In order to illustrate the use of the SEEK filter, we first describe how data are
obtained, since without any data available, there would be no possible application of
data assimilation. We then look at an assimilation experiment undertaken on a typical
North Atlantic simulation and the enhancements obtained through data assimilation.
Finally, we will consider one weakness of sequential assimilation schemes, the creation
of dynamical shocks in the model, together with the track currently being explored
by our team in order to address this weakness.

4.1. Obtaining Data: Ocean Observation Systems. Operational oceanography
requires good quality systematic data for assimilation into numerical models to provide
analyses of a range of ocean phenomena.

Satellite remote sensing has revolutionized the observation of the oceans: despite
the recent deployment of a large number of floats (the ARGO floats campaign), in-situ
data are limited in coverage and predominantly confined to shipping lanes. Satellite
measurements offer the potential of surveying a range of key parameters over the
entire ocean surface in just a few days. The most important of these parameters is
the sea surface height (SSH), since altimetric data (i.e., measurements of SSH) form
the common backbone of all ocean assimilation systems. It is measured through a
satellite radar technique where short pulses are reflected at the ocean’s surface. The
analysis of the received echo allows, with the known satellite position, a precise, fast,
and global monitoring of the SSH and its variability. SSH variability is due to and
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so can be related to ocean dynamics. Other useful data sets offered by remote ocean
sensing include sea surface temperature (SST). IR sensors on environmental satellites
can be used to measure the temperature across large expanses of the ocean surface.
The assimilation of SST allows a better monitoring of changes in ocean temperatures
or circulation, the detection of newly formed sea ice, or the location of specific thermal
features related to ocean dynamics such as oceanic fronts, rings, or eddies.

Critical in-situ observation systems are also used: the international ARGO pro-
gram, which consists of a global network of profiling floats delivering vertical temper-
ature and salinity profiles, and also the global tropical mooring network, the ship-of-
opportunity programs, and the ocean sites time series station network.

Moreover, a number of new observation systems are in the process of being de-
ployed from space or at sea, some already able to deliver data while others are still at
the design stage. Forthcoming ocean prediction systems will have to be able to assimi-
late new data sets such as large-scale sea surface salinity or ocean color measurements,
ice concentration, or coastal in-situ data.

4.2. An Assimilation Experiment with the SEEK Filter.

4.2.1. Example of the Correction of a Surface Field. Figures 4.1 and 4.2 show
snapshots of the surface current velocity, from a simulation without assimilation and
from the same simulation with assimilation. One major structure in the North Atlantic
region shown in the figures is the Gulf Stream: a strong jet of hot water originating in
the Gulf of Mexico and shooting up the east coast of the United States until it leaves
the coast in the area of Cape Hatteras. The left-hand plots of both figures show
snapshots of a simulation with no data assimilation. An important weakness of these
two plots is the location where the Gulf Stream leaves the coast. Although it should
be at Cape Hatteras, it takes place further north; we say that the stream is “over-
shooting.” The right-hand plots were then taken from an equivalent simulation with
data assimilation. The area where the Gulf Stream leaves the coast is appropriately
located at Cape Hatteras. As a consequence of this correction, the Gulf Stream and
its extension, the North Atlantic Current, follow a path that is much closer to reality.
The structure of the stream is also affected and corrected by the data assimilation. It
has a narrower and well-defined body, an important characteristic of such a jet, and
the area of high turbulence is correctly located. The use of data assimilation allows
for a more accurate simulation of the ocean’s surface currents.

4.2.2. Example of the Correction of a Vertical Section. In most cases, the
data assimilated are acquired through surface measurements, such as SST or SSH.
Indeed, the main sources of data with satisfactory coverage in time and space are
satellite measurements, and satellites cannot yet produce measurements of the ocean’s
interior. Obviously, the world’s ocean circulation cannot be narrowed down to the
surface currents. Even if we were only interested in the prediction of surface currents,
these are heavily dependent on what happens in the depth of the ocean.

The SEEK filter uses three-dimensional error statistics, allowing the inference
of subsurface characteristics from surface measurements. The assimilation of surface
data can therefore improve the simulation of circulation at any depth, from the surface
to the bottom of the ocean. Figure 4.3 shows a section of the ocean’s temperature
at a latitude of 46.5 North, between the longitudes of 15 West and 3 East, on Au-
gust 3, 1993. This geographical area is located in the Bay of Biscay, where, in the
summer, there is a warm pool in the southeastern part of the bay, separated from the
warm waters of the Portugal polarward current by a colder current branching from
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Fig. 4.1 Surface current velocity in m.s−1 for the North Atlantic (18th August 1993) from HYCOM
1/3◦ simulation. Left: without data assimilation. Right: with data assimilation.

Fig. 4.2 A zoom from Figure 4.1: the surface current velocity m.s−1 for the Gulf Stream region (18th
August 1993) from HYCOM 1/3◦ simulation. Left: without data assimilation. Right: with
data assimilation.

the North Atlantic Current. On the left-hand plot in Figure 4.3, resulting from a
simulation without any assimilation, the temperature at the surface and subsurface
does not reflect these structures and currents: the temperature is homogeneous along
the section for a given depth. On the right-hand plot with assimilation, however,
it is possible to identify the warm pool structure (colored red), on the east by the
coast, separated from the other warm structure by a colder water mass (in yellow).
The correction achieved by the data assimilation not only resulted in the formation
of this cold water mass at the surface, but also strongly influenced the whole profile
of temperature. Indeed this cold current is visible down to a depth of 150 meters and
seems to be doubled by a second branch of colder waters between the depths of 50 to
150 meters that is not visible on the surface.

This example shows that despite the typical use of surface measurements as the
main source for data assimilation, the correction achieved by this mathematical tech-
nique reaches down to water layers deep below the ocean’s surface. This vertical
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Fig. 4.3 Section of temperature at 46.5◦N from a simulation without data assimilation on the left,
and with assimilation of SST, SSH, and salinity on the right.

Analysis stages

Time

Model

state

a

f

f
f

a

a

a : analyzed state

f : forecast state

Fig. 4.4 The temporal scheme of the classic Kalman filter.

extrapolation of surface correction enables data assimilation to be used as a tool for
the enhancement of simulations for the entire ocean circulation.

4.2.3. Intermittent and Incremental Assimilation Schemes. The classic as-
similation temporal scheme, used in the SEEK filter and all sequential assimilation
methods, follows the time discretization described in section 3.2. The graphical repre-
sentation of this scheme in Figure 4.4 demonstrates its intermittent nature, as shown
by the discontinuous line. The trajectory is not continuous for every assimilated vari-
able, since the analysis changes the value of these variables from the forecast value
to the analyzed value at the same instant in time. Unfortunately this discontinuity is
not compatible with physical processes, where changes can happen sharply but always
continuously.

Let us take, for example, the variable SSH, which is typically assimilated with the
SEEK filter. Its sudden and discontinuous variation creates waves on the ocean sur-
face, created dynamically by the model through a normal adjustment process. These
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Fig. 4.5 SSH increment between simulations with and without assimilation, 5 days after the latest
assimilation step.

waves can be seen in Figure 4.5, which represents the SSH increment between simu-
lations with and without assimilation, 5 simulation days after the latest assimilation
step. Although these waves have a small amplitude, their existence is spurious, and
avoiding them would be important as part of a technique allowing us to avoid the
discontinuities of the model’s trajectory caused by the intermittent scheme. A poten-
tial solution consists of replacing the intermittent scheme by an incremental scheme,
called incremental analysis updating (IAU) [5], [36]. The integration of this scheme
into the SEEK filter is currently being evaluated. Following this method, every fore-
cast/analysis cycle is integrated twice: the first instance allows the innovation to be
computed by the analysis, and this innovation is then incremented into the forecast
step all along the timespan of the second instance of this forecast step. This technique
smooths the assimilated trajectory and should help to avoid the potentially dramatic
consequences of discontinuities.

5. Conclusion. The amount of data currently available to oceanographers has
drastically increased with the use of satellites. In addition, computing and storage
possibilities are constantly enhanced by the fast progress of modern computers. These
conditions motivate the use of increasingly high spatial resolution and increasingly
complex models, integrating phenomena such as tide or the melting/freezing of sea
ice. As a consequence, the mathematical techniques used by the community must
cope with this increased complexity.

This paper has explained the particular case of a data assimilation technique
called the SEEK filter using a Kalman filter. A review of the main characteristics
of this type of filter showed that the computing and storage cost of such a method,
if it is not modified, is prohibitive for the usual oceanographic configurations. The
solution implemented in the SEEK filter consists of the reduction of the rank of the
background error covariance matrix P. This reduction of order allows the SEEK
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filter to be applicable for typical physical and operational oceanography. Illustrat-
ing the practical use of the SEEK filter, we looked at some examples of assimilated
simulations, highlighted the discontinuity drawback of this method, and described a
potential solution to this drawback that is currently being explored.

Further theoretical work is still in progress concerning the assimilation scheme
itself, such as the study of the IAU scheme mentioned in section 4.2.3, involving im-
portant mathematical skills. In operational oceanography, a highly active area of
work is concerned with regional or even coastal predictions, as a large majority of hu-
man marine activities happen within only a few kilometers of the coast. Regional and
coastal high-resolution configurations open up completely new sets of oceanographical
challenges (such as the accurate account of tides), technical challenges (such as satel-
lite measurements in shallow waters), and also mathematical challenges. The first
mathematical challenge arises from the fact that regional or coastal domains include
not only land borders, but also borders in the ocean, requiring the specification of
open boundary conditions. These boundary conditions are provided by a coarser-
resolution basin-scale model into which the regional model is said to be nested. The
specification of these boundary conditions utilizes specific mathematical techniques
(e.g., Flather), motivating the collaboration between oceanographers and mathemati-
cians. Also, the control of these configurations covering a smaller area, close to a coast
of interest, but with a higher resolution, is a complex problem that certainly cannot
only be solved through the specification of boundary conditions. We believe that
control can be enhanced through data assimilation techniques, and we are therefore
working on applying the SEEK filter described in this paper to this particular area
of nested configurations.and J. Verron
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Liège Colloquium on Ocean Dynamics.

[3] R. Bleck, An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordi-
nates, Ocean Modelling, 37 (2002), pp. 55–88.

[4] R. Bleck and E. P. Chassignet, Simulating the oceanic circulation with isopycnic-coordinate
models, in The Oceans: Physical-Chemical Dynamics and Human Impact, S. K. Majumdar,
E. W. Miller, G. S. Forbes, R. F. Schmalz, and A. A. Panah, eds., The Pennsylvania
Academy of Science, 1994, pp. 17–39.

[5] S. C. Bloom, L. L. Takacs, A. M. DaSilva, and D. Levina, Data assimilation using incre-
mental analysis updates, Monthly Weather Rev., 124 (1996), pp. 1256–1271.

[6] A. F. Blumberg and G. L. Mellor, A description of a three-dimensional coastal ocean cir-
culation model, in Three-Dimensional Coastal Ocean Models, N. S. Heaps, ed., American
Geophysical Union, Washington, D.C., 1987, pp. 1–16.

[7] J. M. Brankart, C. E. Testut, P. Brasseur, and J. Verron, Implementation of a mul-
tivariate data assimilation scheme for isopycnic ocean models: Application to a 1993–
1996 hindcast of the North Atlantic Ocean circulation, J. Geophys. Res., 108 (C3) (2003),
pp. 1–20.

[8] P. Brasseur, J. Ballabrera-Poy, and J. Verron, Assimilation of altimetric data in the
mid-latitude oceans using the Singular Evolutive Extended Kalman filter with an eddy-
resolving, primitive equation model, J. Marine Syst., 22 (1999), pp. 269–294.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

464 D. ROZIER, F. BIROL, E. COSME, P. BRASSEUR, J. M. BRANKART, AND J. VERRON

[9] P. Brasseur, P. Bahurel, L. Bertino, F. Birol, J.-M. Brankart, N. Ferry, S. Losa,
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